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Transmission of crystallization waves across the edge between the rough and faceted crystalline
surfaces at the superfluid-solid 4He interface
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The wavelike processes of crystallization and melting or crystallization waves are well known to exist at
the crystal 4He surface in its rough state. Below the roughening transition temperature the crystalline surface
experiences the transition to the smooth faceted state and the crystallization waves represent the propagation of
a train of crystalline steps at the velocity depending on the crystal step height. Here we analyze the transmission
and reflection of crystallization waves which propagate across the crystal edge separating the crystalline surfaces
in the rough and faceted states.
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I. INTRODUCTION

Helium crystals as a model system can provide us with very
general and unusual properties of liquid-solid interfaces [1,2].
On one hand, helium crystals demonstrate faceting as classical
crystals. The so-called roughening transition is the transition
from the atomically rough and fluctuating state of the crys-
talline surface at high temperatures to the smooth faceted
surfaces at sufficiently low temperatures. The experimental
observations have displayed several roughening transitions in
hcp 4He crystals, as follows: TR1 = 1.3 K for the c facet in the
[0001] direction, TR2 = 1.07 K for the a facet in the [101̄0]
direction perpendicular to the c axis, and TR3 = 0.36 K for the
s facet in the [101̄1] direction. The [101̄1] direction is tilted
by 58.5◦ with respect to the [0001] direction.

On the other hand, as compared with classical crystals, the
4He crystals under ultralow energy dissipation can demon-
strate the growth dynamics when quantum mechanics plays a
major role [1,2]. In particular, at sufficiently low temperatures,
the 4He crystal in contact with its superfluid phase can support
oscillations of the superfluid-solid interface due to weakly
damped processes of melting and crystallization [3]. From
the dynamical point of view such weakly damped crystal-
lization waves at the rough crystal surface are an immediate
counterpart of the familiar gravitational-capillary waves at the
interface between two normal liquids and have the similar
dispersion as a function of wave vector.

On the contrary, no basic study of the melting-
crystallization dynamics has been made at the well-faceted
and atomically smooth 4He crystal surfaces which, unlike
the atomically rough crystal surfaces, have an infinitely large
surface stiffness. Accordingly, the crystal surface curvature
vanishes and the crystal facet takes the flat shape. The most
striking distinction of smooth-faceted crystal surfaces from
the rough ones is the existence of nonanalytical cusp-like
behavior in the angle dependence of the surface tension;
see, e.g., Ref. [4]. The crystal step energy becomes nonzero
and positive below the roughening transition temperature TR,

vanishing at the higher temperatures. The origin of the sin-
gularity is directly connected with nonzero magnitude of the
facet step energy below the roughening transition temperature.

As compared with the melting-crystallization wave-like
processes at the rough crystal surface, the analogous processes
at the faceted crystal surface demonstrate a more compli-
cated picture than that at the rough crystal surface [5]. The
frequency spectrum of crystallization waves at the faceted
crystal surface has a sound-like dispersion with the velocity
depending significantly on the wave perturbation amplitude
and on the number of the facet steps distributed over the
wavelength [5,6]. In essence, such crystallization waves rep-
resent a propagation of a train of crystal-facet steps along
the crystal surface at the velocity governed with the crystal
step height. Here we mention the formation of crystallization
waves under heavy shake of an experimental cell [7] or in the
process of anomalously fast growth of a 4He crystal under
high overpressures [8,9]. The progressive facet waves are
observed at the crystal (001) facet in 3He [10].

The presence of a singularity in the behavior of surface
tension or nonzero crystal step energy results also in a number
of interesting phenomena at the faceted 4He crystal surface,
e.g., amplitude-dependent velocity of traveling waves [5,6],
quantum fingering of the inverted liquid-crystal interface in
the field of gravity [11], Rayleigh-Taylor instability with
generating the crystallization waves [12], and electrohydrody-
namical instability [13] with breaking the faceted state down.

