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The ground state of the S = 1
2 kagome Heisenberg antiferromagnet is now recognized as a spin liquid, but its

precise nature remains unsettled, even if more and more clues point towards a gapless spin liquid. We use high-
temperature series expansions (HTSEs) to extrapolate the specific heat cV (T ) and the magnetic susceptibility
χ (T ) over the full temperature range, using an improved entropy method with a self-determination of the ground-
state energy per site e0. Optimized algorithms give HTSE coefficients up to unprecedented orders (20 in 1/T )
and as exact functions of the magnetic field. Three extrapolations are presented for different low-T behaviors of
cV : exponential (for a gapped system), and linear or quadratic (for two different types of gapless spin liquids).
We study the effects of various perturbations to the Heisenberg Hamiltonian: Ising anisotropy, Dzyaloshinskii-
Moriya interactions, second- and third-neighbor interactions, and randomly distributed magnetic vacancies. We
propose an experimental determination of χ (T = 0), which could be nonzero, from cV measurements under
different magnetic fields.
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Introduction. The physics of the spin S = 1
2 kagome lattice,

with first-neighbor Heisenberg antiferromagnetic interactions
[1] (KHAF), has recently known two major advances. One
is experimental, with the realization of high-quality crystals
of herbertsmithite [2], opening the possibility of precise mea-
surements [3,4]; the other is numerical, with the understand-
ing of the bias tending to erroneously favor a gapped spin-
liquid (SL) ground state in density-matrix renormalization
group (DMRG) simulations [5–7]. A gapless SL ground state
is now almost a consensus, supported by recent precise mea-
surements of the low-T magnetic susceptibility [4]. However,
there remain several types of bidimensional gapless SLs,
among which the U (1) SL (with a Fermi surface reduced to
points) and the Fermi SL (with a linear Fermi surface) [8].
They distinguish themselves notably by the low-T behavior of
their specific heat: A linear behavior, cV ∝ T , is a character-
istic of a Fermi SL, whereas a quadratic one, cV ∝ T 2, is an
indication of a U (1) SL (to compare to cV ∝ T 2e−�/T for a
gapped phase, where � is the gap). We label these different
cases by an integer α = 1 or 2 in the gapless cases (cV ∝
T α) and α = 0 in the gapped case. Up to now, neither the
experimental nor the theoretical works are able to determine
α for the KHAF, even if recent theoretical and experimental
results seem to indicate that α �= 0.

But all these considerations presuppose that herbert-
smithite is effectively described by a KHAF on perfect
and independent kagome planes. In reality, this model suf-
fers from several perturbations: dilution, Ising anisotropy,
Dzyaloshinskii-Moriya (DM) interactions, further neighbor
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interactions, etc. Previous studies show that their effects on
the ideal Hamiltonian are moderate: Regardless of the phase
of the KHAF ground state, it seems stable for small values
of these perturbations. However, they can quantitatively in-
fluence the finite-temperature thermodynamic measurements.
Thus, in this Rapid Communication, we use high-temperature
series expansions (HTSEs) to explore the finite-temperature
effects of a magnetic field h and of all the previously listed
perturbations in the three cases α = 0, 1, or 2. It illustrates the
difficulty of fitting experimental data for many free parameters
and without knowing α. However, we extract from all these
results a way to determine the zero-temperature magnetic
susceptibility χ0 from cV measurements under different h, and
we anticipate the synthesis of parent compounds of herbert-
smithite with tunable perturbations to KHAF.

HTSE exactly calculates the Taylor coefficients of ther-
modynamic quantities in powers of the inverse temperature
β = 1/T . From these coefficients, one can reliably and easily
reconstruct the quantities from infinite down to moderate
temperatures of the order of the interaction strength, using
either the raw series, Padé approximants (PAs), or methods
such as differential Padé approximants, Euler transformations,
etc. [9–13]. When there is no singularity down to T = 0
in the thermodynamic functions (i.e., no phase transition, as
notably in SL phases), it is possible to extrapolate HTSE
over the full range of temperature. In this case, the entropy
method combines HTSE with an hypothesis on α to get
thermodynamic quantities such as the specific heat per site cV

or the magnetic susceptibility per site χ [14–16]. This method,
thereafter denoted HTSE+s(e), is fully relevant to extract the
Hamiltonian parameters from experimental results [17–20].

