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Anisotropic effect of a magnetic field on the neutron spin resonance in FeSe
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We use inelastic neutron scattering to study the effect of a magnetic field on the neutron spin resonance
(Er = 3.6 meV) of superconducting FeSe (Tc = 9 K). While a field aligned along the in-plane direction broadens
and suppresses the resonance, a c-axis aligned field does so much more efficiently, consistent with the anisotropic
field-induced suppression of the superfluid density from the heat capacity measurements. These results suggest
that the resonance in FeSe is associated with the superconducting electrons arising from orbital selective
quasiparticle excitations between the hole and electron Fermi surfaces.
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Conventional Bardeen-Cooper-Schrieffer (BCS) supercon-
ductivity in materials such as aluminum and tin emerges
from the pairing of electrons through phonon-mediated at-
tractions and is associated with the opening of an isotropic
superconducting gap in reciprocal space below Tc [1]. Al-
though there is no consensus for a microscopic theory, high-
transition-temperature (high-Tc) superconductivity in copper-
and iron-based materials, derived from their antiferromagnetic
(AF) ordered parent compounds [2,3], is believed to arise
from interactions between itinerant electrons mediated by spin
fluctuations [4]. One of the key signatures is the appearance
of a neutron spin resonance mode, a collective spin exci-
tation with an intensity tracking the superconducting order
parameter below Tc [4–6]. The energy of the resonance, Er ,
in different superconductors is proportional to either Tc or
superconducting gap amplitude [7–9].

In the weak-coupling itinerant electron picture, the reso-
nance is a bound state (spin exciton) appearing below the
particle-hole continuum at a momentum transfer Q that con-
nects parts of the Fermi surface exhibiting a sign change in
the superconducting order parameter [5]. For copper oxide
superconductors, which are single-band superconductors with
d-wave gap symmetry [10–12], the resonance peaks at the
in-plane AF wave vector QAF = (0.5, 0.5) and displays hour-
glasslike dispersion around QAF consistent with expectations
of the spin-exciton picture [13–16]. In the absence of (or for
very weak) spin-orbit coupling (SOC) [17], the resonance is
isotropic in spin space and arises from the spin-1 singlet-
triplet excitations of the electron Cooper pairs [5,18]. When
a magnetic field is applied, the spin-1 of the resonance should
split into three energy levels following the Zeeman energy
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E± = Er ± gμBB (at energies Er − gμBB, Er , and Er + gμBB)
[Fig. 1(a)], where g = 2 is the Landé factor, B is the magnitude
of the field, and μB is the Bohr magneton. On the other
hand, if superconductivity coexists with AF order or there is
large SOC-induced anisotropy, the resonance can be a doublet
where the application of a magnetic field will split the mode
into two peaks [Fig. 1(b)] [18], as seen in the heavy fermion
superconductor CeCoIn5[19,20]. However, the application of
a 14 T magnetic field approximately along the c axis in
cuprate superconductors, where Tc and the superconducting
gap is two orders of magnitude larger, only slightly suppresses
the intensity of the resonance with no evidence for Zeeman
splitting [21,22].

In the case of iron-based superconductors [23], where
electrons in an Fe 3d t2g band with dxz, dyz, and dxy orbitals are
near the Fermi level, superconductivity may occur in multiple
orbitals through the hole-electron Fermi surface nesting [24].
As a consequence, the resonance can have more than one
component in energy [25,26] and be anisotropic in spin space
due to SOC [27–29]. Since the effect of Zeeman energy
for a maximum possible applied field of 14 T is still small
compared with the intrinsic energy width of the resonance for
optimally doped iron pnictide/chalcogenide superconductors
[30,31], there is no confirmed evidence of Zeeman field-
induced triplet splitting of the resonance [32–35]. Neverthe-
less, a c-axis aligned magnetic field suppresses the intensity
of the mode much more efficiently than for an in-plane field
[31,32]. These results are consistent with lower upper critical
fields required to suppress superconductivity in c-axis aligned
fields [23], suggesting that the intensity of the resonance is a
measure of superconducting electron pairing density [36].

