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Quantum cluster quasicrystals
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Quasicrystals remain among the most intriguing materials in physics and chemistry. Their structure results in
many unusual properties, including anomalously low friction as well as poor electrical and thermal conductivity,
but it also supports superconductivity, which shows that quantum effects in quasicrystals can be quite unique.
We theoretically study superfluidity in a model quantum cluster quasicrystal. Using path-integral Monte
Carlo simulations, we explore a two-dimensional ensemble of bosons with the Lifshitz-Petrich-Gaussian pair
potential, finding that moderate quantum fluctuations do not destroy the dodecagonal quasicrystalline order. This
quasicrystal is characterized by a small yet finite superfluidity, demonstrating that particle clustering combined
with the local cogwheel structure can underpin superfluidity even in the almost classical regime. This type of
distributed superfluidity may also be expected in certain open crystalline lattices. Large quantum fluctuations are
shown to induce transitions to cluster solids, supersolids, and superfluids, which we characterize fully quantum
mechanically.
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I. INTRODUCTION

Despite the order-of-magnitude differences in the charac-
teristic length and energy scales, solid-state and soft mat-
ter share many features and phenomena exemplified by the
well-established analogy between smectic liquid crystals and
superconductors [1,2] and the thriving field of electronic
liquid-crystalline mesophases [3,4]. An interesting soft-matter
effect with possible analogies at a much smaller scale—
e.g., in Rydberg-excited Bose-Einstein condensates [5,6]—is
clustering. In a good solvent, dilute polymers can be con-
sidered as extended finite-size objects, but if the concentra-
tion is large enough, they interpenetrate and overlap. The
effective potential between them depends on architecture,
functionalization, etc. [7], and in some cases, e.g., in am-
phiphilic dendrimers [8], it may promote ordered phases con-
sisting of evenly spaced multiple-occupancy clusters [9,10].
Such clustering can be viewed as an instability resulting
from a negative component of the Fourier transform of the
potential [11].

The physical properties of cluster phases are controlled
by their symmetry and by the morphology of the clusters,
which may be spherical, cylindrical, sheetlike, inverted, or
even bicontinuous [12]. Both symmetry and morphology are
determined by an interparticle interaction, and a synthetic
approach to generate a host of different phases including
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cluster quasicrystals (QCs) is based on a simultaneous insta-
bility at two length scales [13–15]. The cluster phases should
all exhibit some degree of activated hopping, and the ensu-
ing finite diffusivity [16] is expected to be more prominent
in the dodecagonal QCs where the neighboring clusters at
the perimeter of the characteristic cogwheel-like patches are
rather close to each other [14].

In a quantum system, such dynamics could well lead
to novel types of supersolidity, implying the coexistence
of (quasi)crystalline and superfluid behavior. To explore
this possibility, we theoretically study a two-dimensional
(2D) ensemble of bosons with a Lifshitz-Petrich-Gaussian
pair interaction that produces a classical dodecagonal
cluster QC.

We use path-integral Monte Carlo (PIMC) simulations
to show that the QC remains stable if quantum fluctua-
tions are not too large and that it supports local distributed
superfluidity in clusters by a kind of percolating network.
In these two respects, it departs from known supersolids
[5,17–23] and superglasses [24–29]. We show that increased
quantum fluctuations induce a series of phase transitions
to cluster solids, supersolids, and superfluid phases. Our
findings open different possibilities for weak quantum be-
havior characterized by local superfluidity, say, in cluster
systems based on honeycomb or kagome lattices and their
3D analogs.

This paper is organized as follows: In Sec. II we intro-
duce the model Hamiltonian, whereas Sec. III presents the
properties of the dodecagonal QC structure when quantum
fluctuations are taken into account. Findings and conclusions
are outlined in Sec. IV.
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II. MODEL HAMILTONIAN FOR QUANTUM
CLUSTER QUASICRYSTALS

We consider an ensemble of N two-dimensional bosons of
mass m with a many-body Hamiltonian

Ĥ = − h̄2

2m

N∑
i=1

∇2
i +

N∑
i< j

V (|ri − r j |), (1)

where

V (r) = exp(−σ 2r2/2)
4∑

k=0

C2k r2k (2)

is the Lifshitz-Petrich-Gaussian pair potential [14] and ri ≡
(xi, yi ) is the position of the ith particle. If the parameters σ

and C2k are chosen such that its Fourier transform features two
equal-depth negative minima and the ratio of the correspond-

ing wave vectors is
√

2 + √
3 ≈ 1.93, this potential leads to a

dodecagonal QC pattern in a classical system [14]. We too use
this particular set of parameters, focusing on quantum effects
in the dodecagonal cluster QC. These effects depend on the
magnitude of quantum fluctuations encoded by the de Boer
parameter [30]

� =
√

h̄2

mr2
0V0

, (3)

where V0 = V (0) is the pair potential at r = 0 and r0 is the
characteristic length given by the inverse of the wave vector
corresponding to the first minimum of the transform of V (r).

