
PHYSICAL REVIEW B 101, 134515 (2020)

Dynamics of turbulent plugs in a superfluid 4He channel counterflow
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Quantum turbulence in superfluid 4He in narrow channels often takes the form of moving localized vortex
tangles. Such tangles, called turbulent plugs, also serve as building blocks of quantum turbulence in wider
channels. We report on a numerical study of various aspects of the dynamics and structure of turbulent plugs
in a wide range of governing parameters. The unrestricted growth of the tangle in a long channel provides a
unique view on a natural tangle structure including superfluid motion at many scales. We argue that the edges
of the plugs propagate as turbulent fronts, following the advection-diffusion-reaction dynamics. This analysis
shows that the dynamics of the two edges of the tangle have distinctly different nature. While bearing similarity
to the dynamics of the patches of turbulent fluctuations during the transition to turbulence in the classical pipe
flows, the superfluid turbulent fronts exhibit richer behavior. We provide an analytic solution of the equation of
motion for the fronts that define their shape, velocities, and effective diffusivity, and analyze these parameters
for various flow conditions.
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I. INTRODUCTION

Quantum properties of liquid He become apparent [1–4]
when it is cooled below critical temperature Tλ = 2.17 K. A
quantized part of fluid vorticity, an inviscid superfluid, forms a
quantum ground state. A gas of thermal excitations represents
a viscous normal fluid with continuous vorticity. The vorticity
quantization results [5] in the creation of thin quantum vortex
lines of fixed circulation. These lines form dense tangles that
interact with the normal fluid via mutual friction force.

When placed in a channel with a temperature gradient, two
components of the superfluid He flow in opposite directions.
The superfluid flows towards the heater, while the normal
fluid moves away from it. Such a setting, called thermal
counterflow, has been long used to study [6–8] properties
of superfluid 4He components and their interaction. Early
experiments on the thermal counterflow in 4He in narrow
channels found a wide variety of scenarios of the vortex tangle
dynamics [6,8–12]. Propagating turbulent fronts and localized
vortex tangles, or turbulent plugs were observed in long thin
glass and metal capillaries [8–10]. Depending on conditions,
these plugs were either stationary, moving in one direction or
expanding both toward and away from the heater.

The stationary, almost homogeneous tangles, filling the
whole channel, were found in relatively wide channels
[6,7,11,12]. In this case, the local variations of the vortex line
density (VLD) buildup towards the stationary regime were
considered as transient effects [11] and most of the attention
turned to studies of the steady-state properties with VLD
being the main parameter of the system.

Derivation of a set of closed equations for the description
of the quantum vortex tangle dynamics and statistics using
only its macroscopic characteristics have been an ultimate
goal since early days of superfluid 4He studies. The Vinen’s
equation [6] for the time evolution of the vortex line density L
in a homogeneous tangle served as a basis of most theoretical

considerations for decades (see, for example, Refs. [13–15]).
A microscopic theory by Schwarz [16] introduced additional
structural properties of the tangle, such as root-mean-square
curvature and various anisotropy parameters, as important
ingredients of the theory [17–19]. As was pointed out by
Schwarz, the arguments leading to these equations for L apply
only to the average time-dependent behavior near the steady
state, although they are very often used in other situations.

For a moving tangle, a number of theories [13,15,20] pre-
dicted that the plug motion is defined by drift as a whole with
a constant velocity and a diffusionlike spreading. It was com-
monly assumed that the fully developed homogeneous tangle
is expanding into the laminar superfluid, having well-defined
properties, the same as for the stationary homogeneous tangle.
No direct experimental or numerical evidence, supporting
these assumptions, was found so far. The only numerical study
of such a moving turbulent plug by Schwarz [21] was carried
out within an approximation that ignores nonlocal interactions
between vortex lines and was fully focused on the conditions
that allow sustaining the quantum turbulence.

Recent advances in the experimental techniques, including
flow visualization [22–24], as well as increased computing
power, renewed the interest to the spatial inhomogeneity
due to presence of channel walls [19,25–31] and spatially
resolved investigations of the transient behavior in the thermal
counterflow [32]. The latter work showed that the vortex
tangle that eventually fills the whole channel, grows starting
from a number of remnant vortex rings. These rings first
form separate localized turbulent plugs, which later merge.
Remarkably, the structural properties of the large-scale tangle
become homogeneous soon after the merger, while the vortex
line density distribution remain inhomogeneous much longer,
as reflected by very different VLD build-up patterns at differ-
ent locations in the channel.

There is a strong similarity between the localized vor-
tex tangle development in the superfluid helium and the
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formation of the localized turbulent structures (so-called puffs
and slugs) in the classical pipe and duct flows [33–37] during
the transition of the laminar flow to the turbulent regime.
In the classical flow, the patches of the turbulent velocity
fluctuations are carried by the laminar flow. However, due
to the strong temperature dependence of the 4He material
properties and the efficient energy exchange between two
fluid components, the dynamics of the turbulent plugs in the
superfluid helium is expected to be more complex, even in
the mechanically driven superfluid helium in which both fluid
components move in the same direction.

In this paper, we study the dynamical and structural prop-
erties of localized turbulent plugs formed in the superfluid
4He counterflow in the wide range of flow conditions. Un-
like previous simulations of the thermal counterflow in the
channel, here the vortex tangle development in the streamwise
direction is undisturbed by artificial self-interactions, caused
by periodic boundary conditions. Such conditions are rou-
tinely used to ensure the quick creation of a dense tangle
that is homogeneous in the streamwise direction. Although
convenient, this approach does not allow us to study the
natural structure of the tangle and the local influence of the
mean superfluid velocity on the vortex lines motion.

The paper is organized as follows. In Sec. II, we consider
the vortex tangle motion as a whole and the spatial distribution
of the vortex line density in the developing tangle. We start by
introducing in Sec. II A important notions and parameters of
the thermal counterflow in superfluid 4He. Then we describe
the numerical setup (Sec. II B) and the chosen ways for the
characterization of the developing vortex tangle in the channel
(Sec. II C). Next, we consider the spatiotemporal evolution of
the tangle vortex line density (Sec. II D), while peculiarities
of the transient processes are discussed in Sec. II E. The
large-scale superfluid motion, created inside the vortex tangle,
is described in Sec. II F. In Sec. II G, we focus on the structural
properties of the developed tangle. Section III is devoted to
the study of the VLD front dynamics and structure. First,
we overview important information from the turbulent front
propagation studies, relevant for the current work (Sec. III A).
Next, we derive an equation of motion for VLD, that de-
scribes the evolution of the tangle edges, or fronts (Sec. III B),
show that the two tangle fronts have different nonlinearity
types (Sec. III C), consider the closure for the nonlinear
term (Sec. III D), and solve the equation of front motion
analytically for the front shape (Sec. III E). Then we discuss
the parameters, that describe the front propagation: the front
velocities (Sec. III F) and the effective diffusivity (Sec. III G).
In Sec. IV, we summarize our findings. Additional informa-
tion may be found in Appendixes. Appendix A provides a
thematically organized guide to the main notations used in the
paper. The procedures for the calculation of various profiles
and the front shapes are described in Appendixes B and C.
The detailed analysis of various contributions to the equation
of motion for VLD is given in Appendix D.

II. DYNAMICS AND STRUCTURE OF TURBULENT PLUGS

A. The counterflow turbulence in the channel

As already mentioned, at temperatures below Tλ = 2.7 K,
liquid 4He become a superfluid. In this state, the superfluid

FIG. 1. Numerical setup. The simulations are set up in a long
planar channel of a width H . The normal-fluid velocity is oriented
towards positive x direction.

He of the density ρ is often described [1,3] in the framework
of the two-fluid model as an interpenetrating mixture of a
normal fluid with the density ρn and a superfluid component
of the density ρs, such that ρs + ρn = ρ and the component
contributions ρs, ρn are strongly temperature dependent [38].

The normal-fluid component has low viscosity and con-
tinuous vorticity, while the superfluid is inviscid and its vor-
ticity is constrained to vortex-line singularities of core radius
a0 ≈ 10−8 cm with fixed circulation κ = h/M ≈ 10−3 cm2/s,
where h is Planck’s constant and M is the mass of the 4He
atom. The two components are coupled by the mutual friction
force. Under the influence of the temperature gradient applied
along the channel, the normal fluid is moving away from
the heater with a mean velocity V n. At the same time, the
superfluid is moving towards the heater with the mean velocity
V s, creating a relative, or a counterflow, velocity V ns = V n −
V s, proportional to the applied heat flux. The chaotic tangle
of vortex lines is then generated from pre-existing remnant
vortex loops due to the coupling by temperature-dependent
mutual friction force. The governing parameters that define
the dynamics and the structure of the tangle are, therefore,
the counterflow velocity and the temperature, while the geo-
metric constraints, such as channel dimensions, influence the
inhomogeneity of the vortex tangle.

B. Numerical setup

The simulations were set up in a long planar channel of
a width H (see Fig. 1). To describe dynamics of the vortex
lines we use the vortex filament method [16,39,40] for the
channel flow [26,29,32]. The vortex lines are parameterized
by curves s(ξ, t ) and discretized in a set of points with the
resolution �ξ = 0.001 cm. In this way, a local coordinate
system is associated with each vortex line point s(ξ ), such
that s′ ≡ ds/dξ is the unit vector denoting the local direction
of the vortex line, s′′ ≡ d2s/dξ 2 is the local curvature vector,
and (s′ × s′′) is the local binormal vector. Here primes denote
differentiation with respect to the instantaneous arc length ξ .
The equation of motion for such a line point [16] is

ds(ξ, t )

dt
= V drift(s, t ) = V s(s, t ) + V mf(s, t ),

V mf(s), t = (α − α′s′×)s′ × V ns(s, t ), (1)

where α, α̃ are the temperature-dependent mutual friction pa-
rameters [38]. The right-hand side (RHS) of Eq. (1) represents
the drift velocity of the tangle V drift. The superfluid velocity

V s = V BS + V 0
s , (2)

V BS(s, t ) = κ

4π

∫
	

s − s1

|s − s1|3 × ds1 = V loc + V nl, (3)
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TABLE I. Material properties [38] of 4He used in the simula-
tions: the ratio of the partial densities ρn/ρs and the mutual friction
parameters α, α′.

T , K 1.3 1.65 1.9

ρn/ρs 0.047 0.239 0.723
α 0.034 0.11 0.206
α′ 0.0138 0.0144 0.0083

accounts for the tangle contribution V BS(s, t ) and the mean
superfluid velocity V 0

s that is defined by the counterflow
condition of zero mass flux. In its turn, V BS may be further
divided into the local part, produced by the scales up to
local radius of curvature R = 1/|s′′|, V loc = β(s′ × s′′), β =
(κ/4π ) ln(R/a0) and the nonlocal velocity V nl which is pro-
duced by the rest of the tangle 	. The mutual friction part
V mf(s, t ) describes the interaction with the normal fluid via
counterflow velocity V ns(s, t ) = V n − V s(s, t ). The material
parameters of 4He, used in the simulations, are listed in
Table I. The time resolution for the vortex line point is set
by the forth-order Runge-Kutta stability criterion.