So far the crystallization waves have been studied only for
the spatially homogeneous crystalline surfaces. Since the ad-
jacent crystal surfaces have the different roughening transition
temperatures, we can raise a question about the propagation
of melting-crystallization waves across the edge between the
crystalline surfaces in the rough and smooth states. For the
first time, in the present paper we attempt the transmission and
reflection of crystallization waves across the edge between the
rough crystal surface and the smooth faceted surface at the
superfluid-solid 4He interface.
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II. LAGRANGIAN

The atomically rough surface and the atomically smooth
surface of a 4He crystal correspond to various crystallographic
directions and the surfaces contact each other at the crystal
edge. The transition from one direction to the other or from
one surface to the other surface can be described with the
polar angle which varies gradually from one value to another
in order to parametrize two adjacent crystal surfaces.

To treat the transmission and reflection of crystallization
waves in the most simple and obvious way, we consider the
following model situation: For simplicity, we assume that both
crystal surfaces, rough and smooth, are parallel to the xy plane
with the vertical position at z = 0. In addition, we imply that
one-half of the crystal surface, e.g., x < 0, is in the rough
state and the other half x > 0 is in the smooth-faceted state.1

First, we call ζ = ζ (r) as a displacement of the crystal surface
from its horizontal position z = 0 with r = (x, y) as a two-
dimensional vector. We neglect any anisotropy of the crystal
surface in the xy plane as well. We suppose a sufficiently
low temperature range in order to neglect any possible energy
dissipation and the damping of crystallization waves in both
states of the surfaces. This implies temperatures lower than
about 0.4 K. Neglecting the dissipation aspects simplifies
mathematics as well.

As a result, in the lack of energy dissipation the surface os-
cillations of a 4He crystal can be described with the following
Lagrangian:

L[ζ (t, r), ζ̇ (t, r)]

= ρeff

2

∫∫
d2rd2r′ ζ̇ (t, r)ζ̇ (t, r′)

2π |r − r′|

−
∫

d2r

(
α(ν)

√
1 + (∇ζ )2 + 1

2
Δρgζ 2

)
. (1)

Here we ignore the compressibility of both the liquid and
solid phases and g is the acceleration of gravity. Because of
low-temperature considerations we also neglect the normal
component density in the superfluid phase or, equivalently, the
difference between the superfluid density ρs and the density
of the liquid phase ρ, i.e., ρs = ρ. Then the effective interface
density ρeff is given by

ρeff = (ρ ′ − ρ)2

ρ
≈ 1.9 mg/cm3

and depends on the difference Δρ = ρ ′ − ρ between the solid
density ρ ′ and the liquid density ρ.

Unlike the fluid-fluid interface, the surface tension coeffi-
cient α(ν) for the crystal depends essentially on the direction
of the normal ν to the interface against crystallographic axes.
In our simplest description this is a function of the angle ϑ

alone between the normal and, say, crystallographic [0001] or
c axis of the crystal hcp structure with the geometric relation
| tan ϑ | = |∇ζ |.

For the crystal facet tilted by small angle ϑ from the basal
plane, the expansion of the surface tension α(ϑ ), usually

1The variable x plays the role of polar angle.

written (see Refs. [1,4,14]) as

α(ϑ ) = (α0 + α1 tan |ϑ | + · · · ) cos ϑ, | tan ϑ | = |∇ζ |,
can be expanded for small angles into a series

α(ϑ ) = α0 + α1|ϑ | + · · · , |ϑ | � 1.

We intentionally do not write the next terms of expansion, e.g.,
cubic ones due to step-step interactions, since we are studying
only a small bending of the crystal surface. The rough or
faceted state of the crystal surface is closely connected with
the magnitude of α1 = β(T )/a representing a ratio of the
linear facet step energy β(T ) to the crystallographic interplane
spacing a. Below the roughening transition temperature TR,
the linear facet step energy β(T ) is positive and vanishes for
temperatures T > TR. Obviously, the dynamics of the rough
and the faceted surfaces differs drastically in kind.