III. 12-FOLD QUANTUM CLUSTER QUASICRYSTAL

We employ PIMC simulations [31] based on the
continuous-space worm algorithm [32] to find the equilibrium
state of Eq. (1) at a fixed temperature and a fixed number of
particles N (canonical ensemble), with N between 2048 and
8192. All simulations were carried out using periodic bound-
ary conditions along both directions. In particular, we study
the ensemble at temperatures around the range where the
classical dodecagonal QC is stable, first at small �. Figure 1
shows the quantum dodecagonal QC for � = 0.1, reduced
temperature t = kBT/V0 = 0.05, reduced density ρr2

0 = 0.8,
and N = 8192. In this figure we focus on the semiclassical
limit, i.e., on boltzmannons, where the zero-point motion due
to quantum fluctuations is accounted for, whereas the world-
line exchanges leading to superfluidity are initially excluded.
Figure 1(a) shows a snapshot of the projection of world lines
onto the xy plane obtained by tracing over the imaginary
time evolution; this is a good representation of the square of
the semiclassical many-body wave function [31]. In Fig. 1(a),
the paths are essentially localized around the energy minima
of the QC structure observed in the classical limit in Ref. [14]
despite a somewhat larger reduced temperature (0.05 vs 0.03)
and despite quantum fluctuations.

The similarity of the semiclassical and the classical QCs
is further corroborated by the radial distribution functions
g(r) [33] in Fig. 1(b), which are virtually identical except
close to r = 0: The quantum g(r) is somewhat larger than
the classical one, indicating increased local fluctuations of the

FIG. 1. Quantum QC in the semiclassical regime: (a) PIMC
snapshot of the dodecagonal QC at � = 0.1, reduced temperature
t = 0.05, and reduced density ρr2

0 = 0.8; here, N = 8192. (b) Radial
distribution function g(r) for � = 0.1 (red line) and � = 0 (black
line). (c) Fourier transform of the positions of world lines in (a). The
parameters of the interparticle potential in Eq. (2) are σ = 0.770 746,
C0 = 1, C2 = −1.094 56, C4 = 0.439 744, C6 = −0.049 273 9, and
C8 = 0.001 831 83 as reported in Ref. [14].

particles [inset to Fig. 2(e)]. We note that the introduction
of Bose-Einstein statistics further enhances this effect (see
below).

The Fourier transform of the � = 0.1, t = 0.05 semiclas-
sical dodecagonal QC [Fig. 1(c)] evidently has a 12-fold
rotational symmetry. Figure 1(c) was obtained by taking the
averaged position of each world line (centroid coordinates) in
space. In terms of position, the peaks agree with the stronger
inner peaks characterizing the classical counterpart of our
QC [14] as well as with those seen experimentally in, e.g., a
dendrimer-micelle QC [34]. The variations in intensity—and
especially the presence of the diffuse outer ring—reflect the
different form factor and thus a different intracluster structure,
as also observed in g(r) at small r.

Full quantum effects combining fluctuations and bosonic
statistics are investigated in Fig. 2. As the de Boer parameter
is increased at t = 0.05 and ρr2

0 = 0.8, the ensemble un-
dergoes three transitions [Figs. 2(a)–2(d)]. At � ≈ 0.12, the
dodecagonal QC shown in Fig. 2(a) is replaced by a hexagonal
cluster crystal [Fig. 2(b)]; the clusters are well defined and
evidently larger than those in the QC, their spacing being
the same as the radius of the dodecagonal wheels in the QC.
Given that the pair potential features two local minima [14],
the increase of cluster size and their rearrangement suggest
that at the larger �, intracluster quantum fluctuations render
the smaller-distance minimum less effective. The structural
differences between the two phases readily show in the radial
distribution functions [Figs. 2(e) and 2(f)]. The modulation of
g(r) in the cluster solid is very prominent, virtually vanishing
between nearest-neighbor clusters, whereas in the QC it is
considerably smaller.

