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Comment on “Thermal vacancies in random alloys in the single-site mean-field approximation”
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This comment concerns the contribution of configurational mixing entropy to the change in the total Gibbs
free energy in the process of vacancy formation and the consequent effect on the thermal equilibrium vacancy
concentration in multicomponent alloys. A different derivation is shown than that in [Phys. Rev. B 93, 134115
(2016)], correcting an error that may come from using Gibbs free-energy per site. The derivation is further
generalized to systems beyond binary alloys.
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According to Eq. (3) in Ref. [1], the vacancy formation free
energy per site is defined as

Gvac = cvḠ f − T Sconf . (1)

Here, Ḡ f is the effective vacancy formation free energy
without considering the configurational entropy, and Sconf is
the configurational entropy of an alloy with vacancies. For a
binary AB alloy with vacancies,

Sconf = −kB(cv ln cv + cA ln cA + cB ln cB), (2)

where cA = c(1 − cv ), cB = (1 − c)(1 − cv ), c = cA
cA+cB

, and
cA + cB + cv = 1. cA, cB, and cv are the concentrations of A,
B, and the vacancy, respectively.

To derive the equilibrium vacancy concentration at a given
temperature T, Eq. (1) was minimized with respect to cv in
Ref. [1], yielding an equilibrium vacancy concentration,

cv = exp

(
− Ḡ f + kBT Sall

kBT

)
≡ exp

(
− G̃ f

kBT

)
, (3)

where Sall = −kB[c ln c + (1 − c) ln(1 − c)]. Equation (3) is
exactly the same as Eq. (5) in Ref. [1]. Note that, in Ref.
[1], the Boltzmann constant kB was contained in the reduced
temperature T.

The above formulation predicts an additional configura-
tional entropy contribution T Sall in the vacancy formation
free energy. It implies that “the alloy configurational entropy
can substantially reduce the concentration of vacancies in
alloys.” For example, in an equiatomic binary AB alloy, the
equilibrium vacancy concentration will be reduced by a factor
of 2 compared to that in a pure metal. The same effect was
expected to hold for multicomponent alloys (e.g., high entropy
alloys) with more pronounced reductions in the equilibrium
vacancy concentrations.

We found that the above derivation is inaccurate due to
the fact that it extremizes the Gibbs free energy per site.
In the Gibbs representation (fixed NA, NB, P, and T), nature
minimizes the total Gibbs free energy (Gtotal) of the system,
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or equivalently, the Gibbs free energy per atom or mole N =
NA + NB, not the Gibbs free energy per site. NA and NB are
numbers of A and B atoms, respectively. Although the number
of atoms and the number of sites are often identical, making
the distinction between them unimportant, this distinction
matters for the case of vacancy formation as the number of
sites is not constant under the process of vacancy formation.
By the formation of one vacancy, the total number of each
type of atom is conserved, whereas the total number of lattice
sites increases by one. More generally, a system with N
atoms (where N = NA + NB for our binary example) and Nv

vacancies has the number of sites Nsites = N + Nv .
To correct the derivation, we follow the same approach as

in Ref. [1] but work with the total Gibbs energy. We also
generalize the result to consider the equilibrium concentration
of an arbitrary species 1 in a system with n total species.
The system is open to species 1 and otherwise closed with
respect to the other species. This general approach includes
where species 1 represents a vacancy in the process of vacancy
formation. We start with a system with Nsites lattice sites
occupied randomly by Ni atoms of species i and define

ci = Ni

Nsites
. (4)

Defining c′
i �=1 = Ni∑n

j=2Nj
, we have ci �=1 = (1 − c1)c′

i �=1. Note

that Nsites = ∑n
i=1 Ni. The per site configurational entropy of

the system is as follows:

Sconf = −kB

n∑
i=1

ciln(ci ). (5)

This can be rewritten in the convenient form

Sconf = −kB

(
c1ln(c1) +

n∑
i=2

(1 − c1)c
′
iln[(1 − c1)c

′
i]