To determine the spectrum of crystal surface oscillations,
we minimize the action S = ∫

Ldt against the perturbation
ζ (t, r) in order to derive the equation of motion. Within
the framework of our approximation |∇ζ | � 1, the excess
Lagrangian 	L[ζ , ζ̇ ] = L[ζ , ζ̇ ] − L[0, 0] is given by the fol-
lowing expression:

	L[ζ (t, r), ζ̇ (t, r)]

= L[ζ (t, r), ζ̇ (t, r)] − L[0, 0]

= ρeff

2

∫∫
d2rd2r′ ζ̇ (t, r)ζ̇ (t, r′)

2π |r − r′|

−
∫

d2r

(
α1|∇ζ | + α0

2
(∇ζ )2 + 1

2
Δρgζ 2

)
. (2)

As for the step energy α1, we assume that its low temper-
ature magnitude [1] is approximately α1 ≈ 0.014 erg/cm2.
This magnitude amounts to one-tenth of the surface tension
[1] α0 ≈ 0.2 erg/cm2 and in the following we always keep
the inequality α1/α0 � 1 in mind. Moreover, this small pa-
rameter justifies the approximations that will be made below.

Note here that the faceted crystal plane represents in
essence a region of the crystal surface in the rough-like state
if it is tilted with respect to the crystallographic axis by
an angle exceeding about arctan(α1/α0) ∼ 4◦ in sense that
α1|∇ζ | � α0(∇ζ )2. In fact, from the physical point of view
the angle of slope ϑ = arctan(α1/α0) ∼ 4◦ is determined
by the competition of two contributions to the total surface
energy. One originates from the regular surface term α0(∇ζ )2

and the second comes from the irregular step tension α1|∇ζ |.
Provided that α0(∇ζ )2 � α1|∇ζ |, the latter contribution be-
comes negligible and thus the dynamical interface properties
should resemble those in the rough surface state. One can say
that the crystal surface has too many crystal steps. On the
contrary, if α0(∇ζ )2 � α1|∇ζ |, the dominant term linear in
|∇ζ | is responsible for faceting.

Here we mean no phase transition from the atomically
smooth to the rough state at about θ ∼ 4◦. We expect only
that the dynamical response of the atomically smooth surface
to its perturbation at sufficiently large tilted angles should
resemble and become similar to the dynamical response of the
surface in the rough state. The dependence of the dynamical
response on the slope of the surface will represent the smooth
crossover from one type of behavior to another. Such a picture
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can be supported with the experimental evidence [15]. The
crossover from the smooth to the rough-like state is observed
as a function of the tilt angle at the same magnitude between
3◦ and 4◦.

III. TRANSMISSION AND REFLECTION

To consider the transmission and reflection of melting-
crystallization waves across the edge separating the rough
crystal surface and the crystal facet, we suppose a simple
model to describe such phenomena. So, the step energy is
approximated by the function

α1(x) =
{

0, x < 0
α1, x > 0.

In other words, the left-hand side of the crystal surface is in
the rough state and the right-hand side of the crystal surface
represents the smooth faceted state.

The approximation for step energy α1(x) with the step-like
function implies implicitly that the width of transition W
from the rough to smooth faceted state is much smaller as
compared with the inverse wave vector 1/k or wavelength.
The smooth boundary when W ∼ 1/k or larger should change
the transmission and reflection coefficients. The smooth tran-
sition region usually reduces the reflection and enhances the
transmission of the wave.

As the crystallization wave propagates across the boundary
between two crystalline surfaces, the wave transmits and
reflects. The wave on the left-hand side of the boundary
is a superposition of the incident and reflected waves. On
the right-hand side from the boundary the transmitted wave
alone propagates. The relation between all three waves is
determined with the boundary conditions at the interface
x = 0. We consider the case of the normal incidence.