To generate the counterflow, we use two time-independent
prescribed wall-normal profiles of the streamwise projection
of the normal-fluid velocity V x

n (y), shown in Fig. 2. The
parabolic profile corresponds to the laminar normal-fluid ve-
locity. It was observed experimentally at low heat fluxes. At
larger heat fluxes, when the normal fluid loses its stability
but not yet become fully turbulent, its profile flattens [41].
Similar flattening of the normal-fluid velocity profile was
found in simulations with a two-way coupling of the fluid
components [42,43]. Although such a fully coupled dynamics
gives the most reliable description of the superfluid 4He, it is
still computationally prohibitive for sufficiently large systems
and long propagation times. Therefore we ignore the back-
influence of the superfluid component on the normal fluid
and model the expected normal-fluid velocity flattening by

FIG. 2. Normal-fluid velocity profiles normalized by the mean
value Ṽn = Vn/〈Vn〉. The shape of the flattened profile is defined by a
combination of six Legendre polynomials, such that it has the same
〈Vn〉 as the corresponding parabolic profile.

imposing the corresponding time-independent profile (dashed
line in Fig. 2).

The mean superfluid velocity V 0
s is dynamically defined by

the zero-mass-flux condition

ρn〈Vn〉v + ρs
〈
V 0

s

〉
v

= 0, (4)

where 〈. . . 〉v denotes global volume averaging and V 0
s in-

cludes a contribution of the superfluid velocity induced by the
vortex tangle, calculated on a dense grid. This contribution,
although small, is not negligible and grows with the develop-
ment of the spatially inhomogeneous tangle.

To mimic solid walls in the wall-normal direction, the
boundary conditions on the wall are s′(±H/2) = (0,±1, 0)
and V y

s (±H/2) = 0. In the spanwise direction, periodic condi-
tions were used. To ensure the free evolution of the developing
tangle, we use open conditions in the streamwise direction.
In this way, the properties of the tangle edges, moving as
fronts, as well as the natural structure of the tangle bulk, can
be studied.

The vortex tangles at all conditions were initiated using the
same set of eight vortex loops of similar sizes R0 � H and
different orientations. The loops were placed at a particular
streamwise location, four circular loops in the bulk and four
half-circular loops at the walls. The difference in the dynamics
of these tangles, therefore, originates from the flow conditions
only, allowing comparison. We have verified that the particu-
lar choice of the initial conditions influence only the very early
stages of the vortex dynamics before the three-dimensional
tangle is formed. This stage usually lasts the first 1–2 seconds
of evolution. After that, the structure and the dynamics of
the tangles are defined only by the temperature and the flow
conditions.

The tangle dynamics was studied at three temperatures
T = 1.3, 1.65, and 1.9 K. Other simulation parameters in-
clude various normal-fluid velocities. In most simulations,
the parabolic profile for Vn and a narrow channel width
H = 0.1 cm was used. At each temperature, one case was
chosen for simulations with wider channels and with flat-
tened normal-fluid velocity profile (the same 〈Vn〉 as for the
corresponding parabolic profile). The simulation parameters
are listed in Table II, columns 2–7. In all simulations, the
size of the channel in the z direction was always equal to
H . Despite the periodic boundary conditions in the spanwise
direction, the interaction between the vortex lines and their
images is an important factor in the current setting. The study
of the influence of the slit aspect ratio on the tangle dynamics
is beyond the scope of this paper. The tangle evolution was
followed until a well-developed bulk tangle was formed, such
that the final length of the tangle is about 4-8 H . The actual
final time of evolution tf varies for different conditions.

C. Characterization of the tangle

To characterize the developing tangle, we calculate the
time-dependent two-dimensional (2D) (x, y)-spatial distribu-
tion of tangle properties, averaged over spanwise z direction,
at equispaced time moments. To this end, we define a fixed
grid with a resolution �x = 0.011 cm and �y = 0.0015 cm.
The 2D maps of the tangle properties are calculated by inte-
gration [16] over parts of the tangle 	′ that fall into a grid
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TABLE II. Parameters of simulations by columns: (1) run num-
ber, (2) temperature; (3) type of Vn profile: P denote parabolic
profile, F denote for flattened profile; (4) channel width; (5) cen-
terline velocity Uc; and (6) mean normal-fluid velocity 〈Vn〉. For
the parabolic profile, 〈Vn〉 = 2/3Uc; (7) mean counterflow velocity
V 0

ns = 〈Vn〉y(1 + ρn/ρs ); (8) bulk VLD in the core of the channel
Lcore

0 ; and (9) bulk VLD near the walls Lwall
0 . The error bars for L j

0

account for the standard deviation from the mean values.

1 2 3 4 5 6 7 8 9

Run T Type H Uc 〈Vn〉 V 0
ns Lcore

0 × 10−4 Lwall
0 × 10−4

K - cm cm/s cm/s cm/s cm−2 cm−2

1 1.3 P 0.1 2 1.66 1.4 0.37 ± 0.03 0.6 ± 0.1
2 1.3 P 0.1 3 2 2.11 0.95 ± 0.05 1.5 ± 0.4
3 1.3 P 0.1 4 2.66 2.84 2.20 ± 0.06 3.2 ± 0.8
4 1.3 F 0.1 − 2 2.11 1.3 ± 0.3 1.5 ± 0.2
5 1.3 P 0.15 3 2 2.12 1.0 ± 0.2 1.4 ± 0.4
6 1.3 P 0.2 3 2 2.11 7.1 ± 0.2 8.2 ± 0.2
7 1.65 P 0.1 1.5 1 1.22 0.86 ± 0.02 1.3 ± 0.3
8 1.65 P 0.1 2 1.66 1.63 1.84 ± 0.03 2.5 ± 0.5
9 1.65 F 0.1 − 1 1.2 1.29 ± 0.02 1.4 ± 0.2
10 1.9 P 0.1 1 0.66 1.19 1.87 ± 0.02 2.1 ± 0.3
11 1.9 P 0.1 1.2 0.8 1.42 2.92 ± 0.03 3.2 ± 0.3
12 1.9 P 0.1 1.5 1 1.36 4.6 ± 0.1 4.8 ± 0.6
13 1.9 F 0.1 − 0.66 1.17 2.55 ± 0.05 2.5 ± 0.6
14 1.9 P 0.15 1 0.66 1.18 1.82 ± 0.04 2.0 ± 0.2
15 1.9 P 0.2 1 0.66 1.17 1.84 ± 0.06 1.7 ± 0.2

cell V ′ = �x × �y × H . In such a way we obtain the vortex
line density L, the curvature of the vortex lines κ ≡ |s′′|,
the mean square curvature 〈κ2〉, the ratio c2

2 = 〈κ2〉/L, the
local binormal I� = 〈s′ × s′′〉 and its anisotropy index I†� =
〈s′ × s′′〉/〈|s′′|〉, the contributions to the tangle drift velocity,
as defined by the right-hand side of (1) and various terms
of the balance equation, defined by Eq. (17). In the above
definitions, the arguments (x, y, t ) were omitted for clarity.
To compare the results for different flow conditions, we use
dimensionless quantities, normalized using the mean coun-
terflow velocity calculated from the zero-mass-flux condition
V 0

ns = 〈Vn〉y(1 + ρn/ρs) and the circulation quantum κ . The
procedures for the calculation of various profiles are described
in Appendix B.

To measure the velocity of front propagation, it is custom-
ary to choose a threshold value of propagating quantity and to
follow the change of its position. To avoid inevitable freedom
in the choice of the threshold value L, we use here a different
approach. Instead of following a single threshold value, we
find the velocity that allows collapsing the whole edge of the
tangle to a single shape. It turned out that such an approach
gives a very robust measurement of the velocity, allowing
simultaneously to study the front shape. The speeds of both
VLD fronts were measured over the time interval when the
tangle bulk is formed and the fronts do not change their shape
during propagation. The details on the procedure are described
in Appendix C. The values of bulk VLD in the channel core
and near the walls are listed in Table II, columns 8 and 9.
The error bars here and in Figs. 15 and 18, correspond to the
standard deviation around the mean values.

D. Evolution of VLD

The examples of the evolution of the vortex line density
at low and high temperatures are shown in Fig. 3. These
examples illustrate the main difference in the flow conditions
that crucially affect the tangle dynamics. The vortex tangle is
advected by the superfluid velocity field. At low T , the mean
superfluid velocity V 0

s is weak due to a small fraction of the
normal fluid [cf. Eq. (4)]. The tangle dynamics is governed
mostly by the tangle-induced velocity and a net tangle dis-
placement is negligible, as is illustrated in Fig. 3(b). On the
other hand, at high temperature, V 0

s and Vn are comparable and
the tangle is flushed along the channel by the mean superfluid
velocity, see Fig. 3(d). Under all conditions, the vortex tangle
develops as a moving turbulent plug. At T = 1.9 K, the initial
vortex rings are at first separated into at least two groups that
grow into independent turbulent plugs that later merge. The
developing tangles are inhomogeneous in both the streamwise
and wall-normal directions, as is illustrated by snapshots of
2D VLD distributions at various time moments in Figs. 3(a)
and 3(c).

The VLD is higher near the walls, similar to the steady-
state tangles with the parabolic profile of the driving normal-
fluid velocity, obtained under periodic streamwise conditions
[25–27,29,42]. Two edges of the tangle are different: a narrow
and sharp edge is formed in the direction of V n and a wide and
less steep edge in the direction of V s. As we show later, these
edges move with constant velocities and without changing
their shape. We, therefore, label them as a hot front (moving
the direction of normal-fluid velocity away from the heater)
and a cold front (moving in the direction of mean superfluid
velocity toward the heater). In the further analysis, we dis-
tinguish a near-wall and a core regions in the wall-normal
direction and a bulk and the fronts regions in the streamwise
direction, see Fig. 22.

To characterize the distribution of VLD along and across
the tangle, we plot its streamwise profiles in Fig. 4 and wall-
normal profiles in Fig. 5. The dynamics of VLD, obtained with
the parabolic normal-fluid velocity at various values of Uc,
differ mostly by the duration of transient behavior in the tangle
core and the mean value of VLD in the bulk of the tangle.

In Fig. 4, we compare the streamwise VLD profiles for the
parabolic and for the flattened normal-fluid profiles at similar
tf. At low T = 1.3 K [Figs. 4(a) and 4(b)], the vortex line
density at the walls in both cases reached similar values, while
the core region for the parabolic Vn(y), shown in Fig. 4(a),
is still not fully developed (see Sec. II E for details). The
length of the tangle in both cases is about 3.5 H . The edges
of the tangles reached similar streamwise positions indicating
similar fronts velocities. At high T = 1.9 K, Figs. 4(c) and
4(d), L(x) for both Vn profiles is almost homogeneous in the
tangle bulk. Here, however, the hot edge moved faster for
the flattened Vn(y), leading to a shorter plug. The mean VLD
in the bulk, in this case, is about 20% higher than for the
parabolic profile.

To compare the wall-normal VLD profiles for various flow
conditions, we plot in Fig. 5 a dimensionless VLD L†(y) =
L(y)κ2/(V 0

ns)2. Here we compare L†(y) for the parabolic and
flattened Vn(y) for the narrow channel H = 0.1 cm in panels
(a) and (c) and for various channel widths, using the parabolic
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FIG. 3. VLD evolution. [(a) and (b)] T = 1.3 K, Uc = 3 cm/c. [(c) and (d)] T = 1.9 K, Uc = 1 cm/c. (a) and (c) show L(x, y) distribution
at t = 0.2 s, tf/2, 3tf/4, and tf with the top snapshot corresponding to the early stages of the dynamics and the bottom snapshot corresponding
to tf. (b) and (d) show the time evolution of VLD averaged over y direction L(x, t ). Both cases correspond to the parabolic profile of Vn and
the channel width H = 0.1 cm. The values of L are color-coded as shown by color bars in (b) and (d).

normal-fluid velocity profile with the same Uc, in panels (b)
and (d).