To further test if the resonance in iron-based supercon-
ductors is a spin exciton and associated with singlet-triplet
or singlet-doublet transition [Figs. 1(a) and 1(b)], we need
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FIG. 1. (a) Schematic illustration of the Zeeman splitting of
the spin exciton from singlet |0〉 to triplet |1〉 excited states.
(b) Schematic illustration of a singlet-to-doublet excitation. (c) Crys-
tal structure of FeSe. (d) Reciprocal space where the blue dots
represent the QAF = (1, 0) wave vector. The background position at
Qbkgd = (0.977, 0.213, 0) is marked as a small circle. (e) PANDA
measurements of the energy dependence of the scattering below
(blue circles) and above (yellow circles) Tc at QAF = (1, 0). The
background scattering is shown as black circles. The error bars
indicate statistical errors of one standard deviation. (f) Schematic
of normalized peaks and excitation positions of the resonance in
FeSe as a function of increasing magnetic field. Solid lines are
E± = Er ± 2μBB and Er . Dashed lines are guides to the eye for a
c-axis aligned field.

to find a clean material with relatively low Tc and a sharp
resonance in energy without multiorbital effects. FeSe, which
undergoes a tetragonal-to-orthorhombic structural transition
at Ts = 90 K, forms a nematic phase below Ts, and becomes
superconducting at Tc = 9 K [37–40], is an excellent choice
for several reasons [Figs. 1(c) and 1(d)]. First, the compound
is known to be extremely clean and has a relatively low res-
onance energy of Er = 3.6 meV [41]. Second, superconduc-
tivity in FeSe is orbital selective and occurs mostly through
hole-electron Fermi surface nesting of quasiparticles with dyz

orbital characters [42], resulting in a resonance only at the
in-plane AF wave vector QAF = (1, 0) [43]. Third, neutron
polarization analysis of the resonance reveals that the mode
is anisotropic in spin space and essentially c-axis polarized
due to SOC [44], suggesting that a magnetic field cannot
split the mode into triplets. Finally, the upper critical fields
to suppress superconductivity in FeSe are around 16 and 28 T
for the c-axis and in-plane aligned fields, respectively [44,45],
meaning that an applied magnetic field will have a larger
impact on superconductivity compared with that of optimally
doped iron pnictides.

We carried out inelastic neutron scattering experiments to
study the effect of a magnetic field on the resonance of FeSe
using the multiaxis crystal spectrometer (MACS) at NIST
Center for Neutron Research [46], and the cold neutron triple-
axis spectrometer PANDA at Heinz Maier-Leibnitz Zentrum,
Germany [47]. The c-axis aligned magnetic field experiments
were performed on MACS with a fixed E f = 3.7 meV and
PANDA with a fixed E f = 5.1 meV. The vertical magnetic
fields were aligned along the [0,0,1] direction perpendicular
to the [H, K, 0] scattering plane. The in-plane magnetic field
experiment was performed on MACS with the same instru-
mental setup, while the sample was aligned in the [H, 0, L]
scattering plane with the field along the [0,1,0] direction.
Since an in-plane magnetic field will not produce orbital
current within the FeSe layer, its effect on the resonance will
be mostly the Zeeman effect.

At zero field, superconductivity in FeSe induces a reso-
nance at Er ≈ 3.6 meV and a spin gap of about 2.8 meV as
shown from data obtained on PANDA [Figs. 1(e) and 1(f)]
[41,43,44]. The effect of an 8.5 T in-plane magnetic field on
the resonance and low-energy spin excitations is shown using
data obtained on MACS. Figures 2(a)–2(d) show constant-
energy scans along the [1,0] direction at different energies
with 8.5 T and zero magnetic fields in the superconducting
state (T = 2 K). At E = 2.5 meV, an 8.5 T field induces mag-
netic scattering near QAF = (1, 0) above the flat background,
indicating a reduction in spin gap energy [Fig. 2(a)]. Near
the resonance around E = 3.5 [Fig. 2(b)], the field suppresses
the resonance as expected. Above the resonance energy at
E = 4.5 and 5.5 meV, the applied field has little effect on the
magnetic scattering [Figs. 2(c) and 2(d)]. Figures 2(e) and 2(f)
show the two-dimensional (2D) wave-vector-energy images
of the resonance above background scattering at zero and
8.5 T field, respectively [48]. The effect of an 8.5 T in-plane
magnetic field is to weaken and broaden the resonance, with
no convincing evidence for the splitting of the mode. Figure
2(g) is a cut along the energy direction at QAF = (1, 0), which
reveals the resonance at 0 T field. The identical cut at 8.5 T is
shown in Fig. 2(h).