Let us write the perturbations of the crystal surface due to
the incident, reflected, and transmitted waves, respectively:

ζ0(x, t ) = ζ0eikx−iωt , x < 0,

ζ1(x, t ) = ζ1e−ikx−iωt , x < 0,

ζ2(x, t ) = ζ2eiqx−iωt , x > 0.

Here ω and k = k(ω) are the frequency and wave vector of
the incident and reflected waves. The transmitted wave has
the same frequency but its wave vector q = q(ω, |ζ2|), unlike
the case of the rough state of the surface, depends on the
amplitude of the wave as well.

At the interface x = 0 we should provide a continuity of
both the crystal surface distortion ζ (x) and the derivative
of ∂ζ/∂x. Eventually, we choose the following boundary
conditions in order to match the propagation of waves across
the crystal edge:

ζ (x = −0, t ) = ζ (x = +0, t ),

∂ζ (x = −0, t )

∂x
= ∂ζ (x = +0, t )

∂x
.

As it concerns the crystal surfaces apart, we have the
well-established equations describing the wave-like melting-
crystallization processes in full agreement with experiment.
These differential equations are of second order. Strictly
speaking, the equations are derived within the macroscopic

approach and it is implicitly implied that the perturbation
of the interface ζ is sufficiently large as compared with the
interatomic distances. In general, the boundary conditions are
not a direct consequence of the bulk equations but represent
an additional condition to be introduced independently.

However, in the absence of any experimental observation
the speculation is conventional and referred to as natural. To
have the finite magnitudes for the derivatives of the highest
order at the boundary region, we must put the continuity
for the derivatives of lowest orders across the boundary,
i.e., the matching of the interface perturbations and its first
derivations. In addition, such a boundary condition satisfies
the requirement of zero reflection and full transmission in the
case of identical left- and right-hand surfaces.

Employing the above conditions, we obtain readily a pair
of equations determining the reflection and transmission of the
incident wave:

ζ0 + ζ1 = ζ2,

ikζ0 − ikζ1 = iqζ2.

Introducing the reflection and transmission coefficients as a
ratio of the reflected amplitude ζ1 and transmitted amplitude
ζ2 to the incident one ζ0, we arrive at the following magni-
tudes:

r = ζ1

ζ0
= k − q

k + q
and t = ζ2

ζ0
= 2k

k + q
.

The striking distinction from the usual case of acoustic
wave is associated with the dependence of wave vector q for
the transmitted crystallization wave on its amplitude ζ2. The
equations which determine the amplitudes ζ2 and ζ1 of the
transmitted and reflected waves are given by

ζ2 = 2k(ω)

k(ω) + q(ω, ζ2)
ζ0 and ζ1 = ζ2(ζ0) − ζ0.

To understand the main features of the phenomenon, we
first neglect the gravitational term proportional to the density
difference Δρ in the Lagrangian, assuming that the wave
vector is larger than the inverse magnitude of capillary length,
k > k0 ∼ √

Δρg/α0. Then, for the rough state of the crys-
talline surface, one has an ordinary capillary dispersion [3]

ρeff
ω2

k
= α0k2 and k(ω) =

(
ω2ρeff

α0

)1/3

.

For the faceted state of the crystal surface [6], the dispersion
is more complicated and depends on the wave amplitude ζ

according to

ρeff
ω2

q
=

{
γα1q/|ζ |, q|ζ | � α1/α0

α0q2, q|ζ | � α1/α0,

where γ = πζ (3)/7 = 0.539 . . . is a numerical coefficient.
Accordingly,

q(ω, ζ ) =
⎧⎨
⎩

ω
(

ρeff|ζ |
γα1

)1/2
, ω2|ζ |3 � α3

1

α2
0ρeff(

ω2ρeff

α0

)1/3
, ω2|ζ |3 � α3

1

α2
0ρeff

.

The most interesting case is that of sufficiently small am-
plitudes |ζ0| for the incident crystallization wave satisfying the
inequality 2k|ζ0| � (α1/α0)2/3 � 1. The latter implies q � k.
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As a final result, we arrive at

ζ2 ≈ 2ζ0 , ζ1 =
(

1 − 2q

k

)
ζ0, and

q

k
≈

√
2α0

α1
k|ζ0|.