In this Rapid Communication, we get HTSE coefficients
up to an order notably larger than previously [21,22], in
the presence of all the above interactions and with an exact
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FIG. 1. Results from HTSE+s(e) at order 20 in β for h = 0 on the KHAF. (a) Specific heat cV : Gapped (α = 0, black lines) and gapless
ground states (α = 1, red lines, and 2, blue lines) are considered and e0 is fixed to −0.4372, −0.4384, and −0.4395, respectively. Dashed cyan
lines are the raw HTSE of orders 13–20. Dashed magenta lines are the PAs d = 6–14 of HTSE at order 20. (b) Same as in (a) for the magnetic
susceptibility χ . Several scenarios for the χ0 value are presented.

dependency in h. Moreover, we present here the extrapolations
on the KHAF supposing a gapless spin liquid, with a special
emphasis on χ and cV (see also Ref. [22] on cV ), which
can be measured experimentally [4]. These extrapolations
require input parameters: α, the ground-state energy per site
e0, and χ0. Often, α is known, such as for Néel or gapped
ground states. Except for ferromagnetic states, e0(h) and χ0 =
−d2e0/dh2 are usually unknown. We present here another
method of the self-determination of e0 that overcomes this
obstacle. In Sec. II, we present the results of the raw series. We
then discuss the extrapolation method and present the results
on the perfect KHAF in Sec. III. Section IV is devoted to
the study of several perturbations, followed by the effects of
a magnetic field h. Concluding remarks are given in the last
section. The Supplemental Material (SM) [23] gives details on
HTSE+s(e) and provides more figures illustrating the effect
of the perturbations.

Raw HTSE coefficients with exact dependency in h. We
first focus on the raw series of the thermodynamic limit of
the logarithm of the partition function limN→∞ ln Z

N in powers
of β with, as the first main result of this work, their attainment
as exact functions of h.

The KHAF Hamiltonian H consists of spins S = 1
2 on a

kagome lattice, in the presence of an arbitrary magnetic field
h (times a factor gμB, set to 1 in the following), with antifer-
romagnetic interactions on all pairs of nearest neighbors,

H0 = J1

∑
〈i, j〉

Si · S j, H = H0 − hSz, (1)

where Sz = ∑
i Sz

i is the total spin along the z direction and Si

the spin operator on site i. J1 is set to unity in the following.
The partition function is

Z = Tr e−βH =
∞∑

n=0

(−β )n

n!
Tr(Hn). (2)

After keeping the part of the traces Tr(Hn) originating from
connected clusters with n links on the lattice, it gives us the
following HTSE in powers of β, where the coefficients are
finite-order polynomials of h2,

lim
N→∞

ln Z

N
= ln 2 +

∞∑
n=1

(
n/2∑
k=0

Qn,kh2k

)
βn. (3)

The first coefficients Qn,0 and Qn,1 are related to the HTSE
of respectively cV and χ at h = 0, and are the only ones that
were calculated up to now [14,15,22]: The effects of a finite
h were inaccessible (some further terms were calculated for
other models [14,24], without being exploited or still strongly
limiting the possible values of h).

Besides the now exact treatment of h, we get access to
unprecedented orders despite the exponential complexity of
the calculations. Qn,k are determined for n up to 20, against 17
previously [22]. Figure 1 shows that the raw HTSE diverges
below T = 1, while the PAs converge down to 0.5, allowing
us to describe the main peak of cV .

Extrapolation over the full temperature range. in the ther-
modynamic limit, canonical and microcanonical ensembles
are equivalent. It implies that the information contained in
Z (T, h) is the same as in the entropy per spin s(e, h), with
e the energy per spin. At fixed h, s and e are monotonous
functions of T , going from e0(h) and s0 = 0 at T = 0, to
e∞ = 0 and s∞ = ln(2S + 1) at T = ∞. These constraints
near e0(h) are equivalent to the two sum rules on cV , but
more easily imposed on s(e, h) [14]. Moreover, the behavior
of s(e, h) for e → e0(h) can be inferred from the (known
or supposed) low-energy properties of the model. Thus, we
work in the microcanonical ensemble [14,15,22]. From the
HTSE, Eq. (3), we deduce the series expansion of s(e, h)
around e∞ and extrapolate this function over the full interval
[e0(h), e∞]. To remove the singularity of s at e0, we introduce
an auxiliary function Gα (s(e, h)). Then, PAs of this function
of e are used to reconstruct s [23]. This HTSE+s(e) procedure
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requires the knowledge of e0(h). We define e00 = e0(h = 0).
As no numerical method is currently able to give it to the
required precision, we browse a range of values and select
the one that gives the most coinciding results for h = 0 [23].
This leads to values near the ones inferred from DMRG
[e00 = −0.4386(5)] [25–27] and exact diagonalization (ED)
(e00 = −0.438 703 9 for a 48-site cluster) [27,28].