Figure 3 illustrates the effect of a 5 T c-axis aligned mag-
netic field on the resonance. Figures 3(a)–3(d) show constant-
energy scans along the [1,0] direction with different energies
in 5 T and zero magnetic fields in the superconducting state
(T = 2 K). At E = 2 meV, a 5 T c-axis aligned field induces
magnetic scattering near QAF, which is 1.6 meV below the
spin resonance energy Er . Off the resonance energy at E = 3
and 4 meV and above the resonance energy at E = 5 meV, the
applied field has slight effect on the resonance. Figures 3(e)
and 3(f) compare the 2D images of the wave-vector and
energy dependence of the spin resonance in 0 and 5 T,
respectively. For a c-axis aligned magnetic field, the upper
critical field Bc2(⊥) is around 16 T, meaning that a 5 T field
is already ∼31% of Bc2, which is similar to the fraction of
30% achieved for the 8.5 T in-plane oriented field given the
28 T critical field. Although qualitatively the broadening in
energy is similar to that of the in-plane field, the amplitude
of the broadening is more significant. Figures 3(g) and 3(h)
show the constant-Q cuts at the QAF position from (e) and (f),
respectively. We see that an applied field shifts the magnetic
spectral weight to lower energies. By comparing Figs. 2(g),
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FIG. 2. (a)–(d) Constant-energy scans along the [1,0] direction at
E = 2.5, 3.5, 4.5, and 5.5 meV in zero and 8.5 T in-plane magnetic
fields at T = 2 K. (e) and (f) 2D images of wave-vector and energy
dependence of the spin fluctuations in 0 and 8.5 T in-plane magnetic
fields at T = 2 K. (g) and (h) are constant-Q cuts at the QAF position
from (e) and (f), respectively. They have been smoothed two times
by the 2D data processing method in the DAVE-MSLICE program at
NCNR. The arrows in (e)–(h) indicate the lowest energy where a
Gaussian can be fit to the data. The scattering of an assembly of
Al plates coated with CYTOP, as well as a constant adjusted to
force the scattering at E = 2.4 meV and QAF to be zero [Fig.4(b)],
was subtracted as background in (e)–(h) [48]. The monitor counts in
(e)–(h) are normalized to an arbitrary unit (a.u.) and can be compared
directly. L is integrated in all panels, because spin fluctuations have
no c-axis modulations in FeSe. The error bars indicate statistical
errors of one standard deviation.1

1The identification of any commercial product or trade name does
not imply endorsement or recommendation by the National Institute
of Standards and Technology.
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FIG. 3. (a)–(d) Constant-energy scans along the [1,0] direction
at E = 2, 3, 4, and 5 meV in zero and 5 T c-axis aligned magnetic
fields at T = 2 K. (e) and (f) 2D images of wave-vector and energy
dependence of the resonance in zero and 5 T magnetic fields at 2 K.
The background subtraction process is similar to that of Fig. 2 [48].
(g) and (h) are constant-Q cuts at the QAF position from (e) and
(f), respectively. They have been smoothed two times by the 2D
data processing method in the DAVE-MSLICE program at NCNR. The
arrows in (e)–(h) indicate the lowest energy where a Gaussian can be
fit to the data. The error bars indicate statistical errors of one standard
deviation.

2(f), 3(g), and 3(f), we conclude that a 5 T c-axis aligned field
has a larger impact on the resonance than that of an 8.5 T
in-plane field.

To determine if the broadening of the resonance in the
c-axis aligned magnetic field follows expectations from the
field-induced Zeeman effect, we carried out additional mea-
surements on PANDA. Figures 4(a) and 4(b) show the evo-
lution of the magnetic scattering at QAF = (1, 0) in the
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FIG. 4. (a) Constant-Q scans at QAF and the off-peak back-
ground positions at 2 K in zero field as shown in Fig. 1(d).
(b)–(d) Constant-Q scans with background subtracted in 0, 2.5, and
5 T c-axis aligned fields. The error bars indicate statistical errors of
one standard deviation.

superconducting state before and after correcting for the
background scattering, respectively. As expected, we see a
well-defined spin gap below 2.8 meV and a resonance peaked
at Er = 3.6 meV [Fig. 4(b)]. Upon application of a 2.5 T field,
the resonance broadens and weakens, but still seems to be
centered around Er = 3.6 meV [Fig. 4(c)]. At 5 T, the mag-
netic scattering is broadened and weakened further [Fig.4(d)].