First of all, we note that the wall-normal profiles L(y)
are consistent with the profiles obtained in the steady-state
tangles [26,29] with the VLD peaking near the wall at about
the intervortex distance. The flattened profiles [thin red lines
in (a) and (c)] have larger VLD values in the tangle core. The
L†(y) near the walls is higher for the parabolic Vn profile at
T = 1.3 K and similar for both profiles at T = 1.9 K. At both
temperatures, VLD for the flattened Vn(y) is homogeneous not
only over the core region but also over a large part of the
near-wall region, especially at T = 1.9 K. A similar effect of
flattening of VLD profile is observed in wider channels for the
parabolic Vn(y), indicating that the increase of VLD near the
walls is indeed related to the boundary effect. These profiles
are compared in Figs. 5(b) and 5(d). At both temperatures,
the tangles for widest channels H = 0.2 cm are not yet fully
developed, although in a different way: at low T the VLD
just did not reach the expected values, while at high T the

tangle is formed by merging of two independent vortex plugs
[similar to shown in Fig. 3(d)]. The resulting streamwise
inhomogeneity does not allow to properly resolve the near-
wall region in the profiles calculated over narrow tangle bulk.
However, it can be clearly seen that, as the channel become
wider, the range of nearly flat VLD distribution extends from
the core to the near-wall region, in a way similar to the
flow, generated by the flattened Vn(y) profile. Comparing the
VLD profiles for H = 0.1 and 0.15 cm, we find that at low
temperature the VLD is peaking stronger near the walls, while
at high T the near-wall VLD is similar for both channel width.
The normalized positions of the peaks do not change with the
channel width, meaning that the peaks appear further from the
wall for wider channels.

To rationalize these observations we plot in Fig. 6 the
profiles of various velocities, normalized by the counterflow
velocity V † = V/V 0

ns. We start with the streamwise component
of the superfluid velocity V x

s (y) = V 0
s + V x

BS
. Near the walls

Vs < 0 for all flow conditions and close to V 0
s . The main

FIG. 4. The streamwise VLD profiles L(x) for T = 1.3 K [(a) and (b)] and T = 1.9 K [(c) and (d)]. The parabolic profile of Vn(P) was
used in (a) [Uc = 3 cm/s] and (c) [Uc = 1 cm/s]. In (b) and (d), the flattened Vn profiles (F) were used, with the same 〈Vn〉 as in (a) and (c),
respectively. The profiles for the walls region are shown by thick blue lines and for the core region by thin red lines. Vertical dot-dashed lines
denote the edges of the bulk region. The channel width is H = 0.1 cm and t = tf.
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FIG. 5. The wall-normal profiles of dimensionless VLD profiles L†(y) for T = 1.3 K [(a) and (b)] and T = 1.9 K [(c) and (d)]. (a) and
(c) compare the L†(y) profiles for the parabolic (P) and the flattened (F) Vn profiles at H = 0.1 cm. (b) and (d) compare the L†(y) profiles for
the parabolic Vn and different channel widths labeled in the figures by their values. All profiles at T = 1.3 K correspond ot Uc = 3 cm/s, the
profiles at T = 1.9 K correspond to Uc = 1 cm/s. Here, and in Figs. 6–8, dashed vertical lines denote edges of the channel core. Thin solid
black lines are placed at the intervortex distance from the walls. In each panel only one intervortex distance is shown to avoid clutter.

difference between the superfluid velocity behavior at low
T [panels (a) and (b)] and at high T [panels (c) and (d)]
is in the channel core, where at T = 1.3 K Vs > 0, while
at T = 1.9 K, Vs < 0. As a result, at low T , the value
of Vns is smaller than Uc, while at high T , Vns is larger
than Vn everywhere in the channel and homogeneous across
the core even for the parabolic Vn profile. Furthermore, as
is shown in Fig. 7(a), the shape of Vns(y) remains almost
unchanged with increasing H at low temperature while be-
coming flat over an increasingly larger part of the channel
as the channel become wider at high T , Fig. 7(b). Since
the tangle dynamics is defined by Vns according to Eq. (1),
such behavior may explain the tendency for a more homoge-
neous VLD distribution in wider channels at high T than at
low temperature.

The superfluid velocity plays an additional role in the
dynamics. It is usually assumed that the overall tangle motion
is defined by the superfluid velocity V 0

s . However, as is shown
in Figs. 3(b) and 3(d), the fronts of the tangle may both move
in the direction of V 0

s , or only cold front moves with V 0
s , while

the hot front moves in the opposite direction. It is natural
to associate the direction of the cold front motion with the
direction of the superfluid velocity V s near the walls, while
the direction of the hot front motion with the direction of
V s in the core of the channel. Such an assumption is further
supported in Fig. 8, where we plot the Vs and Vns velocities
for the intermediate T = 1.65 K, and Fig. 9, where we plot
the evolution of the corresponding L(x, t ). Here the superfluid
velocity in the channel core is close to zero and the behavior
of the hot front is very sensitive to the flow conditions. The

FIG. 6. The wall-normal profiles of normalized velocities V x†
s , V †

n , and V †
ns. (a) and (b) compare the profiles for the parabolic (P) and the

flattened Vn (F) profiles for T = 1.3 K, Uc = 3 cm/c, (c) and (d) compare the velocity profiles for T = 1.9 K and Uc = 1 cm/c. The channel
width is H = 0.1 cm. Green dashed lines denote the driving Vn(y) profiles, blue dot-dashed lines denote the full streamwise superfluid velocity
V x

s (y) = V 0
s + V x

BS(y), solid red lines denote the profiles of the counterflow velocity Vns(y) = Vn(y) − V x
s (y).
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FIG. 7. The wall-normal profiles of normalized V †
ns profiles for

the parabolic Vn at various channel widths and for the flattened Vn

(dashed lines) profiles for (a) T = 1.3 and (b) 1.9 K. The solid lines
correspond to H = 0.1 cm, dotted lines for H = 0.15 cm, dot-dashed
lines correspond to H = 0.2 cm. Thin vertical lines are placed at the
intervortex distance from the walls, their colors match the color of
the corresponding velocity profiles.

superfluid velocity for the flattened Vn profile, shown in Fig. 8
as the blue dashed line, is negligible at the center of the
channel and the corresponding hot VLD front [Fig. 9(c)] is
stationary. The hot VLD front in the flow generated by the
parabolic Vn(y) with Uc = 1.5 cm/s, for which Vs(0) � 0, has
hardly settled [Fig. 9(a)], despite relatively long propagation
time. On the other hand, at larger Uc = 2 cm/s, we clearly
see in Fig. 8(b) the hot front moving opposite to the direction
of V 0

s . The cold fronts under all conditions move with V 0
s ,

although the front speeds differ. Here, the cold front speed for
the flattened Vn profile is smaller than for the corresponding
parabolic Vn(y), consistently with a smaller value of Vs at the
walls. The fronts speeds are not equal to Vs at the wall or in
the core, although they are clearly related.

E. Transient dynamics

In this section, we consider the transient dynamics of the
growing turbulent plugs for different conditions. Here we

FIG. 8. The wall-normal profiles of normalized Vs and Vns pro-
files for T = 1.65 K and the channel width H = 0.1 cm. Solid lines
correspond to the parabolic Vn with Uc = 1.5 cm/s, dot-dashed line
to Uc = 2 cm/s, and dashed line to the flattened profile of Vn.

compare the changes in the shape of the tangle, plotting
in Figs. 10 and 11 the dimensionless VLD L†(x) for the
core and for the near-wall regions, rescaled to the tangle
width at each of the presented three time moments. In this
way, the scaled coordinate X = 0 corresponds to the cold
edge of the tangle and X = 1 corresponds to the hot edge.
The earliest time moment corresponds to the time when
the three-dimension (3D) tangle was formed and the lat-
est to the time when the bulk region and two fronts are
fully developed.

The tangle dynamics for the parabolic Vn profile is shown
in Fig. 10. The main feature of these profiles is the asymmetry
with respect to the center of the tangle. The near-wall profiles,
shown by dashed lines, rise along all tangle length and the
asymmetry is relatively mild. The core profiles, shown by
solid lines, on the other hand, are very asymmetric, with the
hot side growing faster than the cold side. We can see that at
T = 1.3 K [Fig. 10(a)] the growth of the cold side in the core
is stalled compared to the near-walls profiles. This results in
the wall-normal profiles with a significant difference between
VLD at the core and near the walls [cf. Fig. 5(a)]. Moreover,

FIG. 9. VLD dynamics for T = 1.65 K and various Vn profiles: (a) parabolic profile wih Uc = 1.5 cm/s, (b) parabolic profile with Uc =
2 cm/s, and (c) flattened Vn profile, corresponding to (a).
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FIG. 10. Rescaled dimensionless VLD profiles L†(x) for the parabolic Vn at various time moments for (a) T = 1.3 K, Uc = 3 cm/s, and
(b) T = 1.9 K, Uc = 1cm/s in the narrow channel H = 0.1 cm. Solid lines denote the core VLD profile, dashed lines denote the near-wall
profiles. (c) 2D VLD map L(x, y) for T = 1.3 K, Uc = 3 cm/s, and H = 0.15 cm.

during all evolution, the core region leads in the hot front,
while the wall region develops faster at the cold front.

Similar tendencies in the dynamics are observed at T =
1.9 K, Fig. 10(b). The main difference from the lower temper-
ature regime is faster tangle development and closer values
of L† in the wall and the core region, in accordance with
Fig. 5(c). Notably, also here the core region first develops
closer to the hot front (i.e in the direction of V n), even though
V s in the core is oriented in this case in the opposite direction.

The main reason for this asymmetry is the spatial distri-
bution of the driving velocity. As is shown in Appendix D,
due to enhanced VLD production in the channel core in the
hot front region, and the transverse VLD flux that moves
the vortex lines toward the walls, the parabolic wall-normal
profile of the normal-fluid is translated into a transient VLD
distribution that reminds a horseshoe shape: L is higher near
the walls and near the hot edge in the core of the channel,
as is shown in Fig. 10(c). The clearly visible hump in the
earliest core VLD profile [e.g., blue solid line, labeled t = 3
in Fig. 10(a)] corresponds to the central part of the horseshoe.
With the development of the tangle, the hump is redistributed
to the rest of the core region and becomes less prominent,
although it does not disappear completely even when the bulk
value of L is established over a large part of the core. This
horseshoe shape of the densest part of the growing tangle lasts
longer for larger Uc and wider channels. Such an asymmetry
of the tangle, that appears from the very beginning of the

tangle development leads to very different initial conditions
for the formation of plug fronts (see also Appendix D).

One may argue that such a scenario may not be realized
in the real counterflow due to flattening of the normal-fluid
profile and therefore more even initial VLD distribution. How-
ever, as we show in Figs. 11, 26(c) and 26(f), the streamwise
tangle asymmetry is initially present even if the flattened Vn(y)
is imposed, with VLD growing faster at the hot edge of the
plug. This transient behavior does not last long in this case,
however, the hot front remains stepper than the cold front,
similar to the tangles formed under the parabolic Vn.