For small h �= 0, the energy is given by

e0(h) � e00 − 1

2
χ0h2, (4)

as thermodynamic relations imply that χ0 = χ (T = 0, h =
0) = − d2e0(h)

dh2 . While χ0 is 0 in gapped systems, as the ground
state remains unchanged for infinitesimal h, we a priori have
χ0 �= 0 for gapless systems. To give an idea of the χ0 value,
we can look at the classical model [29], which is gapless: χ0 =
S/6. A recent ED study [30] uses the energy in different spin
sectors and for different lattice sizes to get a possibly finite χ0,
which is also compatible with sine-square deformation results
[31] and tensor network calculations [32]. We choose here to
consider χ0 as an input parameter and to deduce e0(h) from
e00 and χ0. Another possibility is to self-determine e0(h) and
to extract χ0 from it, but this is not conclusive. Indeed, our
procedure (see Sec. II E of SM [23]) allows a determination
of e0(h) with some uncertainties and χ0, being related to
the second derivative of e0(h), suffers for even much larger
uncertainties; therefore, we find that almost any reasonable
value of χ0 is compatible with our results.

We note s′ and s′′ the derivatives of s with respect to e at
constant h. We recall that β = s′. The specific heat per site cV

and magnetization per site m are

cV = − s′2

s′′ , m = 1

s′
∂s

∂h

∣∣∣∣
e

. (5)

We emphasize that m is now obtained directly from s(e, h),
simplifying the procedure used in Ref. [15]. We deduce from
m the experimentally measured magnetic susceptibility per
site χ = m/h.

Ultimately, for a given spin model, we extrapolate χ (T )
and cV (T ) at all temperatures from the HTSE, with, as sup-
plementary input, the values of e0, χ0, and α. Figure 1 shows
cV and χ for the unperturbed Hamiltonian of Eq. (1). The
assumption on α has no influence on T > 0.3: HTSE strongly
constrains the functions in this domain of temperature. No-
tably, the high-temperature peak of cV near T = 0.7 is well
determined, which is not the case for the small temperature
secondary peak (T � 0.03). The existence of such a peak or
shoulder, a sign of a large amount of low-energy states, is still
highly debated as it is very sensitive to eventual finite-size
effects [33,34].

At this point, it is important to emphasize a particularity of
the KHAF. In most of the simpler models, we are not able to
get convincing results if we arbitrarily chose α or e0, in the
sense where we do not get several mingled PAs for Gα (e, h):
Only a physically correct hypothesis gives a collection of
coinciding PAs. In this respect, KHAF is very special as any
hypothesis on α leads to valid extrapolations: No α can be
discarded in this way.

J1 J2 J3 J3h

FIG. 2. First- (J1), second- (J2), and third- (J3 and J3h) neighbor
interactions on the kagome lattice.

Results for the modified khaf. We now add different terms
to H0, whose effects will be studied successively below:

H = H0 − h
∑

i

Sz
i +

∑
〈i, j〉

[
Dz · (Si ∧ S j )z + δzS

z
i Sz

j

]

+ J2

∑
〈i, j〉2

Si · S j + J3

∑
〈i, j〉3

Si · S j + J3h

∑
〈i, j〉3h

Si · S j, (6)

where Dz is the z component of the DM vector, δz the Ising
anisotropy, and J2, J3, and J3h the second- and third-nearest-
neighbor terms (see Fig. 2). The Qn,k of Eq. (3) are now
polynomials of order n in the rate of vacancies p, Dz, δz,
J2, and J3h. The HTSE order depends on the complexity of
the Hamiltonian: Order 20 is obtained for the KHAF with
impurities, 18 with the Ising anisotropy, 16 with DM inter-
actions, and 15 with second- and third-neighbor exchanges.