We now turn to the quantum properties of the QC and
the cluster solid, first monitoring the frequency of cycles
of permutations involving L bosons denoted by P(L), with
1 � L � N . The occurrence of long permutation cycles in the
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FIG. 2. Quantum quasicrystal and reentrant superfluidity: (a)–(d) Dodecagonal quantum QC, cluster crystal, cluster supersolid, and
superfluid at t = 0.05, ρr2

0 = 0.8, and � = 0.1, 0.141, 0.632, and 1, respectively; N = 2048. (e)–(h) Radial distribution functions of the
four phases in (a)–(d). Inset in (e): Distribution functions of QC for bosons (solid line), semiclassical boltzmannons (dashed line), and classical
particles (dotted-dashed line). (i)–(k) Frequency of exchange cycles of length L in the QC, cluster solid, and supersolid in (a)–(c). (l) Superfluid
density profile of the dodecagonal QC from (a).

histogram P(L) should be linked to the existence of a finite
superfluid response throughout the system. In the � = 0.1
QC, the distribution of P(L) stretches to L ≈ 25 [Fig. 2(i)].
Since the clusters contain about 18 particles, this implies a
finite particle exchange between clusters, pointing to a local
distributed superfluidity in this quantum QC phase. In the
cluster solid [Fig. 2(j)], permutation cycles stay within single
clusters, which contain about 36 particles.

The competition between the tendency of bosons to de-
localize at low temperatures and the structure of the QC
and cluster crystal is also reflected in the superfluid den-
sity. In the PIMC framework, the superfluid density ρs is
evaluated by applying the linear response theory to address
the response of the boundary motion of the ensemble. In
this study, superfluidity was sampled by using the expression
ρs = (4ρm2)/(h̄2βIcl )〈A2〉, where β = 1/kBT and Icl is the
classical moment of inertia of the particles calculated with
respect to the axis perpendicular to the xy plane. In the context
of the path-integral formalism, the estimator A then gives
the world-line area of closed particle trajectories projected
onto the xy plane. Likewise, the local contribution to the
superfluid density ρs(r) [35,36] is obtained by sampling the

radial dependence of the local area operator A · A(r) and the
corresponding local moment of inertia Icl(r). In a true periodic
structure [see, for instance, the supersolid phase in Fig. 2(c)]
the evaluation of ρs using the area estimator techniques gives
results that are fully consistent with the well-known “winding
number” estimator [37].

In the QC in Fig. 2(a), ρs is small but finite, the fraction
of superfluid particles being about 1%–2% consistent with the
measured exchange cycles and a picture of weak distributed
superfluidity. On the other hand, the global superfluid signal
is completely suppressed in both QC and cluster crystal.

Figure 2(l) shows the superfluid density profile in the QC,
which is evidently nonuniform. By comparing the profile with
the snapshot and g(r) in Figs. 2(a) and 2(e), respectively,
we see that ρs(r) is small but non-negligible both in the
central clusters of the dodecagonal wheels and around their
perimeter. In fact, the local superfluid signal is nonzero in
accordance with the structure of Fig. 2(a). Consistent with
the quantum-mechanical exchanges shown in Fig. 2(j), in the
cluster crystal ρs(r) should be finite (about unity as t → 0)
inside each cluster and zero otherwise. Given the size of our
system, these results are not affected by finite-size effects. We
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FIG. 3. Phase diagram of 2D Lifshitz-Petrich-Gaussian bosons
featuring the dodecagonal quantum QC, supersolid, and superfluid
as well as a hexagonal cluster solid and a normal fluid phase.
Circles represent the N = 2048 data points analyzed; the indicated
phase boundaries are approximate. The thick black line depicts the
Berezinskii-Kosterlitz-Thouless transition tBKT ≈ πρ̄sr2

0�
2/2 (ρ̄s be-

ing the superfluid density at tBKT) between the normal fluid (yellow)
and the superfluid phase (gray).

note that a full finite-size scaling of ρs is not possible here,
as increasing the already very large N makes computations
exceedingly long at sufficiently low T , while decreasing N
changes the QC structure in favor of a σ -type one. We find a
comparable superfluid signal in this latter case.