)

= −kB

(
c1ln(c1) + (1 − c1)ln(1 − c1)

+ (1 − c1)
n∑

i=2

c
′
iln(c

′
i )

)
. (6)
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Note that this expression is a quite useful general decompo-
sition of the ideal mixing entropy per site of a multicomponent
system. It can be interpreted as showing that the total mixing
entropy is a sum of the terms one would get for a binary
system by mixing species 1 with species “not 1” (treated
as identical), and the terms one would get by mixing the
remaining species on the fraction of lattice sites not occupied
by species 1. If we assume that, except for species 1, all
species mix ideally and the reference states for all species are
the unmixed states from which we are mixing, then the total
Gibbs free energy is

Gtotal = N1μ
0
1 + NsiteskBT [c1ln(c1) + (1 − c1)ln(1 − c1)]

+ (1 − c1)NsiteskBT
n∑

i=2

c
′
iln(c

′
i ). (7)

Note that Nsites(1 − c1) is the total number of atoms in the
system that are not type 1 so that the last term is actually
independent of N1. For a system open for species 1 and closed
for all other species as for the case of vacancy formation in an
alloy, Nsites(1 − c1) is actually a constant. For the same reason,
c

′
i �=1 = Ni∑n

j=2 Nj
is also a constant, and so is its summation

[i.e., Sall in Eq. (3) above]. Therefore, Eq. (7) shows that,
with the assumptions above, the multicomponent alloy free
energy can be written in the form of a free energy for a system
consisting of a species of type A = 1 and a fictitious species
of type B = “not type 1” plus a constant term independent of
the concentration of species 1. We can solve for equilibrium
concentration of species 1 by setting its chemical potential
in the system equal to an external value μ∗

1, which gives the
equation, (

∂Gtotal

∂N1

)
T,P, Ni �=1

= μ∗
1. (8)

Equation (8) must be applied with all numbers of atoms
fixed except that of species 1 and, therefore, with a changing

number of lattice sites. The derivate in Eq. (8) will yield the
exact same results as for a pure system of types A and B that
have ideal mixing and a reference state for B equal to the
unmixed state, i.e., the standard formula,

c1

1 − c1
= exp

(
−μ0

1 − μ∗
1

kBT

)
. (9)

If species 1 is a vacancy, then one traditionally sets μ∗
1 = 0

and μ0
1 = Ḡ f , which is the vacancy formation free energy.

Taking the low concentration limit gives

c1 = cv = exp

(
− Ḡ f

kBT

)
, (10)

which is the usual expression for vacancies. This result shows
that the thermodynamics governing vacancies concentration
under ideal mixing assumptions is not impacted by the number
of other species in the system, and it takes the same form as
it would for a simple unary system. More generally, we see
that, under ideal mixing assumptions, for any species 1, its
mixing thermodynamics is the same in a binary system with
one species 2 as in a multicomponent system with species
j = 2, . . . , n.

Our derivation, here, concerns only the mixing entropy
contribution. We note that Ḡ f , the formation free energy, will
be different for a multicomponent than that for a unary system
thereby leading to a different vacancy concentration as has
been shown in Ref. [1].

D.M. and Y.Z. acknowledge insightful discussions with Dr.
A. V. Ruban, the author of the original paper on which this
comment is based, and his rigorous examination of the deriva-
tion. Y.Z. acknowledges the support of the Idaho National
Laboratory, Laboratory Directed Research and Development
project “Mitigating irradiation assisted stress corrosion crack-
ing by rapid alloy design.”

[1] A. V. Ruban, Thermal vacancies in random alloys in the single-site mean-field approximation, Phys. Rev. B 93, 134115 (2016).

136101-2

https://doi.org/10.1103/PhysRevB.93.134115
https://doi.org/10.1103/PhysRevB.93.134115
https://doi.org/10.1103/PhysRevB.93.134115
https://doi.org/10.1103/PhysRevB.93.134115