Figure 3 shows the influence on cV and χ of some of these
perturbations and of a dilution rate, for h = 0 and with the
hypothesis that α = 1. To get χ , we need a supplementary
hypothesis on χ0, chosen to be 0.05 for this figure (results
for other values are in SM [23]). Note that at intermedi-
ate temperatures, our results are consistent with numerical
linked cluster (NLC) results [35,36]. Figure 4 shows how the
ground-state energy e0, extracted from the most coinciding
HTSE+s(e) extrapolations [23], evolves with the considered
perturbations.

Impurities. The rate of vacancies (magnetic Cu replaced
by nonmagnetic Zn atoms) in the kagome lattice of her-
bertsmithite is experimentally estimated to be less than 5%
[4]. We suppose here that interactions between the remaining
spins are unchanged. The extracted e0(p) has a minimum
around p = 10% (Fig. 4). For classical spins, a low p does
not modify the energy per magnetic site [37] (even if it lowers
the energy per lattice site) and this minimum cannot be repro-
duced. But for quantum 1

2 spins [38–40], it can be qualitatively
understood as the minimal energies Et on a triangle and Eb

on a bond are the same (− 3
4 ), whereas classically, Et < Eb

(−3S2/2 against −S2). A rough approximation of the energy
per spin on the lattice is

2(1 − p)2

3
Et + 2(1 − p)pEb,

and reproduces the minimum at p � 10% if Et � 4Eb/3,
which seems reasonable.

At finite temperature, we find that impurities soften the
separation of the two peaks in cV , strengthen χ , and shift
it to higher temperatures [Fig. 3(a)]. Another type of defect
is present in herbertsmithite but not treated here: interlayer
magnetic atoms (Zn replaced by Cu atoms) at a rate of 15%
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FIG. 3. HTSE+s(e) results on the KHAF: Specific heat cV and
magnetic susceptibility χ for different (a) vacancy rates p, (b) DM
interactions Dz, and (c) Ising anisotropies δz. Results for α = 1
(linear low-T cV ) and for χ0 = 0.05 are shown. The results for α = 0
or 2 and for other χ0 are given in SM [23].

of occupation [4,41]. They will enforce the tridimensional
character of the compound.

Dzyaloshinskii-Moriya interaction. This interaction origi-
nates from the spin-orbit coupling [42,43] and is often consid-
ered, in herbertsmithite, as the main deviation from the KHAF,
together with impurities [39]. The out-of-plane component Dz

is supposed to be dominant and is the only one considered
here. The combined effect of the in and out of plane D has
been studied by NLC [35,36]. The sum in the Hamiltonian
(6) is over oriented links, all pointing in the same arbitrary
direction when we turn around the lattice hexagons. In her-
bertsmithite, Dz � 0.04J1 [44]. Order is supposed to appear
for Dz � 0.08J1 [45–47], even if smaller values (Dz � 0.01J1)
have recently been proposed [48]. We find that Dz enhances
the main cV peak and has a weak effect on χ [Fig. 3(b)]. As
expected, e0(Dz ) behaves quadratically (Fig. 4).

Ising anisotropy. The Ising anisotropy δz interpolates be-
tween the ferromagnetic Ising model (δz = −∞), the XY
model (δz = −1), and the antiferromagnetic Ising model (δz =
∞), staying in the same spin-liquid phase for δz > −1 [49].
Moreover, an exactly solvable point δz = − 3

2 was recently
discovered and analyzed [50]. For small δz, e0(δz ) is linear
(Fig. 4). This can be qualitatively understood by considering
that most of the energy contribution in the ground state comes
from the concentration c of singlet bonds, whose energy is

-0.2 -0.1 0.0 0.1 0.2

-0.46

-0.44

-0.42

X=p, z, Dz

e 0

Dz

z

p

FIG. 4. Ground-state energies e0 for different impurity rates p,
DM interaction strengths Dz, and Ising anisotropies δz, for α = 1.
The results differ at X = 0 (pure KHAF) due to the different HTSE
orders used for the various types of perturbations X .

−(3 + δz )/4. With this naive picture, we get e0(δz ) = e0(δz =
0)(1 + δz/3), whose slope is in agreement with the one fitted
from HTSE data −0.146(1) � −0.44/3 (Fig. 4). Similarly,
the susceptibility of such singlets decreases when δz increases
and reciprocally, which is the behavior seen in Fig. 3(c). On
the contrary, cV is almost insensitive to δz.