At even larger �, fluctuations become even more promi-
nent and at � ≈ 0.54 they lead to the transition from the
cluster solid to the supersolid. In the latter, the diameter of the
clusters is larger than in the cluster solid whereas the lattice
spacing remains the same. This facilitates delocalization and
long exchanges of particles hinted at by the many particles
seen between the clusters in the � = 0.632 snapshot in
Fig. 2(c) and proven by the distribution of the exchange cycles
in Fig. 2(k), which includes cycles with over 1500 bosons in
an ensemble of N = 2048 particles. The superfluid fraction
of the supersolid in Fig. 2(c) is less than unity, amounting to
ρs ≈ 0.46, as expected for a spatially modulated superfluid
[17,38–40], and remains almost unchanged upon cooling.
Particle delocalization is further seen in g(r) in Fig. 2(g)
where the maxima and minima are at the same positions as
in the cluster solid but are much less prominent. At � ≈ 0.8,
the strong world-line delocalization turns the ensemble into
a homogeneous superfluid where the superfluid fraction is 1.
Figure 2(d) shows a snapshot of this phase at � = 1, and
the corresponding radial distribution function in Fig. 2(h) is
almost featureless.

The phase diagram of the N = 2048 ensemble at a density
of ρr2

0 = 0.8 is shown in Fig. 3. The large-� region is
occupied by the superfluid whereas the large-t region belongs
to the normal fluid. The region stretching roughly to t = 0.1
and � = 0.7 is divided among three solid phases, with the
normal dodecagonal QC present only at vanishing �s. The

quantum QC/cluster solid/supersolid/superfluid sequence is
representative of t’s between about 0.03 and 0.1, whereas at t’s
below 0.03 the quantum QC phase is absent. Interestingly, at
low t and for � � 0.2, quantum fluctuations do not stabilize a
QC but rather strengthen the occurrence of the cluster crystal,
in agreement with the classical case [14].

IV. CONCLUSIONS

This phase diagram shows the reentrant nature of superflu-
idity in our system. With a proper structural support—here,
the dodecagonal QC—superfluid behavior can be extended
down to small values of the de Boer parameter, albeit in a
fraction of particles rather than globally as in the large-�
superfluid phase. There may exist other non-close-packed
2D lattices that could host distributed superfluidity, say, a
honeycomb or kagome lattice with vertex figures 6.6.6 and
(3.6)2, respectively. Figure 3 is also important because it
provides additional insight into the mechanism of the structure
formation in pair potentials with equal-depth-minima trans-
forms, showing that the temperature range where the desired
structure is stable is reasonably broad but that at large and
very small t’s it is replaced by the fluid and the energy-
minimizing phase, respectively. Finally, our phase diagram
was computed at a fixed particle density. Given that in the
classical repulsive coreless cluster-forming systems the phase
sequence is qualitatively the same at all densities [9,41], we
expect that at a somewhat larger or smaller density our phase
diagram too is simply rescaled but otherwise unaltered.

Our quantum QC is a self-assembled phase with local
and distributed superfluidity close to the classical regime,
which contributes to the advances at the crossroad between
quasiperiodic systems and quantum phenomena illustrated
by, e.g., topological states in quasicrystals [42], the Dirac
electrons in dodecagonal graphene [43], and time quasicrys-
tals [44]. Our results emphasize that this complex behavior
can result solely from pair interactions, and it would be
interesting to search for it in other classes of two-length-scale
soft-core potentials [13,45] as well as in experiments. The
recent observation of self-assembled supersolid behavior in
1D with dipolar magnetic atoms [22,23,46], similar to that
predicted in cluster-forming interactions, raises the question
of whether self-assembled QC behavior may be engineered in
such systems—possibly aided by structured optical potentials
such as those used in cold-atom experiments where super-
fluidity is furnished by a Bose-Einstein condensate trapped
in a laser-generated lattice [47,48], or even a condensate
featuring a Rashba spin-orbit coupling combined with dipolar
interactions [49].

ACKNOWLEDGMENTS

We thank T. Dotera, M. Engel, R. Lifshitz, T. Macrì,
T. Pohl, and S. Pilati for valuable discussions. The authors
acknowledge the financial support from the Slovenian Re-
search Agency (Research Core Funding No. P1-0055), the
French ANR - ERA-NET QuantERA - Projet RouTe (ANR-
18-QUAN-0005-01), Labex NIE, IUF, and USIAS.

134522-4



QUANTUM CLUSTER QUASICRYSTALS PHYSICAL REVIEW B 101, 134522 (2020)

[1] P.-G. de Gennes, Solid State Commun. 10, 753 (1972).
[2] B. I. Halperin, T. C. Lubensky, and S.-k. Ma, Phys. Rev. Lett.