F. Large-scale superfluid motion

In simulations of homogeneous tangles under triply peri-
odic boundary conditions, the presence of mean normal-fluid
and superfluid velocities is accounted for by a constant and
space-homogeneous counterflow velocity, while the tangle-
induced velocity is artificially randomized by interactions
with image vortex lines. In simulations of superfluid turbu-
lence in the channel with periodic streamwise conditions, the
translation invariance is broken in the wall-normal direction,
creating superfluid motion from the center of the channel
towards the walls. Still, in the streamwise direction, the varia-
tion of the vortex lines velocity is not taken into account.

In our simulations, the tangle has finite streamwise length
and the superfluid velocity varies along the tangle as well as

FIG. 11. Rescaled dimensionless VLD profiles L†(x) for the flattened Vn at various time moments for (a) T = 1.3 K, Uc = 3 cm/s and
(b) T = 1.9 K, Uc = 1 cm/s. Solid lines denote the core VLD profile, dashed lines denote the wall profiles.
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FIG. 12. Tangle drift velocity V drift for T = 1.3 K and (a) Uc = 2 cm/s, (b) Uc = 4 cm/s, and (c) flattened Vn profile. The arrows direction
shows the local orientation of the velocity, the size of the arrows is proportional to its magnitude.

across it. The drift velocity of vortex lines V drift that includes
the mean velocity as well as all contributions of the tangle-
induced velocity represent the superfluid motion at all scales
that are formed in our system. In Fig. 12, we plot the tangle
drift velocity for T = 1.3 K, at which the mean superfluid
velocity does not dominate and motion at all scales are clearly
seen. Since near the wall the superfluid flows toward smaller
x, while in the core its motion is oriented toward larger x
values, eddies of various sides are formed. For parabolic Vn

profile, at weak driving velocity Uc = 2 cm/s, Fig. 12(a),
many circular eddies with sizes that are much larger than
the intervortex distance � but smaller than the channel size
H , are formed. At the strong driving velocity Uc = 4 cm/s,
Fig. 12(b), two dominant vortices of the system size H/2 and
opposite circulation orientation, covering whole tangle length
are formed, with smaller motions masked by the largest ones.
When the flow is driven by flattened Vn profile, Fig. 12(c), we
can see both the system size motion and smaller eddies. Please
note that near the walls the tangle velocity contributions are
oriented perpendicular to the channel walls due to no-slip
boundary conditions. It is the mean superfluid velocity that
moves the vortex lines near the walls and helps to create the
large-scale eddies. At higher temperatures, the dominant V 0

s
sweeps the tangle along the channel and masks the presence of
smaller superfluid motions, similar to the sweeping velocity in
classical fluids. However, analysis of the relative drift velocity
V drift − V 0

s shows the presence of these motions also in the
vortex tangles at higher T .

G. Structural parameters c2
2 and I†�

In the microscopic description [16] of the tangle dynamics
very important role is played by two structural parameters:
the local binormal I� = 〈s′ × s′′〉 and the ratio c2

2 between
the mean-square curvature and the vortex line density. These
parameters contribute to the terms of the equation of motion
for L, responsible for the production and annihilation of the
vortex line length, respectively [cf. Eqs. (11)–(15)]. In the
homogeneous tangles, these parameters are constants, while
in the channel flow they depend on the position in the channel.
The behavior of these parameters at the edges of the tangle
was not studied so far.

The profiles of the coefficient c2
2 are shown in Fig. 13 for

T = 1.3 K [panels (a)–(c)] and for T = 1.9 K [panels (e)–
(f)]. There are several common properties of the streamwise
profiles [panels (a), (b), (d), and (e)], independent of the

temperature and the type of the driving velocity. The values of
c2

2 exhibit fluctuations along the tangle with a relatively large
amplitude, especially when the flow is driven by the parabolic
Vn. The fluctuations are less pronounced in the wall-normal
profiles [panels (c) and (f)]. These profiles have a somewhat
different averaging scope, however, we are inclined to at-
tribute these fluctuations to the streamwise inhomogeneity of
both VLD and the curvature, that do not match exactly. Nev-
ertheless, the values of c2

2 are fairly constant along the tangle,
with the same values observed also the hot front region. The
behavior of c2

2 in the cold front regions is different, with the
tendency of becoming larger at low T . Similar behavior is
observed for other values of Uc (not shown).

When the flow is driven by the flattened Vn profile, the
values of c2

2 may be considered almost constant across the
channel. Its behavior changes only within the intervortex
distance from the wall, where the values of VLD drop very
quickly, while the square curvature keeps its values almost
until the wall. Conversely, when the driving velocity has the
parabolic profile, c2

2 has the largest values in the center of
the channel and decreases linearly towards the walls until the
intervortex distance is reached. Then it increases, in a similar
way as for the flattened Vn profile, even reaching similar
values at the wall. These larger values in the core of the
channel, as compared to the near-wall region, are observed
along the entire tangle bulk and in the hot front. On the
other hand, the values of c2

2 in the flows driven by flattened
Vn may be considered almost space-homogeneous, except for
the cold front and very near the walls, and similar to the
values of c2

2 in the channel core, observed for the parabolic
normal flow.

The dominant contribution to the production of vortex lines
has the term [16] that depend on the streamwise projection of
the local binormal I�,x. In Fig. 14, we plot its values normal-
ized by the mean curvature I†�,x = I�,x/κ. The general behavior

of I†�,x is similar to that of c2
2. We, therefore, point out the main

differences. Looking at the wall-normal profiles, Figs. 14(c)
and 14(f), we notice that I†�,x is almost homogeneous over
the channel core for parabolic flows at both temperatures,
crossing over to a linear decrease toward the walls beyond
the core region. It does not increase significantly very near
the wall, although at T = 1.3 K a kink is observed. This
kink becomes stronger for wider channels and appears at
T = 1.9 K for wide channels as well. For the flow, driven
by the flattened normal-fluid velocity profile, the core values
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FIG. 13. The coefficient c2
2 at various conditions. The profiles for T = 1.3 K are shown in the top row: the streamwise profiles for (a)

the parabolic Vn with Uc = 3 cm/s, labeled P, (b) the flattened profile, labeled F, (c) the corresponding wall-normal profiles. The profiles for
T = 1.9 K are shown in the bottom row: (d) the parabolic Vn with Uc = 1 cm/s and (e) the flattened profile; (f) the corresponding wall-normal
profiles. The dot-dashed and dashed black lines mark the edges of the bulk and the core regions for the streamwise and for the wall-normal
profiles, respectively. Thin solid lines in (c) and (f) are placed at the intervortex distance from the corresponding walls.

of I†�,x extend further toward to walls, especially at high T .
Nevertheless, the difference between the mean values of the
channel core and the near-wall region persists along the tangle
bulk, even in this case. The values of I†�,x in both fronts regions
differ from the bulk, even if we take into account strong
fluctuations in its streamwise distribution.

Interestingly, the shape of wall-normal profiles of c2
2 and

I�,x in the flows, generated by the flattened Vn profiles, does
not depend on Vns and the channel width at both high and low
T , although for different reasons. At low T , the curvature is
only weakly dependent on the distance from the wall, while
VLD strongly peaks near the walls. At high T , wall-normal

FIG. 14. The streamwise component of the index I†�,x at various conditions. The profiles for T = 1.3 K are shown in the top row: the
streamwise profiles for (a) the parabolic Vn with Uc = 3 cm/s, labeled P, (b) the flattened profile, labeled F, (c) the corresponding wall-normal
profiles. The profiles for T = 1.9 K are shown in the bottom row: (d) the parabolic Vn with Uc = 1 cm/s and (e) the flattened profile; (f) the
corresponding wall-normal profiles. Vertical dot-dashed lines mark the edges of the bulk of the streamwise profiles, vertical dashed lines mark
the edges of the core for the wall-normal profiles. Thin solid lines in (c) and (f) are placed at the intervortex distance from the corresponding
walls.
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FIG. 15. The mean values of (a) c2
2 and (b) I†�,x in the core of the channel. The labels (A–C) correspond to current simulations (A: T = 1.3 K,

blue symbols, B: T = 1.65 K, green symbols, C: T = 1.9 K, red symbols). Different flow conditions are represented by different symbols: ◦
denote front velocities for the parabolic Vn and various Uc, 	 corresponds to the flattened Vn profile, � and � denote channel width H = 0.15
and 0.2 cm, respectively. The error bars denote standard deviation from the mean in the bulk of the tangle. Dashed horizontal lines, labeled
D–F (T = 1.3, 1.6, and 1.9 K, respectively) are the values of c2

2 and I†� for the homogeneous tangle from Ref. [39] with the GEC reconnection
criterion, the same as used in this paper. In (a), thick dot-dashed lines, labeled G (T = 1.65 K) and H (T = 1.95 K), denote the experimental
values of c2

2 from Ref. [44] in the range of intervortex distances 4 × 10−3–6 × 10−3 cm. Filled squares with error-bars, labeled I, denote the
results of simulations in the channel with parallel solid plates from Ref. [28] in the range of temperatures T = 1.4–1.7 K.

profiles of L are more homogeneous, but the curvature, in this
case, decreases toward the walls more strongly. The resulting
y distributions of c2

2, Figs. 13(c) and 13(f), are very similar.
The wall-normal distribution of I†�,x is fully defined by the
streamwise component of the binormal that is large in the
center of the channel and quickly decreases toward the walls.
Its shape is only slightly altered by similar distribution of
〈|s′′|〉, Figs. 14(c) and 14(f).

To get an idea of how these results are related to other
known measurements, we compare in Fig. 15(a) the values
of c2

2 for the channel core with the results of simulations of
the homogeneous tangles [39], in the planar channel [28] and
with the experimental results [44] for the range of intervortex
distances, typical for our simulations. We have chosen to
compare the values for the core of the channel because the
experiments were carried out in wide channels, where the
core behavior is expected to dominate. These values are also
expected to be more comparable with c2

2 in the homogeneous
tangle.

As is clearly seen, the calculated values of c2
2 do not

depend on the intervortex distance within the range used in
our simulations. The temperature dependence agrees with
previous results, i.e., larger c2

2 at lower temperatures. Our
current results agree well with the values obtained in the
homogeneous vortex tangles [39], shown by thin dashed lines.
The values of c2

2 obtained in numerical simulations of the
vortex tangle in the flow between parallel plates [28] for
temperatures between 1.4–1.7 K are shown by filled squares.
The values of c2 were calculated as averages over the whole
channel and are expected to be lower than the values in the
channel core. With this in mind, they agree reasonably well
with our results for T = 1.65 K.

The experimental values calculated using the fit [44] for
T = 1.65 K, shown by thick dot-dashed lines, are somewhat
smaller, but not far from the numerical results. Here we
need to take into account that in the considered range � =
4 × 10−3–6 × 10−3 cm, the fit becomes unreliable and the
experimental points tend to scatter, see Fig. 11 in Ref. [44].

The experimental values for T = 1.95 K are expectedly lower
than our results for T = 1.9 K.