Second- and third-neighbor interactions. J2, J3, and J3h

are known to lift the classical degeneracy of the KHAF
toward the

√
3 × √

3 long-range order for J2 < 0 and J3 > 0,
towards the q = 0 order for J2 > 0, J3 < 0, and J3h < 0, and
towards the cuboc1 order for J3h > 0 [47,51]. For quantum
spins 1

2 , small changes in these parameters have a seem-
ingly low influence and preserve the spin-liquid phase for
|J2|, |J3h| � 0.2 [52–55]. The J3 case is less studied. These
terms add links to the KHAF model, therefore HTSE are
limited to order 15. J2 and J3 have stronger effects than J3h

on cV (T ) and χ (T ). Results are displayed and discussed in
SM [23] for completeness.

Magnetic field. We now consider the effect of a magnetic
field h, that is a special perturbation as it is easily tunable
experimentally, contrarily to the previous ones. Up to now,
HTSE coefficients were only computed at the lowest order
in h but are here exact. In a gapless system, the ground-
state magnetization continuously increases up to a critical
field hc, above which the phase changes, either towards the
fully magnetized state, or towards an intermediate phase. For
classical spins [29], hc = 2S at T = 0, giving rise to the finite
T 1

3 -magnetization plateau at finite temperature, but quantum
studies [32,56] find a lowest 1

9 -magnetization plateau for hc �
0.6S. Thus, we focus on h � 0.2. However, for herbersmithite
where J � 180 K, h ∼ 0.1 is a hardly achieved field for ex-
perimentalists. In Fig. 5, the difference [cV (T, h) − cV (T, h =
0)]/h2 appears to be weakly dependent on h, but roughly
proportional to the difference χ0 − 0.15. This is an interesting
effect that could be used to obtain a hint of the χ0 value as the
phonon contributions, known to spoil the cV measurements,
are a priori suppressed in this difference.
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FIG. 5. Variation of the specific heat cV (T ) using various values
of χ0. Shown are [cV (T, h) − cV (T, h = 0)]/h2 for α = 1 and several
values of h: 0.2 (solid lines), 0.15 (dotted lines), 0.1 (dashed-dotted
lines), and 0.05 (dashed lines). By construction, the integral of each
curve is 0. For χ0 = 0.15, the curve is almost flat. For χ0 < 0.15,
there is an increase of cV (T ) at T � 0.03 and a decrease for 0.03 �
T � 0.3, and the opposite for χ0 > 0.15.

Conclusion. In this Rapid Communication the HTSE co-
efficients of antiferromagnetic 1

2 spins on the kagome lattice
have been exactly obtained as polynomials of various Hamil-
tonian parameters, with at least three more terms than pre-
viously. The entropy method [HTSE+s(e)] has been applied
to these models. Two types of gapless spin liquids (linear
and quadratic low-T specific heat) have been considered and
several values of χ0 have been explored. We have studied the
effect on cV and χ of various perturbations of the KHAF:

magnetic field, impurities, DM interaction, Ising anisotropy,
and further neighbor couplings. The ground-state energies
have been extracted with a procedure based on the number
of coinciding PAs detailed in the Supplemental Material [23],
leading to coherent results down to small temperatures.

The variations of cV (T ) and χ (T ) are sensitive to Hamil-
tonian perturbations below T ∼ J1/10. For herbertsmithite,
this is precisely in this range of temperature that the ex-
perimentalists get more and more precise data, therefore
HTSE+s(e) is a powerful tool to determine the values of the
Hamiltonian parameters from them, as already demonstrated
for other models. We notably showed a way to probe χ0 using
cV measurements at finite T under a magnetic field. In the
near future, we expect that measurements under pressure of
the kagome compounds will tune some other Hamiltonian
parameters, and that the impurity rate will be controlled.

We have here treated in great detail the controversial case
of the KHAF, but our extrapolation technique can as well
treat any statistical model if the HTSE coefficients are known.
Our code calculating the HTSE coefficients works for spin
models on any lattice, for any interaction preserving the total
magnetization along z, and for S = 1

2 . What has been chosen
as perturbative parameters in this Rapid Communication can
be set to any arbitrary value as the HTSE coefficients are exact
polynomials of them. However, the convergence properties of
the series are affected by possible phase transitions.
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