32, 292 (1974).
[3] S. A. Kivelson, E. Fradkin, and V. J. Emery, Nature (London)

393, 550 (1998).
[4] R. M. Fernandes, A. V. Chubukov, and J. Schmalian, Nat. Phys.

10, 97 (2014).
[5] N. Henkel, R. Nath, and T. Pohl, Phys. Rev. Lett. 104, 195302

(2010).
[6] F. Cinti, T. Macrì, W. Lechner, G. Pupillo, and T. Pohl, Nat.

Commun. 5, 3235 (2014).
[7] C. N. Likos, Phys. Rep. 348, 267 (2001).
[8] B. M. Mladek, G. Kahl, and C. N. Likos, Phys. Rev. Lett. 100,

028301 (2008).
[9] B. M. Mladek, D. Gottwald, G. Kahl, M. Neumann, and C. N.

Likos, Phys. Rev. Lett. 96, 045701 (2006).
[10] T. Dotera, T. Oshiro, and P. Ziherl, Nature (London) 506, 208

(2014).
[11] C. N. Likos, A. Lang, M. Watzlawek, and H. Löwen, Phys. Rev.

E 63, 031206 (2001).
[12] H. Shin, G. M. Grason, and C. D. Santangelo, Soft Matter 5,

3629 (2009).
[13] K. Barkan, H. Diamant, and R. Lifshitz, Phys. Rev. B 83,

172201 (2011).
[14] K. Barkan, M. Engel, and R. Lifshitz, Phys. Rev. Lett. 113,

098304 (2014).
[15] F. Cinti, Phys. Rev. B 100, 214515 (2019).
[16] A. J. Moreno and C. N. Likos, Phys. Rev. Lett. 99, 107801

(2007).
[17] F. Cinti, P. Jain, M. Boninsegni, A. Micheli, P. Zoller, and

G. Pupillo, Phys. Rev. Lett. 105, 135301 (2010).
[18] M. Schmitt, M. Wenzel, F. Böttcher, I. Ferrier-Barbut, and

T. Pfau, Nature (London) 539, 259 (2016).
[19] F. Wächtler and L. Santos, Phys. Rev. A 94, 043618 (2016).
[20] F. Cinti, A. Cappellaro, L. Salasnich, and T. Macrì, Phys. Rev.

Lett. 119, 215302 (2017).
[21] F. Cinti and M. Boninsegni, Phys. Rev. A 96, 013627 (2017).
[22] L. Tanzi, E. Lucioni, F. Famà, J. Catani, A. Fioretti, C.

Gabbanini, R. N. Bisset, L. Santos, and G. Modugno, Phys. Rev.
Lett. 122, 130405 (2019).

[23] L. Chomaz, D. Petter, P. Ilzhöfer, G. Natale, A. Trautmann, C.
Politi, G. Durastante, R. M. W. van Bijnen, A. Patscheider, M.
Sohmen, M. J. Mark, and F. Ferlaino, Phys. Rev. X 9, 021012
(2019).

[24] G. Biroli, C. Chamon, and F. Zamponi, Phys. Rev. B 78, 224306
(2008).

[25] X. Yu and M. Müller, Phys. Rev. B 85, 104205 (2012).
[26] G. Carleo, M. Tarzia, and F. Zamponi, Phys. Rev. Lett. 103,

215302 (2009).
[27] K.-M. Tam, S. Geraedts, S. Inglis, M. J. P. Gingras, and R. G.

Melko, Phys. Rev. Lett. 104, 215301 (2010).
[28] D. Larson and Y.-J. Kao, Phys. Rev. Lett. 109, 157202 (2012).
[29] A. Angelone, F. Mezzacapo, and G. Pupillo, Phys. Rev. Lett.

116, 135303 (2016).
[30] M. B. Sevryuk, J. P. Toennies, and D. M. Ceperley, J. Chem.

Phys. 133, 064505 (2010).
[31] D. M. Ceperley, Rev. Mod. Phys. 67, 279 (1995).
[32] M. Boninsegni, N. Prokof’ev, and B. Svistunov, Phys. Rev.

Lett. 96, 070601 (2006).
[33] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids

(Oxford University Press, Oxford, UK, 2017).
[34] X. Zeng, G. Ungar, Y. Liu, V. Percec, A. E. Dulcey, and J. K.