Thus, we have approximately the following reflection and
transmission coefficients: r ≈ 1 and t ≈ 2.

Let us discuss the result obtained. We see that the re-
flected crystallization wave has approximately the same
amplitude and is similar to the incident wave but propagat-
ing in the opposite direction. At the same time the inci-
dent wave onto the boundary edge induces the transmitted
crystallization wave with the double amplitude representing
the flat kink at the smooth crystal surface. Such a soliton-
like perturbation, whose size is about the wavelength 2π/k,
propagates away from the boundary at a velocity of about
V ≈ (γα1/2ρeff|ζ0|)1/2. Briefly speaking, the incident wave
produces the reflected wave and excites the transmitted wave
in the shape of a soliton with the larger wavelength.

In the opposite case of sufficiently large amplitudes,
if 2k|ζ0| � (α1/α0)2/3, the reflected crystallization wave is
weak and practically vanishes since the facet step energy α1

plays a negligible role. The reflection can appear only due to
differences in the surface tension coefficients for the adjoint
crystalline facets:

r ≈ α
1/3
0r − α

1/3
0l

α
1/3
0r + α

1/3
0l

,

where coefficients α0l and α0r refer to the left- and right-hand
sides of the crystalline surface. In its turn, the transmitted
crystallization wave has an almost full similarity with the
incident crystallization wave. Thus, we expect r ≈ 0 and
t ≈ 1 if α0l = α0r .

IV. INCIDENCE FROM THE CRYSTAL FACET
ONTO THE ROUGH CRYSTAL SURFACE

Let us consider the opposite situation when the crystal-
lization wave or crystal step arrives at the boundary from
the smooth-faceted surface to the rough crystal surface. So,
we represent the incident, reflected, and transmitted waves as
follows:

ζ0(x, t ) = ζ0e−iqx−iωt , x > 0,

ζ1(x, t ) = ζ1eiqx−iωt , x > 0,

ζ2(x, t ) = ζ2e−ikx−iωt , x < 0.

Then, we have the following conditions at the boundary
x = 0:

ζ0 + ζ1 = ζ2 and − iqζ0 + iqζ1 = −ikζ2.

Hence we arrive at

ζ2 = 2q(ω, ζ0)

q(ω, ζ0) + k(ω)
ζ0 and ζ1 = ζ0 − ζ2(ζ0).

Again the most interesting case is when the amplitude of
the incident wave is sufficiently small q|ζ0| � α1/α0 � 1.
This means that, either the crystal step height is small, or the
length of the protrusive crystal layer is rather extended. Thus,

we find that the wave vector of the transmitted wave is given
by

k = q(ω)

(
γα1

α0

1

q(ω)|ζ0|
)1/3

� q(ω)

and the reflection and transmission coefficients read

r = ζ1

ζ0
≈ 1 and t = ζ2

ζ0
≈ 2

(
α0

α1
qζ0

)1/3

� 1.

Thus, we see that the crystallization wave or the crystal step,
on the whole, reflects from the rough crystal surface. As it
concerns the transmitted wave, its amplitude is much smaller
than the amplitude of the incident wave, and the excitation of
the crystallization wave at the rough surface with the incident
crystal step is ineffective. Here we should underline some
asymmetry between the incidence of crystallization waves
from the rough and from the faceted crystal surface sides.

In the opposite limit when q|ζ0| � α1/α0, the difference
between the faceted state and the rough state is not large. We
expect practically no reflection from the boundary and the full
transmission of the wave to the other side of the crystalline
surface. In fact,

k ≈ q(ω) + γα1

3α0|ζ0| ,

and the reflection and transmission coefficients are approxi-
mately given by

r = ζ1

ζ0
≈ 1

6

γα1

α0q|ζ0| � 1 and t = ζ2

ζ0
≈ 1.