Similar measurements of I†�,x in the channel core are shown
Fig. 15(b). Note that this parameter measures alignment of
the local velocity V loc with the direction of the counterflow
velocity. Similar to c2

2, the index I†�,x is fairly constant for a
given temperature, being larger for higher T . These values
are somewhat higher than those obtained in the homogeneous
tangles [39], including the values obtained in the flow driven
by the flattened normal-fluid profile (marked by diamond
symbols). The temperature mismatch(T = 1.65 K in our sim-
ulation versus T = 1.6 K in Ref. [39]) may account for the
difference at the intermediate temperature, however, the trend
is systematic across the temperatures.

III. FRONT DYNAMICS AND ANALYSIS OF THE VLD
BALANCE EQUATION

A. Background overview

Interface motion and front propagation in fluids are subject
of intensive studies in various fields of knowledge. Perhaps
most well known are chemical reaction fronts in liquids
[45], population dynamics of ecological communities [46],
and combustion [47]. The mathematical description of those
phenomena is based on partial differential equations (PDE)
for the evolution of the concentration of the reacting species
and the evolution of the velocity field. The two PDEs for the
reactants and the velocity field are usually coupled, often in a
nontrivial way. A mathematical simplification can be obtained
by neglecting the back-reaction of the reactant on the velocity
field, which evolves independently. Such simplification is
usually justified for the laminar velocity field. Even in such
a limit, the front dynamics is still nontrivial and it is described
by a so-called advection-reaction-diffusion (ARD) equation

∂θ/∂t + u(r, t ) · ∇θ = D∇2θ + F (θ ), (5)

where θ (r, t ) ∈ [0, 1] is the reactant concentration, u is the
advection velocity field, D is the diffusivity and F (θ ) is
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the reaction term. The front interface is in general two-
dimensional, although in many cases it is sufficient to consider
its motion only in one direction. In a typical model situation,
the localized initial conditions are used, i.e., θ (r, 0) → 1
exponentially fast when r → −∞ and θ → 0 exponentially
fast when r → ∞. In this case, the reaction front will move
towards positive r. Here, θ = 0 is an unstable state and θ = 1
is a stable one, therefore F (θ ) satisfies the condition

F (0) = F (1) = 0, F (θ ) > 0, if 0 < θ < 1. (6)

It was shown [48,49] that if there is no advection, the front
speed converges to a limiting velocity v0, defined by a
marginal stability condition. In a moving fluid, it is natural to
expect [50,51] that the front will propagate with an average
(turbulent) speed vf > v0. The turbulent front speed vf is
defined by relative importance of the flow characteristics,
such as the relevant system size �, advection velocity u, the
diffusivity D, and the typical time scale τr of the reaction
term F (θ ) = f (θ )/τr . The shape of F (θ ), or more specifically
the value θ at which it has largest slope, also plays a very
important role. Two types of its functional dependence are of
particular importance: (i) a Fischer-Kolmogorov-Petrovskii-
Peskunov (FKPP) nonlinearity [45,46] F (θ ) = θ (1 − θ ), or
in general, any convex function F ′′(θ ) < 0; (ii) an Arrhenius
(or ignition) nonlinearity [51] F (θ ) = exp−θc/θ (1 − θ ). Here
the parameter θc is an activation concentration, below which
there is almost no production.

In case of FKPP nonlinearity, the maximum slope F (θ )
occurs at θ = 0. Such fronts are called pulled fronts and
their dynamics is fully determined by the region θ ≈ 0, as if
pulled by the leading edge. When the maximum slope of F (θ )
occurs at θ > 0, the front is pushed by the nonlinear interior.
The allowed velocity of the pulled fronts has to satisfy the
condition [45,50]

2
√

DF ′(0) � vmin < 2

√
D sup

θ

F (θ )

θ
, (7)

where F (θ )/θ is the measure of the growth rate. For FKPP
dynamics, F (θ )/θ = F ′(0) and for the localized initial condi-
tions Eq. (7) become an equality vmin = v0 = 2

√
DF ′(0).

For pushed fronts, the minimal front velocity vmin is always
larger than v0. In both cases, depending on the steepness of the
initial conditions the asymptotic front speed may relax to the
minimal vmin or remain larger.

There exists a vast literature on the front propagation in
various flows. We concentrate on the laminar shear flow of
ADR type and summarize several important results (for details
see Refs. [50,51] and references therein):

(1) The front velocity is bounded by K1u < vf < v0 + K2u,
where the limiting velocity v0 = 2

√
D0 supθ [F (θ )/θ ] and the

diffusivity D0 are the parameters in the absence of the advec-
tion flow, K1 and K2 are flow-dependent parameters.

(2) The diffusive transport is enhanced by the incompress-
ible flow, resulting in an effective diffusion coefficient Deff >

D0.
(3) In the presence of advection, the bound on limiting

velocity may be modified as vf � 2
√

Deff supθ [F (θ )/θ].

B. ARD-type equation for VLD

Now we return to the channel counterflow of the superfluid
4He and relate the properties of the model system, described
in the previous section, to the dynamics of the turbulent vortex
tangle.

Here the role of the dimensionless variable θ in advection-
reaction-diffusion equation (5) is played by the normalized
VLD L = L/L0, where L0 is the equilibrium vortex line
density in the bulk of the tangle. The equation of motion for
L(r, t ) in the channel may be written as

∂t L(r, t ) + ∇J (r, t ) = D̃∇2L(r, t ) + F [L(r, t )], (8)

J (r, t ) = V drift(r)L(r, t ), (9)

where D̃ is the effective diffusivity of VLD and J (r, t ) is the
VLD flux. We follow Schwarz’s microscopic approach [16]
and recall that the rate of elongation of the vortex line segment
δξ is

1

δξ

dδξ

dt
= α(V ns(s, t ) · (s′ × s′′) − |s′ × s′′|2)

+s′ · V nl
′ − α′s′′ · V ns. (10)

Integration of Eq. (10) over the vortex tangle gives for the
RHS term F (L):

F = P1 + P2 + P3 − D, (11)

P1 = α

L0V ′

∫
	′

(
V 0

ns − V nl
) · (s′ × s′′) dξ, (12)

P2 = 1

L0V ′

∫
	′

s′ · V ′
nl dξ, (13)

P3 = − α′

L0V ′

∫
	′

s′′ · V ns dξ, (14)

D = α

L0V ′

∫
	′

V loc · (s′ × s′′)dξ . (15)

Here, P1 is usually named the production term since it is
responsible for most of the vortex line elongation. The last
term D is traditionally termed the decay term since it rep-
resents the annihilation of vortex-line length during vortex
dynamics and reconnections. Two other terms P2 and P3

also represent the production of the vortex-line length. In the
homogeneous tangle, P3 vanish by symmetry. The term P2 is
usually omitted due to smallness. We include all terms since
P2 and P3 become non-negligible at low T near the walls (see
Appendix D). Each term is proportional to L due to integration
over dξ and division by L0. At this stage, we retain the integral
representation of F (L).

Using the same approach, the VLD flux Eq. (9) is defined
as

J = 1

L0V ′

∫
	′

V drift dξ = V 0
s L + 1

L0V ′

∫
	′

(VBS + V mf) dξ .

(16)
As was shown in Sec. II D, the bulk VLD and other tangle
properties in the core of the channel and near the walls are
different but well defined. Therefore, instead of taking into
account the full 3D structure of the tangle, as well as the
2D front interface, we consider the dynamics of the core
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L L L L

FIG. 16. The profiles of F̃ j (L) vs L [(a) and (b) for the cold and hot fronts, respectively] and F̃ j (L)/L vs L [(c) and (d) for the cold and
hot fronts, respectively] for T = 1.3 K. The profiles for the parabolic Vn are shown by solid lines, the profiles for the flattened Vn are shown by
dashed lines and denoted as P and F, respectively. The lines for the channel core and the near-wall region are labeled in the figure.

and the wall regions separately as one-dimensional (1D).
However, to get the 1D equation for L(x), it is not sufficient
to only account for the streamwise component of Eq. (8).
Although the transverse diffusion is negligible, the transverse
VLD flux Jy is an important factor in the inhomogeneous
tangle dynamics [29–31], moving VLD from the channel core
towards the walls. We move it to RHS of Eq. (8), such that
after averaging of the core and walls regions, it will serve as an
additional decay term in the channel core and as an additional
production term near the walls. In such a way, we get the
ARD-type equation for the normalized VLD L(x, t ) for the
core ( j = core) and for the walls ( j = wall) regions:

∂L j (x, t )

∂t
+ ∂J j (x, t )

∂x
= D̃ j ∂

2L j (x, t )

∂x2
+ F̃ j[L(x, t )],

(17)

J j (x, t ) = V 0
s L j (x, t ) + J̃ j

x (x, t )

F̃ j[L(x, t )] = F j[L(x, t )] − ∂J j
y (x, t )

∂y
. (18)

The longitudinal tangle-induced flux J̃x = Jx − V 0
s L helps

to redistribute the vortex line density along the tangle. We
account for it by replacing V 0

s → V x
s . Here we neglected the

streamwise component of the mutual friction contribution to
the drift velocity V x

mf since it contributes only about 1% to
the value of V x

drift. The modified production term F̃ j[L(x, t )]
includes the contribution from the transverse flux. Since,
in this formulation, the effective diffusivity is a parameter
that depends on the flow conditions, we allow for different
values of D̃ j for the channel core and for near-wall regions.
Moreover, the values may differ in the tangle bulk and in the
fronts regions.

Using this framework, we analyze in the rest of this section
various aspects of the propagation of the fronts, including
the type of the fronts, their speeds, shapes, and the effective
diffusivity.

C. Properties of F̃(L)

To identify the type of nonlinearity in the Eq. (17), we cal-
culate the front profile for F̃ (L), as described in Appendix C.

The dependencies of F̃ (L) and F̃ (L)/L on L in the front
regions, calculated for T = 1.3 K, are shown in Fig. 16. The
results for the parabolic profile as shown by solid lines, for
the flattened profile by dashed lines. As is clearly seen, the
L dependence of F̃ (L) is different for the cold fronts [panel
(a)] and for the hot fronts [panel (b)]. The hot fronts are of
the FKPP type, i.e the largest rate of growth supL[F̃ (L)/L] is
at L → 0, as is shown in Fig. 16(d), while for the cold fronts
[Fig. 16(c)], it is found closer to the center part of the front.
This property is robust and observed all flow conditions, and
for both types of the Vn profiles, although at T = 1.9 K the
maximum growth rate for the cold front is found closer to
L = 0 than at low T .

Despite complicated shapes of F̃ (L) for various flow con-
ditions, the values of the largest rate of growth supL[F̃ (L)/L],
shown in Fig. 17, depend linearly on V 0

s . The dependencies
for the near-wall and the core regions differ even for the
same front region, with hot fronts being stronger dependent
on the advection velocity than the cold fronts. In particular,
supL[F̃ (L)/L] for the cold front in the channel core is almost
V 0

s independent.
Most of the attempts to find the equation of motion for

the vortex line density so far dealt with steady-state tangles
and represented P1 and D in Eq. (11) as functions of L and
Vns only for the homogeneous tangles, adding the curvature,
the binormal, and their derivatives [17–19] in the inhomoge-
neous case. In the current situation of the inhomogeneous and
growing tangle, we can not expect a unique closure. Aiming
at the analysis of front dynamics, we make use of the fact
that at least the hot fronts are of FKPP type. We then seek to
represent Eq. (18) in a general form

F̃ (L) = AL − B L2, (19)

where the coefficients A and B have dimensions [1/s] and
may depend on the position and time.