To understand these results, we first consider the effect of
Zeeman energy ±gμBB on the resonance. For an isotropic
resonance with weak SOC, such as for cuprate supercon-
ductors [17], the application of a magnetic field is expected
to split the mode into a triplet [49]. This is similar to the
magnetic field effect on quantum magnets such as TlCuCl3

[50] and Sr14Cu24O41 [51], in which the ground state is a
singlet and the excited state is a triplet, and the system under-
goes a so-called magnon Bose-Einstein condensation (BEC)
in magnetic fields [52]. When SOC becomes important, as
in the case of iron-based superconductors [53], low-energy
spin excitations become anisotropic in spin space [54]. In
the case of FeSe, neutron polarization analysis suggests that
the resonance is highly anisotropic in spin space [44]. As a
consequence, the resonance should not be split by a Zeeman
field into a triplet. If the resonance is a magnonlike excitation,
two polarizations perpendicular to the applied field are needed
to form a doublet. Since the resonance is reported to be mostly
polarized along the c axis [44], a Zeeman field should be
unable to split the mode into a doublet.

Figure 1(f) compares the expected broadening of the res-
onance assuming that the mode splits into three peaks in
the applied magnetic fields via the Zeeman effect. Taking
g = 2, the field-induced Zeeman splitting equals to 0.58 and
0.98 meV in 5 and 8.5 T, respectively. In the 8.5 T in-plane
magnetic field, the lowest energy where excitation can be
observed at QAF is 2.5 meV, which is 1.1 meV below the peak
of the resonance at a zero field. For a 5 T field along the c
axis, the magnetic signal can be observed down to 2 meV.

Since the Zeeman splitting should have no field directional
dependence, the wider in-plane field-induced resonance must
be due to field-induced orbital current that suppresses super-
conductivity. As a function of the increasing magnetic field
along the c axis, the intensity of the resonance is gradually
suppressed and broadened, qualitatively consistent with the
field-induced suppression of superconductivity and superfluid
density [55]. Indeed, as previously noted the experiments
correspond to applying essentially the same 30% fraction of
the upper critical field for both field directions.

In recent electric and thermal transport measurements [55],
it was argued that FeSe is in a BCS-BEC crossover regime,
and a large magnetic field along the c axis might induce a
new superconducting phase coexisting with magnetic order,
possibly the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state
[55–58]. To study if this phase has field-induced magnetic
order as suggested from the field-induced broadening of the
resonance, we carried out neutron diffraction experiments
using the 2-axis-diffractometer E4, HZB, Germany [59]. We
aligned about 200 pieces of FeSe single crystals in the
[H, K, 0] scattering plane and mapped out one quadrant of
the zone with a wave vector between 0.14 and 1.54 reciprocal
lattice unit [48]. However, we did not find any observable
difference between data at different temperatures (0.25 and
3 K) or at base temperature (0.25 K) with different fields (0,
12, 14, and 14.5 T) along the c axis, suggesting no observable
field-induced magnetic order up to 14.5 T [48]. However,
thermal conductivity data indicated the FFLO phase might
exist for an ∼24 T in-plane magnetic field [58]. Unfortunately,
currently available neutron spectrometers cannot access such
a high DC field.

Assuming that the resonance is directly associated with
superconducting electron pairs [36], we can estimate the upper
critical fields for c-axis and in-plane fields using field-induced
suppression of the resonance. If the spin gap energy below
the resonance decreases linearly with the applied field, we
estimate that the lowest energy position of the spin gap
to E = 0 meV in the c-axis and in-plane magnetic fields
corresponds to fields of 12 and 30 T, respectively. These
values are close to the measured upper critical fields (Bc2)
of 16 and 28 T. The field directional dependence of the
spin resonance is also consistent with that of the superfluid
density from heat capacity measurements [60], implying that
the resonance is associated with superconducting electrons
arising from the orbital selective hole-electron quasiparticle
excitations [42,43].

In summary, we determined the effect of c-axis and in-
plane magnetic fields on the neutron spin resonance of FeSe.
We find that an in-plane magnetic field increases the width
of the resonance following the field-induced Zeeman effect.
A c-axis aligned field suppresses and broadens the resonance
much more effectively than the in-plane field, clearly re-
lated to the orbital effect and vortex currents induced by the
c-axis field. The data indicates that rather than the absolute
applied field, it is the ratio of the applied field to the upper
critical field that controls changes in the magnetic excitation
spectrum. Our results are consistent with the hypothesis that
the resonance is associated with electron pairing density in
FeSe superconductors.
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