The latter means that the noticeable reflection can again
appear only due to large distinction in the surface tension
coefficients of the left- and right-hand sides of a crystal.

V. SUMMARY

To conclude, we have attempted the transmission and
reflection of crystallization waves propagating along the
superfluid-crystal 4He interface across the boundary edge
between the crystalline surfaces in the rough and smooth
states. The crystallization wave at the rough 4He crystal
surface resembles the usual gravitational-capillary waves at
the fluid-fluid interface. In contrast, the crystallization wave
at the smooth-faceted surface represents the propagation of
crystal steps at a velocity depending on the crystal step height.
To match two types of waves at the crystal edge, we use the
natural boundary conditions.

Since the dispersion of crystallization waves at the smooth-
faceted surface is essentially governed by the wave ampli-
tude, the transmission and reflection coefficients depend on
the amplitude of the incident wave. The incidence of the
crystallization wave from the rough crystal surface onto the
smooth-faceted one results in the practically mirror reflection
of the incident wave and in inducing the crystal step or soliton
of about double amplitude in the region of the crystal facet
behind the crystal edge.

In the opposite situation of the incidence of the crys-
tallization wave from the faceted crystal surface onto the
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rough crystal surface we should observe practically the full
reflection and the corresponding small transmission to the
rough crystal surface. Note that we have no symmetry with
respect to rearrangement between the crystal surfaces in the
rough and flat states.

The experimental study on the dynamics of crystallization
waves at the atomically smooth crystal facet requires an
effective mechanism for their excitation. Apparently this is a
tough challenge. To confirm, we can mention an unsuccessful
attempt to produce a soliton-like crystallization wave with the
aid of a Π-shaped crossbar oscillating in the vicinity of the
crystal 4He facet [16]. The oscillations of the crossbar are
shown to be very effective for inducing the crystallization
waves at the rough 4He crystal surface but no effect is ob-
served for the faceted 4He crystal surface.

The present work proposes a mechanism for exciting the
wave or soliton at the smooth flat facet with the help of a
crystallization wave propagating along the nonfaceted rough
surface across the crystal edge in the direction to the atom-
ically smooth facet. One more possibility is to prepare the
electron-charged crystal facet in order to induce the instability
of the atomically smooth surface at the critical electron den-
sity. However, this will require a critical electron density [13]
larger by a factor of about 50–100 as compared with that of
about 109 cm−2 observed for the rough interface.

A special interest represents the experiment on the trans-
mission and reflection of crystallization waves propagating
across the crystal edge between the rough crystal surface and
the vicinal surface whose orientation is tilted by the small
angle ϑ with respect to the well-faceted surface. Provided the
tilt angle ϑ is sufficiently small, the crystal steps are well
separated. On the other hand, an existence of ready-made
crystal steps should noticeably affect the transmission and

reflection coefficients as a function of tilt angle of the vicinal
surface.

Here we have described the transmission and reflection of
the crystallization wave propagating across the facet boundary
within the framework of phenomenological approach. The
boundary condition is chosen in the form of continuity of total
wave amplitude and its derivative. In addition to the trans-
mission and reflection, the incidence of the crystallization
wave onto the facet boundary can be accompanied by other
possible effects. One can suppose excitation of sound modes
propagating away from the boundary to the liquid and/or
crystal bulk. For the oblique incidence at the facet boundary,
one should expect excitation of specific crystallization wave
which will propagate along the crystal edge. Provided that the
wavelength of the incident wave is comparable with the width
of the facet boundary, the interference effects may appear.
In this case the transmission and reflection coefficients will
display an oscillating behavior as a function of incident wave-
length. Involving such aspects into consideration fails our
simple description and requires the introduction of additional
parameters and possible discontinuities to the formulation of
the boundary conditions. Such a plentiful picture cannot be
described within our phenomenological approach and will
require a microscopic treatment.

Checking for the physical aspects of crystallization wave
transmission across the facet boundaries in 4He crystals is the
main reason for experiments.
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