D. Closure for F̃(L)

The main idea behind all the proposed closures [16,29] is to
take slowly varying fields out of the average along the vortex
lines. The resulting closure form is a product of slowly varying
macroscopic properties of the flow [such as V ns(x, y, t )] and of
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FIG. 17. Maximum growth rate supL[F̃ j (L)/L] at various flow conditions. In all panels, ◦ denote front velocities for parabolic Vn and
various Uc, 	 corresponds to the flattened Vn profile, � and � denote channel widths H = 0.15 and 0.2 cm, respectively. The linear dependence
on V 0

s is shown by dashed lines, which serve to guide the eye only. Different data sets are marked in the figure by labels of the same color that
point to the corresponding symbols.

the tangle [such as c2
2(x, y, t ) and I�,x(x, y, t )]. In Appendix D,

we discuss various contributions to the F̃ (L). For our current
analysis, however, we do not need all of them.

We start with the last term in Eq. (19). It is readily asso-
ciated with the term D, Eq. (15), as the relation D ∝ L2 was
shown experimentally [52,53] and rationalized theoretically
[3,16] for the steady-state homogeneous vortex tangles. We
use here the following form [29] of this dependence for the
dimensionless VLD L:

D ≈ αβ〈κ2〉L = B L2 ; B = αβc2
2L0, (20)

where the relation 〈κ2〉 = c2
2L was used. In the homogeneous

tangle, where c2
2 is a constant, the coefficient B is also

a constant for a given temperature. In the inhomogeneous
developing tangle, the mean-square curvature 〈κ2〉 in the
bulk of the tangle is almost homogeneous across the channel,
while the vortex line density is not. Therefore the coefficient
c2

2 has more complicated behavior, as is shown in Fig. 13.
Nevertheless, when c2

2 is averaged over the core and near-wall
regions separately, the closure Eq. (20) works quite well,
especially at low T , as is shown in Appendix D, Fig. 24.

It turned out that the values of B are very weakly dependent
on the position in the channel. The difference between the
values of c2

2 in the channel core and near the walls is compen-
sated by the corresponding difference in the values of L0, such
that B is almost constant everywhere in the channel, with the
exception of the immediate vicinity of the tangle edge, where
the measurements of c2

2 become unreliable. To compare B for
various flow conditions, we plot in Fig. 18 its dimensionless
form

B† = Bκ/
(
V 0

ns

)2 ≈ α c2
2 �2, (21)

where in the right-most relation we took into account [39] that
ln(R/a0)/(4π ) ≈ 1 and �2 = κ2L0/(V 0

ns)2 is a dimensionless
coefficient relating [39] the steady-state homogeneous VLD
and the counterflow velocity. The coefficient B† is expected to
be a rising function of the temperature, but to have only weak
dependence on other flow conditions. The streamwise profiles
of B† are illustrated for T = 1.3 K, Uc = 3 cm/s [Fig. 18(a)]
and T = 1.9 K, Uc = 1 cm/s [Fig. 18(b)]. The values of B†

averaged over tangle bulk are summarized in Fig. 18(c). As
expected, the coefficients B† grow with the temperature, but
otherwise, despite some scatter, are almost independent of the
flow conditions. Note that, in accordance with the behavior of

c2
2, B† is larger in the flow generated by the flattened Vn profile

(diamonds), than in the flow, generated by the corresponding
parabolic profile (circles), for similar V 0

s .
Using almost constancy of B over entire tangle, we can

associate τdec ≡ (B)−1 with some characteristic time, in this
case of the tangle decay, and further rewrite

F̃ (L) = L

τdec
(C − L), C = A

B . (22)

In the steady-state homogeneous tangle, C = 1. Again, there
is no a priori reason to expect that this relation will hold in
the current situation. However, as is shown in Fig. 19, up to
natural fluctuations, C ≈ 1 along all the tangle including front
regions, with accuracy about 20%–30% depending on the
stage of the tangle development. In particular, at T = 1.3 K
the near-wall regions are more dissipative than the channel
core, while at high T they are less dissipative. The closeness
of the ratio C to unity indicates that we correctly account for
all the relevant contributions to the F̃ (L) in Eq. (18).

E. Solution of VLD equation of motion

Having defined the functional form for F̃ (L) and taking,
for now, C = 1, we can return to Eq. (17) and rewrite it as

∂t L
j (x, t ) + V x

s ∂xL j (x, t )

= D̃ j∂x,xL j (x, t ) + 1/τdec L j (x, t )[1 − L j (x, t )]. (23)

We now switch to dimensionless variables (omitting for short-
ness the index j)

τ = t/τdec, l = x/σ, σ =
√

D̃τdec, (24)

w = V x
s /Vdiff, Vdiff = σ/τdec, (25)

to rewrite Eq. (23) as

∂τ L j + w j ∂lL
j = ∂l,l L

j + L j − (L j )2. (26)

Comparing with Eq. (5), we see that Eq. (26) is the ARD
equation of FKPP type for the vortex line density, which
for front velocities vf > 2

√
D̃/τdec admits a traveling wave

solution ζ = c(l − Vfτ ) with the dimensionless front speed
Vf = vf/Vdiff. Substituting this solution to (26), we get an
equation that defines the velocity and the shape of the
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FIG. 18. The coefficient B† for various conditions. Streamwise profiles for (a) T = 1.3 K, Uc = 3 cm/s and (b) T = 1.9 K, Uc = 1 cm/s.
Thin red lines correspond to the core profiles, thick blue lines denote near-wall profiles. Vertical dot-dashed lines mark the edges of the tangle
bulk. In calculation of B for the core and for the walls regions we used the corresponding instantaneous values of β, c2

2 and L0 and then
averaged over time. (c) B† averaged over tangle bulk. Symbols, denoting various flow conditions, are the same as in Fig. 15.

front:

[c j v
j ∂ζ + c2

j ∂ζ,ζ ]L j + L j − (L j )2 = 0, v j = V j
f − w j .

(27)

A similar equation was obtained by Nemirovskii [15] for
1D front propagation, using the original Vinen’s form for
F (L) = αViL3/2 − βViL2, and solved numerically for the front
speed, with the parameters estimated for the homogeneous
steady-state vortex tangle by Schwarz [16] and the diffusion
constant [54] D ≈ 2.2κ .

Equation (27) may be solved analytically using Tahn
method [55,56]. A general form of these solutions, symmetric
with respect to the direction of propagation, reads

L(ζ ) = 1
4 [1 ± tanh ζ ]2, c = 1

2
√

6
, v = ∓ 5√

6
, (28)

or, relaxing the requirement that C = 1,

L(ζ ) = C
4

[1 ± tanh ζ ]2, c =
√
C

2
√

6
, v = ∓5

√
C√
6

, (29)

Returning to the original dimensional variables

L(x) = 1

4

[
1 ± tanh

(
1

λ
[x − vf t]

)]2

, (30)

λ = 2 σ
√

6/C, vf = ±5Vdiff

√
C/6 + V x

s , (31)

where λ is the front width. As we can see, the effective
diffusion constant and the characteristic decay time define
both the front width and the front velocity via the diffusion
spread σ and its speed Vdiff.

The similar (symmetric) solution was postulated in
Ref. [13] without derivation, assuming F (L) based on Vinen’s
form of F (L) for the case of thermal counterflow [6] in the
presence of a wall.

However, as we know now, the hot and cold fronts are
of different types. Strictly speaking, only hot fronts are of
FKPP type (pulled) and fulfill the underlying assumptions for
the solution. Nevertheless, we may hope that, at least at high
temperatures, the solution will describe reasonably well also
the cold fronts.

FIG. 19. The ratio C for various conditions. The profiles for the parabolic Vn with (a) T = 1.3 K, UC = 3 cm/s and (c) T = 1.9 K,
Uc = 1 cm/s. The profiles of C for the corresponding flattened profiles are shown in (b) for T = 1.3 and (d) for 1.9 K. Thin red lines correspond
to the core profiles, thick blue lines denote near-wall profiles. Vertical dot-dashed lines mark the edges of the tangle bulk. Horizontal dashed
lines mark the value C = 1.
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FIG. 20. Front velocities as a function of mean superfluid velocity for (a) T = 1.3, (b) 1.65, and (c) 1.9 K. In all panels, different flow
conditions are represented by different symbols: ◦ denote front velocities for the parabolic Vn and various Uc, 	 corresponds to the flattened Vn

profile, � and � denote channel width H = 0.15 and 0.2 cm, respectively. The symbols, marking cold front velocities, are filled, the symbols
for the hot front velocities are empty. Dashed lines serve to guide the eye only.

Recalling that D̃ depends on the flow conditions and there-
fore may be different for the channel core and near the walls,
we get solutions for four fronts:

L j,c(x) = 1

4

[
1 + tanh

(
1

λ j,c
[x − vc

f t]

)]2

, (32)

L j,h(x) = 1

4

[
1 − tanh

(
1

λ j,h
[x − vh

f t]

)]2

, (33)

where λ j,c, λ j,h are the widths of the corresponding fronts and
vc

f , v
h
f are the corresponding front velocities. Here a word of

caution is in order. The solutions (32) and (33) do not describe
any transient behavior, such as VLD hump in the channel core
near the hot front, strong VLD fluctuations at the fronts at low
T , or effects of the different type of the nonlinearity for the
cold fronts. Since fronts of the studied tangles most probably
did not reach the expected limiting shapes, all parameters
are considered as effective and corresponding to the chosen
time tf.

The mean front shapes were calculated using the procedure
described in Appendix C and fitted with the solutions (32)
and (33) to obtain the front velocities vh

f , vc
f and front widths

λ j,c, λ j,h.

F. Front velocities and shapes

The front speeds are shown in Fig. 20 as a function of
the mean superfluid velocity V 0

s . It is clearly seen that vf

depends linearly on the advection velocity, with hot and cold
front speeds having opposite trends, independent of the actual
orientation of the hot front velocity. All data for a given
temperature are well fit by the same linear dependence, shown
as black dashed lines. Note that the front velocities are the
same for the channel core and the near-wall regions. This
point requires additional attention. As we mentioned earlier,
the hot front is lead by the channel core, while the cold front
is defined by the near-wall region. Moreover, the superfluid
velocity in the bulk of the channel, as we showed in Fig. 8, is
close to the corresponding vf. This raises a natural question,
how the hot front velocity near the channel walls becomes
equal to that in the core and similarly, the cold front velocity
in the core becomes equal to vc

f near the channel walls? The
answer lies in the action of the transverse flux ∂J j

y (x, t )/∂y

that changes very strongly in the fronts regions, but is almost
constant along the tangle, see Fig. 26 and Appendix D. In this
way, the hot front near the wall is formed by VLD brought
by the flux from the channel core and its velocity matches
the velocity at the core only very close to the tangle edge.
Similarly, the superfluid velocity in the core of the channel
is quickly changed to vc

f by the transverse flux which in this
region brings VLD from the walls toward the channel core.
Here, the flux is much weaker than in the hot front region and
the development of the cold front in the channel core is a result
of a complicated interplay of various mechanisms, leading to
long-lasting transient behavior.