Hobbs, Nature (London) 428, 157 (2004).
[35] Y. Kwon, F. Paesani, and K. B. Whaley, Phys. Rev. B 74,

174522 (2006).
[36] P. Jain, F. Cinti, and M. Boninsegni, Phys. Rev. B 84, 014534

(2011).
[37] E. L. Pollock and D. M. Ceperley, Phys. Rev. B 36, 8343 (1987).
[38] A. J. Leggett, Phys. Rev. Lett. 25, 1543 (1970).
[39] N. Henkel, F. Cinti, P. Jain, G. Pupillo, and T. Pohl, Phys. Rev.

Lett. 108, 265301 (2012).
[40] T. Macrì, F. Maucher, F. Cinti, and T. Pohl, Phys. Rev. A 87,

061602(R) (2013).
[41] M. A. Glaser, G. M. Grason, R. D. Kamien, A. Košmrlj, C. D.

Santangelo, and P. Ziherl, EPL 78, 46004 (2007).
[42] Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and O. Zilberberg,

Phys. Rev. Lett. 109, 106402 (2012).
[43] S. J. Ahn, P. Moon, T.-H. Kim, H.-W. Kim, H.-C. Shin, E. H.

Kim, H. W. Cha, S.-J. Kahng, P. Kim, M. Koshino, Y.-W. Son,
C.-W. Yang, and J. R. Ahn, Science 361, 782 (2018).

[44] S. Autti, V. B. Eltsov, and G. E. Volovik, Phys. Rev. Lett. 120,
215301 (2018).

[45] A. J. Archer, A. M. Rucklidge, and E. Knobloch, Phys. Rev.
Lett. 111, 165501 (2013).

[46] F. Böttcher, J.-N. Schmidt, M. Wenzel, J. Hertkorn, M. Guo,
T. Langen, and T. Pfau, Phys. Rev. X 9, 011051 (2019).

[47] S. Gopalakrishnan, I. Martin, and E. A. Demler, Phys. Rev. Lett.
111, 185304 (2013).

[48] K. Viebahn, M. Sbroscia, E. Carter, J.-C. Yu, and U. Schneider,
Phys. Rev. Lett. 122, 110404 (2019).

[49] J. Hou, H. Hu, K. Sun, and C. Zhang, Phys. Rev. Lett. 120,
060407 (2018).