At low T , |vh
f | > |vc

f | for the same advection velocity V 0
s ,

while at high T the relation is opposite. This observation is
in agreement with the early experiments is thin capillaries
[7,8]. Moreover, the front velocities, observed in Ref. [8] for
T = 1.34 K at low heat fluxes, are similar to vf measured in
our simulations at T = 1.3 K. The linear dependencies point
out to a particular value of V 0,∗

s at which the front speeds are
expected to be the same. It is natural to associate the corre-
sponding v∗

f with the onset of the front solution in the coun-
terflow, for instance, to the formation of narrow structures
similar to the puffs in the classical pipe flow with two fronts
moving with the same velocity. Since without advection flow
(or more specifically, the counterflow Vns), the counterflow
turbulence does not exist, the onset front velocity v∗

f > v0.
Note that at all temperatures, the values of V 0,∗

s are larger than
the critical V 0

s,c, below which the vortex tangle is not formed.
The values of V 0

s,c were estimated from the critical counterflow
velocity vc obtained by fitting

√
L0 = �(Vns − vc)/κ , and the

counterflow condition. The onset fronts velocities v∗
f and V 0∗

s
are listed in the Table III.

TABLE III. Onset front velocities v∗
f and corresponding mean

superfluid velocities V 0,∗
s . The error bars reflect the sensitivity of the

linear fitting procedure.

T , K 1.3 1.65 1.9

v∗
f , cm/s −0.005 ± 0.02 −0.09 ± 0.02 −0.26 ± 0.02

V 0,∗
s , cm/s −0.05 ± 0.02 −0.07 ± 0.02 −0.30 ± 0.02
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FIG. 21. The cold and hot fronts shapes for various conditions: [(a) and (b)] Vn with T = 1.3 K, UC = 3 cm/s; [(c) and (d)] T = 1.3 K and
flattened Vn profile; [(e), (f)] T = 1.9 K, Uc = 1 cm/s; and [(g) and (h)] T = 1.9 K and flattened Vn profile. The cold front shapes are shown in
(a), (c), (e), and (g), the hot front shapes are shown in (b), (d), (f), and (h). Thin red lines correspond to the core fronts, thick blue lines denote
near-wall fronts. Cyan dashed lines denote fits for the near-wall fronts, red dashed lines denote fits for the fronts in the channel core.

The representative front shapes, together with their fits
by the solutions (32) and (33), are shown in Fig. 21. The
horizontal axis shows the distance from the front edge (X =
0) for the core and the near-wall regions separately. First of
all, we note the presence of the narrow VLD hump, localized
between the tangle bulk and the hot front in the tangles
driven by the parabolic Vn profiles, Figs. 21(a) and 21(c). This
hump is not formed when the normal-fluid velocity profile is
flattened, Figs. 21(b) and 21(d). In all cases, the hot fronts are
2–5 times more narrow than the cold fronts. The hot fronts are
steeper in the core of the channel than near the walls, while
cold fronts are steeper near the walls, or similar. The presence
of a shallow shoulder at small L in the cold front shapes, well
seen for the near-wall front shapes at both temperatures, is a
sign of non-FKPP nonlinearity and is not accounted for by the
solution. However, the solution (32) describes reasonably well
the overall cold front shapes, especially at high temperatures,
at which the fronts are well-formed and developed.

G. Effective diffusivity

The importance of the diffusion mechanism for the decay
of inhomogeneous tangle was studied theoretically [54] and
numerically [57–59] for the decaying tangles at T = 0 K with
most recent estimates of the effective diffusion constant in the
range (0.1 − 1)κ . The presence of dissipative walls reduces
[58] the values of the effective diffusion constant, while in the
3D unbounded vortex tangle [59] the value of the effective
diffusion constant was found to be close to 0.5κ .

Using the relation between the front width and the effective
diffusion constant, Eqs. (24) and (31), we can estimate D̃ for
various conditions. For that, we rewrite Eq. (31) as

D̃ j,c = (λ j,c)2

24τdec
, D̃ j,h = (λ j,h)2

24τdec
, (34)

where we retain C = 1 and τdec = Const. for given conditions.
To get an idea of what behavior to expect from D̃ we rewrite
(34) (omitting indices j, c, and h for clarity) as

D̃ = λ2B
24

= λ2B†(V 0
ns

)2

24κ
. (35)

The temperature dependence of D̃ is therefore mostly defined
by B†, the dependence on the driving velocity by (V 0

ns)2 and
the influence of other flow conditions, including the spatial
dependence—by the front width λ. There is no systematic
dependence of the front width on the driving velocity. Recall
that the cold fronts are wider than the hot fronts, such that for
the given T and V 0

ns, D̃ j,c > D̃ j,h with the difference reaching
up to an order of magnitude. The typical front width range
decreases with temperature, such that λc ∼ (0.05 − 0.1) cm
at T = 1.3 K, while at T = 1.9 K, λc ∼ (0.03–0.05) cm.
The hot fronts are more narrow: λh ∼ (0.02–0.05) cm at
T = 1.3 K, while λh ∼ (0.005–0.03) cm at T = 1.9 K. On
the other hand, B† grows with T . As a result, for the stud-
ied range of flow conditions, at the cold front, the typical
values are D̃c ∼ (0.5−1.5)κ , while at the hot fronts D̃h ∼
(0.01–0.1)κ and are larger for higher temperatures. This T
dependence is more prominent for the flows driven by the
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TABLE IV. Effective diffusivity at the cold (c) and hot (h) fronts near the wall and in the channel core for representative conditions. P and
F denote the parabolic and the flattened Vn profile, respectively. The error-bars account for C = 1 ± 0.2 as well as the errors in measurements
of λ and B. The flow conditions are the same as in Figs. 13 and 14.

T = 1.3 K T = 1.65 K T = 1.9 K

Type Vn(y) P F P F P F

D̃core,c/κ 0.5 ± 0.2 1.4 ± 0.5 0.7 ± 0.3 1.1 ± 0.3 1.3 ± 0.4 1.3 ± 0.3
D̃wall,c/κ 0.4 ± 0.1 1.0 ± 0.5 0.8 ± 0.3 0.7 ± 0.2 1.3 ± 0.3 1.3 ± 0.3
D̃core,h/κ 0.01 ± 0.005 0.02 ± 0.01 0.06 ± 0.02 0.05 ± 0.02 0.04 ± 0.01 0.08 ± 0.02
D̃wall,h/κ 0.03 ± 0.01 0.12 ± 0.04 0.05 ± 0.02 0.11 ± 0.01 0.20 ± 0.05 0.32 ± 0.07

parabolic normal-fluid velocity. The representative values of
D̃, calculated according to Eq. (34), are listed in Table IV. It
is important to remember that the effective diffusivity D̃ is not
a material property of superfluid 4He, but a dynamical prop-
erty of propagating fronts in the particular flow conditions,
including different nonlinear processes in the front regions.
In addition, the values listed in the table correspond to the
reached stage of the tangle development and are sensitive
to the presence of the transient processes in the tangle core.
Nevertheless, since the order of magnitude of D̃ is the same for
the flows driven by the parabolic and by flattened Vn profiles
at all studied temperatures, these values may be considered as
a robust dynamical property of the propagating fronts in the
channel counterflow.

The values of D̃ at the hot front are remarkably close to the
values of the effective diffusion constant found numerically
in the bounded [57,58] and unbounded [59] bulk tangles at
zero temperature. We do not have a reliable measure of the
diffusion in the bulk of the tangle. However, since the values
of many of the tangle properties in the bulk are similar to those
in the hot front region, we suggest that also the values of D̃ in
the tangle bulk would be similar to those in the hot front region
at least in the order of the magnitude.

IV. DISCUSSION

Our simulations of the quantum vortex tangles that develop
freely in the channel from localized initial conditions under
the influence of the counterflow velocity, give a unique insight
into their natural dynamics and structure. Despite a wide
variety of the flow conditions experienced by the vortex lines
that influence the local dynamics, there are many common
features.

In particular, the tangles may be divided into regions
according to their dynamics. The regions near the tangle edges
exhibit front dynamics. The dynamics of tangle bulk is more
similar to that of the steady-state stationary tangles. In the
bulk, the parts of the tangle that develop near the channel wall,
are first to reach equilibrium VLD and grow almost symmetri-
cally with respect to the direction of the counterflow velocity.
On the other hand, the transient tangle dynamics in the chan-
nel core is slower, with notable asymmetry and preferential
growth of VLD toward the hot front, resulting in the long-
lasting streamwise inhomogeneity. This behavior is similar at
high and low temperatures, despite the different direction of
the hot front propagation. This asymmetry is originated from
the production of the vortex line length, strongly peaked in the

channel core within the hot front region. The only difference
between the dynamics at different velocities of the driving
normal fluid and even its wall-normal profile is the duration
of the transient behavior and degree of the inhomogeneity of
resulting vortex tangle. Conversely, the structural properties
of the vortex tangle, such as the ratio between the curvature
and the vortex line density and preferential orientation of the
local velocity, reach their steady-state distributions as soon as
the tangle become three-dimensional, with core values similar
to those obtained in the simulations of the steady-state vortex
tangles and the experimental estimates.

The VLD is higher near the walls than in the channel
core, peaking at about the intervortex distance, in agreement
with the results of simulations of steady-state tangles in the
channel. This difference between the channel core and the
near-wall regions is less prominent when the flow is driven by
the normal-fluid velocity with the flattened profile. A similar
trend of relatively flat VLD distribution in the channel core,
that extends towards the walls, was observed in simulations
with wider channels at all temperatures.

An explicit account for the advection mean superfluid
velocity allowed us to detect a superfluid motion of various
scales within the vortex tangle. The largest scales of this
motion reach the channel size at strong driving velocity. When
normal-fluid velocity profile is flattened, as is expected in the
turbulent flow, superfluid motions exist at many scales. The
presence of this large-scale superfluid motion is reflected in
the streamwise inhomogeneity of various tangle properties.
The typical period of the fluctuations is of the order H/2,
corresponding to the largest eddies formed in the tangle.

The analysis of the dynamics of the fronts in the framework
of the advection-diffusion-reaction equation gives unexpected
results. The two fronts are driven by different parts of the flow
and have a different type of nonlinearity of the generalized
production term. The hot fronts are pulled, i.e. driven by the
flow in the channel core and the leading edge dominate in
defining their high steepness and the propagation speed. The
cold fronts, on the other hand, are lead by the near-walls
tangle and are pushed by the nonlinear interior. A low-density
foot moves before the tangle, and only at about a quarter of
the front width, the VLD start to rise fast. These fronts are
wide and the shape difference between the channel core and
near the walls is larger. In accordance with ADR dynamics,
the front velocities are linearly proportional to the advection
mean superfluid velocity, with common dependence for all
conditions at a given temperature. Unlike the classical pipe
flows, where the downstream front of the puffs and slugs
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(corresponding to the cold front in the counterflow) always
move faster [36,37] than the upstream front (corresponding
to the hot front in the counterflow), in the 4He counterflows,
the relation between the two fronts velocities depend on the
temperature. In particular, in the classical flow, the magnitude
of the upstream font velocity always decreases with the in-
creasing velocity of the bulk flow. In the counterflow, such
behavior of the hot front is observed only at high tempera-
tures. At low T , it is the hot front that becomes faster for
higher heat fluxes. The possible reason for such a difference is
the opposite orientation of the mean superfluid velocity in the
channel core and near the walls at low T . Therefore, at these
conditions, the notion of the downstream direction becomes
local and the dynamics of vortex tangles is more complicated
than that of the slugs in the classical pipe flow.