134522-5

https://doi.org/10.1016/0038-1098(72)90186-X
https://doi.org/10.1016/0038-1098(72)90186-X
https://doi.org/10.1016/0038-1098(72)90186-X
https://doi.org/10.1016/0038-1098(72)90186-X
https://doi.org/10.1103/PhysRevLett.32.292
https://doi.org/10.1103/PhysRevLett.32.292
https://doi.org/10.1103/PhysRevLett.32.292
https://doi.org/10.1103/PhysRevLett.32.292
https://doi.org/10.1038/31177
https://doi.org/10.1038/31177
https://doi.org/10.1038/31177
https://doi.org/10.1038/31177
https://doi.org/10.1038/nphys2877
https://doi.org/10.1038/nphys2877
https://doi.org/10.1038/nphys2877
https://doi.org/10.1038/nphys2877
https://doi.org/10.1103/PhysRevLett.104.195302
https://doi.org/10.1103/PhysRevLett.104.195302
https://doi.org/10.1103/PhysRevLett.104.195302
https://doi.org/10.1103/PhysRevLett.104.195302
https://doi.org/10.1038/ncomms4235
https://doi.org/10.1038/ncomms4235
https://doi.org/10.1038/ncomms4235
https://doi.org/10.1038/ncomms4235
https://doi.org/10.1016/S0370-1573(00)00141-1
https://doi.org/10.1016/S0370-1573(00)00141-1
https://doi.org/10.1016/S0370-1573(00)00141-1
https://doi.org/10.1016/S0370-1573(00)00141-1
https://doi.org/10.1103/PhysRevLett.100.028301
https://doi.org/10.1103/PhysRevLett.100.028301
https://doi.org/10.1103/PhysRevLett.100.028301
https://doi.org/10.1103/PhysRevLett.100.028301
https://doi.org/10.1103/PhysRevLett.96.045701
https://doi.org/10.1103/PhysRevLett.96.045701
https://doi.org/10.1103/PhysRevLett.96.045701
https://doi.org/10.1103/PhysRevLett.96.045701
https://doi.org/10.1038/nature12938
https://doi.org/10.1038/nature12938
https://doi.org/10.1038/nature12938
https://doi.org/10.1038/nature12938
https://doi.org/10.1103/PhysRevE.63.031206
https://doi.org/10.1103/PhysRevE.63.031206
https://doi.org/10.1103/PhysRevE.63.031206
https://doi.org/10.1103/PhysRevE.63.031206
https://doi.org/10.1039/b904103f
https://doi.org/10.1039/b904103f
https://doi.org/10.1039/b904103f
https://doi.org/10.1039/b904103f
https://doi.org/10.1103/PhysRevB.83.172201
https://doi.org/10.1103/PhysRevB.83.172201
https://doi.org/10.1103/PhysRevB.83.172201
https://doi.org/10.1103/PhysRevB.83.172201
https://doi.org/10.1103/PhysRevLett.113.098304
https://doi.org/10.1103/PhysRevLett.113.098304
https://doi.org/10.1103/PhysRevLett.113.098304
https://doi.org/10.1103/PhysRevLett.113.098304
https://doi.org/10.1103/PhysRevB.100.214515
https://doi.org/10.1103/PhysRevB.100.214515
https://doi.org/10.1103/PhysRevB.100.214515
https://doi.org/10.1103/PhysRevB.100.214515
https://doi.org/10.1103/PhysRevLett.99.107801
https://doi.org/10.1103/PhysRevLett.99.107801
https://doi.org/10.1103/PhysRevLett.99.107801
https://doi.org/10.1103/PhysRevLett.99.107801
https://doi.org/10.1103/PhysRevLett.105.135301
https://doi.org/10.1103/PhysRevLett.105.135301
https://doi.org/10.1103/PhysRevLett.105.135301
https://doi.org/10.1103/PhysRevLett.105.135301
https://doi.org/10.1038/nature20126
https://doi.org/10.1038/nature20126
https://doi.org/10.1038/nature20126
https://doi.org/10.1038/nature20126
https://doi.org/10.1103/PhysRevA.94.043618
https://doi.org/10.1103/PhysRevA.94.043618
https://doi.org/10.1103/PhysRevA.94.043618
https://doi.org/10.1103/PhysRevA.94.043618
https://doi.org/10.1103/PhysRevLett.119.215302
https://doi.org/10.1103/PhysRevLett.119.215302
https://doi.org/10.1103/PhysRevLett.119.215302
https://doi.org/10.1103/PhysRevLett.119.215302
https://doi.org/10.1103/PhysRevA.96.013627
https://doi.org/10.1103/PhysRevA.96.013627
https://doi.org/10.1103/PhysRevA.96.013627
https://doi.org/10.1103/PhysRevA.96.013627
https://doi.org/10.1103/PhysRevLett.122.130405
https://doi.org/10.1103/PhysRevLett.122.130405
https://doi.org/10.1103/PhysRevLett.122.130405
https://doi.org/10.1103/PhysRevLett.122.130405
https://doi.org/10.1103/PhysRevX.9.021012
https://doi.org/10.1103/PhysRevX.9.021012
https://doi.org/10.1103/PhysRevX.9.021012
https://doi.org/10.1103/PhysRevX.9.021012
https://doi.org/10.1103/PhysRevB.78.224306
https://doi.org/10.1103/PhysRevB.78.224306
https://doi.org/10.1103/PhysRevB.78.224306
https://doi.org/10.1103/PhysRevB.78.224306
https://doi.org/10.1103/PhysRevB.85.104205
https://doi.org/10.1103/PhysRevB.85.104205
https://doi.org/10.1103/PhysRevB.85.104205
https://doi.org/10.1103/PhysRevB.85.104205
https://doi.org/10.1103/PhysRevLett.103.215302
https://doi.org/10.1103/PhysRevLett.103.215302
https://doi.org/10.1103/PhysRevLett.103.215302
https://doi.org/10.1103/PhysRevLett.103.215302
https://doi.org/10.1103/PhysRevLett.104.215301
https://doi.org/10.1103/PhysRevLett.104.215301
https://doi.org/10.1103/PhysRevLett.104.215301
https://doi.org/10.1103/PhysRevLett.104.215301
https://doi.org/10.1103/PhysRevLett.109.157202
https://doi.org/10.1103/PhysRevLett.109.157202
https://doi.org/10.1103/PhysRevLett.109.157202
https://doi.org/10.1103/PhysRevLett.109.157202
https://doi.org/10.1103/PhysRevLett.116.135303
https://doi.org/10.1103/PhysRevLett.116.135303
https://doi.org/10.1103/PhysRevLett.116.135303
https://doi.org/10.1103/PhysRevLett.116.135303
https://doi.org/10.1063/1.3458640
https://doi.org/10.1063/1.3458640
https://doi.org/10.1063/1.3458640
https://doi.org/10.1063/1.3458640
https://doi.org/10.1103/RevModPhys.67.279
https://doi.org/10.1103/RevModPhys.67.279
https://doi.org/10.1103/RevModPhys.67.279
https://doi.org/10.1103/RevModPhys.67.279
https://doi.org/10.1103/PhysRevLett.96.070601
https://doi.org/10.1103/PhysRevLett.96.070601
https://doi.org/10.1103/PhysRevLett.96.070601
https://doi.org/10.1103/PhysRevLett.96.070601
https://doi.org/10.1038/nature02368
https://doi.org/10.1038/nature02368
https://doi.org/10.1038/nature02368
https://doi.org/10.1038/nature02368
https://doi.org/10.1103/PhysRevB.74.174522
https://doi.org/10.1103/PhysRevB.74.174522
https://doi.org/10.1103/PhysRevB.74.174522
https://doi.org/10.1103/PhysRevB.74.174522
https://doi.org/10.1103/PhysRevB.84.014534
https://doi.org/10.1103/PhysRevB.84.014534
https://doi.org/10.1103/PhysRevB.84.014534
https://doi.org/10.1103/PhysRevB.84.014534
https://doi.org/10.1103/PhysRevB.36.8343
https://doi.org/10.1103/PhysRevB.36.8343
https://doi.org/10.1103/PhysRevB.36.8343
https://doi.org/10.1103/PhysRevB.36.8343
https://doi.org/10.1103/PhysRevLett.25.1543
https://doi.org/10.1103/PhysRevLett.25.1543
https://doi.org/10.1103/PhysRevLett.25.1543
https://doi.org/10.1103/PhysRevLett.25.1543
https://doi.org/10.1103/PhysRevLett.108.265301
https://doi.org/10.1103/PhysRevLett.108.265301
https://doi.org/10.1103/PhysRevLett.108.265301
https://doi.org/10.1103/PhysRevLett.108.265301
https://doi.org/10.1103/PhysRevA.87.061602
https://doi.org/10.1103/PhysRevA.87.061602
https://doi.org/10.1103/PhysRevA.87.061602
https://doi.org/10.1103/PhysRevA.87.061602
https://doi.org/10.1209/0295-5075/78/46004
https://doi.org/10.1209/0295-5075/78/46004
https://doi.org/10.1209/0295-5075/78/46004
https://doi.org/10.1209/0295-5075/78/46004
https://doi.org/10.1103/PhysRevLett.109.106402
https://doi.org/10.1103/PhysRevLett.109.106402
https://doi.org/10.1103/PhysRevLett.109.106402
https://doi.org/10.1103/PhysRevLett.109.106402
https://doi.org/10.1126/science.aar8412
https://doi.org/10.1126/science.aar8412
https://doi.org/10.1126/science.aar8412
https://doi.org/10.1126/science.aar8412
https://doi.org/10.1103/PhysRevLett.120.215301
https://doi.org/10.1103/PhysRevLett.120.215301
https://doi.org/10.1103/PhysRevLett.120.215301
https://doi.org/10.1103/PhysRevLett.120.215301
https://doi.org/10.1103/PhysRevLett.111.165501
https://doi.org/10.1103/PhysRevLett.111.165501
https://doi.org/10.1103/PhysRevLett.111.165501
https://doi.org/10.1103/PhysRevLett.111.165501
https://doi.org/10.1103/PhysRevX.9.011051
https://doi.org/10.1103/PhysRevX.9.011051
https://doi.org/10.1103/PhysRevX.9.011051
https://doi.org/10.1103/PhysRevX.9.011051
https://doi.org/10.1103/PhysRevLett.111.185304
https://doi.org/10.1103/PhysRevLett.111.185304
https://doi.org/10.1103/PhysRevLett.111.185304
https://doi.org/10.1103/PhysRevLett.111.185304
https://doi.org/10.1103/PhysRevLett.122.110404
https://doi.org/10.1103/PhysRevLett.122.110404
https://doi.org/10.1103/PhysRevLett.122.110404
https://doi.org/10.1103/PhysRevLett.122.110404
https://doi.org/10.1103/PhysRevLett.120.060407
https://doi.org/10.1103/PhysRevLett.120.060407
https://doi.org/10.1103/PhysRevLett.120.060407
https://doi.org/10.1103/PhysRevLett.120.060407