The analytic solution of the equation of motion (17) fits
well the overall front shapes for all conditions, while it does
not describe the transient effects near the hot fronts and the
effects of the non-FKPP nonlinearity at the cold fronts. These
solutions allow extracting the effective diffusivity which is
flow-dependent and different at the hot and at the cold fronts.
The values of the effective diffusivity measured at the hot
fronts agree in the order of magnitude with recent estimates
from simulations at T = 0 K.

Although the current study ignores the back-reaction of the
superfluid component on the dynamics of the normal fluid, we
expect that in the studied range of flow parameters most of
the influence is captured by the flattening the laminar normal-
fluid velocity profile. Other effects may include changes in the
duration of the transient regimes.

Among questions that can only be answered when both
components are fully coupled, are how the presence of the
vortex tangle in the superfluid component influences the tran-
sition of the normal-fluid component from the laminar to the
turbulent state (so-called TI-TII transition) and whether at
sufficiently large heat fluxes the transition to turbulence may
occur simultaneously in both components.

APPENDIX A: A GUIDE TO MAIN NOTATIONS

In this Appendix, we collect the main notations used in
the paper. The notations are grouped by their physical mean-
ing and organized following the structure of the paper. The
references to the relevant sections, equations, and tables are
included for convenience.

(1) Physical properties of 4He, see Sec. II A and Table I:
(i) ρ, ρn(T ), ρs(T ) – the density of 4He and the

temperature-dependent partial densities of the normal-fluid
and superfluid components;

(ii) a0 = 1.3 × 10−8 cm – the core radius of the vortex
lines;

(iii) κ = 9.97 × 10−4 cm2/s – the circulation quantum;
(iv) α(T ), α′(T ) – temperature-dependent mutual fric-

tion parameters, see Eq. (1);
(2) Coordinate systems and characteristic lengths:

(i) The Cartesian coordinate system in the channel
(x, y, z) –the streamwise, wall-normal and spanwise direc-
tions, respectively, see Sec. II B and Fig. 1;

(ii) s(ξ ) – The Cartesian coordinate of the vortex line,
parameterized with the arc-length ξ ;

(iii) The coordinate system associated with the vortex
line point s(ξ ): s′ ≡ ds/dξ – the local direction of the
vortex line; s′′ ≡ d2s/dξ 2 – the local curvature vector;
(s′ × s′′) – the local binormal vector;

(iv) � – the typical distance between vortex lines in the
tangle;

(v) H – the channel width.
(3) Various velocities:

(i) V n,V s,V ns – the macroscopic normal-fluid, super-
fluid, and counterflow velocities, see Sec. II A;

(ii) Uc – the value of the centerline velocity of the
parabolic normal-fluid velocity profile;

(iii) V 0
s ,V loc,V nl – the mean, local and nonlocal contri-

butions to the superfluid velocity V s, V mf – the contribution
to the vortex line velocity due to the interaction with the
normal fluid, V drift – full velocity of the vortex line, see
Eq. (1), Secs. II B and III B;

(iv) V † = V/V 0
ns - the normalized velocities are used to

compare various flow conditions. The mean counterflow
velocity V 0

ns is defined using the zero-mass-flux condition,
Eq. (4), see also Table II.
(4) Division of the vortex tangle into regions, for details

see Appendix B:
(i) in the streamwise direction – the cold front, moving

in the direction of the mean superfluid velocity, the tangle
bulk, and the hot front, moving in the direction of the mean
normal-fluid velocity;

(ii) in the wall-normal direction – the core of the chan-
nel and two near-wall regions.
(5) Vortex tangle properties:

(i) L(r) ≡ ∫
	′ ds/V ′ – the vortex line density (VLD),

the length of the vortex lines configuration 	′ in a physi-
cally small volume V ′, see Secs. II C, II D;

(ii) L0 – the mean value of VLD averaged over the
tangle bulk in the channel core or the near-wall regions,
see Table II; The intervortex distance in the corresponding
region is defined as � = (L0)−1/2;

(iii) L† = Lκ2/(V 0
ns)2– the dimensionless VLD is used

to compare various flow conditions;
(iv) L = L/L0 – the normalized VLD is used to solve

the equation of motion for the tangle fronts;
(v) Structural properties of the tangle:
κ ≡ |s′′| – the local curvature of the vortex line;
〈κ2〉 = ∫

	′ |s′′|2ds/V ′ – the mean square curvature;
c2 – compares the root-mean-square radius of curva-

ture with the mean intervortex distance, appears in the
theory as c2

2 = 〈κ2〉/L, see Secs. II G, III D and Appendix
D;

I�,x – the streamwise projection of the local bi-normal
vector defines the major contribution to the vortex line
length production. Its dimensionless index I†�,x = I�,x/|s′′|
quantifies the orientation of the local vortex line veloc-
ity with respect to the direction of the counterflow, see
Sec. II G and Appendix D;
(6) Advection-reaction-diffusion description of the front

propagation – the history, see Sec. III A:
(i) 0 < θ < 1 - the propagating quantity;
(ii) u(r, t ) – the advection velocity;
(iii) D – the diffusivity; If u(r, t ) �= 0, the diffusion is

characterized by the effective diffusion constant Deff.
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FIG. 22. Schematic representation of various averaging zones. (a) 2D map of L(x, y) (cm−2) in which various averaging zones are marked.
(b) Streamwise profiles 〈L(x)〉y averaged over two near-wall zones and over the core in the y direction. (c) The wall-normal profile 〈L(y)〉x

averaged over the tangle bulk in the x direction. (d) The streamwise profiles 〈L(x)〉y, in which two near-wall zones are averaged together. In
(c) and (d), the shaded area shows variation of VLD between tf − tav (thin dashed lines) and tf (think solid lines).

(iv) F (θ ) – the nonlinear reaction term. If the maxi-
mum slope of F (θ ) occurs at θ = 0, the fronts are called
pulled fronts and their dynamics is fully determined by the
region θ ≈ 0. When the maximum slope of F (θ ) occurs at
θ > 0, the front is pushed by the non-linear interior;

(v) v0 – the speed of the front, defined by the marginal
stability criterion; vmin � v0 – the minimal front velocity
in the presence of advection; vf � vmin – the actual speed
of the front;
(7) The equation of motion for VLD, see Secs. III B, III C,

III D:
(i) The equation of motion for L, Eq. (8), is the 2D

ARD-type equation with the VLD flux J , the effective
VLD diffusivity D̃ and the production term F (L);

(ii) Averaged separately for the channel core and the
near-wall regions, it becomes a set of two 1D equations
Eq. (17) in which the advection term ∂J /∂x and the pro-
duction term F̃ (L) are modified to include the contributions
from the streamwise tangle-induced VLD flux ∂ J̃x/∂x and
the transverse VLD flux ∂Jy/∂y, respectively;

(iii) The proposed closure for F̃ (L) = AL − BL2 is
based on the nonlinearity type in the hot front region. The
coefficient B = −α(κ/4π ) ln[〈κ〉a0]c2

2L0 plays an impor-
tant role of the characteristic frequency of the tangle decay
τdec = (B)−1. It is almost constant over most of the tangle
for the given conditions, as well as the ratio C = A/B ≈ 1,
see Sec. III D and Eq. (22);

(iv) Various terms that contribute to F̃ (L), i.e.
P1,P2,P3,D,J , are defined in Eq. (10)–(16) and dis-
cussed in details in Appendix D.
(8) The solution of the equation of motion for VLD, see

Secs. III E, III F and III G:
(i) The dimensionless Eq. (23) is formulated using the

dimensionless variables based on the decay time τdec, the

diffusion spread σ =
√

D̃τdec, its velocity Vdiff = σ/τdec

and the dimensionless front velocity Vf = vs/Vdiff;
(ii) The solutions for the four front shapes

Lcore,c(x), Lwall,c(x), Lcore,h(x), Lwall,h(x), Eq. (32) and
Eq. (33), involve the speeds of the cold and hot fronts
vc

f , v
h
f [Fig. 20] and the four widths of the corresponding

fronts λcore,c, λwall,c, λcore,h, λwall,h;
(iii) The values of the onset front velocities v∗

f , equal
for the two fronts, and the corresponding V 0,∗

s at which they
are observed, are listed in Table III;

(iv) The four effective diffusion constants
D̃core,c, D̃wall,c, D̃core,h, D̃wall,h, extracted from the fronts
width according to Eq. (34), are listed in Table IV.

APPENDIX B: CALCULATION OF VARIOUS PROFILES

The wall-normal and the streamwise profiles of various
quantities are calculated according to the scheme shown in
Fig. 22. The division into different zones is somewhat arbi-
trary, however, we have checked that the values of the tangle
properties are robust with respect to the variation of the zones
boundaries within two mesh sizes. For illustration, we use the
vortex line density L. The wall-normal profiles were obtained
by averaging the 2D maps over the bulk region of the tangle
defined at each time moment and further averaged over the last
tav = 0.2 sec. The shading in Figs. 22(c) and 22(d) illustrates
the variation between the profiles at time tf − tav(dashed lines)
and tf (solid lines). The streamwise profiles were calculated
for tf by averaging over the core and near-wall regions sepa-
rately. In cases where the behavior at two near-wall regions
was similar, they were averaged together. The streamwise
profiles of structural properties, such as c2

2, and various terms
of the balance equation, in addition to averaging over the core
and near-wall regions, were averaged over the last 0.1 s of
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FIG. 23. The hot and cold front shapes. A series of streamwise VLD profiles corresponds to last 1 s of the evolution of the walls region,
T = 1.9 K, flattened Vn. (a) The profiles are collapsed using the cold front speed, (b) the original profiles, and (c) the profiles are collapsed
using the hot front speed.

time evolution. In cases that involve division by L, the points
near the edge of the tangle, where L(x) ≈ 0, were omitted in
calculation of the time average and not shown.

The intervortex distance � = L−1/2, shown in the wall-
normal y profiles as vertical thin black lines, is calculated here
at time tf by averaging L over bulk in x direction and over the
near-wall region in y direction.

APPENDIX C: FRONT SHAPE

The fronts of the tangles propagate without shape change.
To show this, we shift the x positions of the streamwise
VLD profiles L(x), corresponding to the time period when
the bulk and the fronts are fully developed, to the left and to
the right, such that the corresponding tangle edges overlap.
This procedure is used to measure the front speeds vc

f and
vh

f that allow such an overlap. The original profiles L(x) are
shown in Fig. 23(b). The result of the cold front collapse is
plotted in panel (a) and of the hot front collapse in panel
(c). Clearly, the front shape does not change during this
time period. To obtain the front shape, we calculate the
dimensionless VLD L = L/L0, where L0 is the mean VLD

in the bulk of the tangle. Since the values of VLD differ in
the core of the channel and near the walls, we treat these
regions separately. We further average these profiles over the
time period of 0.2 s. In such a way we obtain four shapes,
for the cold front and for the hot front in the core and in
the near-wall regions, shown in Fig. 21. The same proce-
dure was used to obtain the front shapes of other quantities
of interest.

APPENDIX D: TERMS OF THE BALANCE EQUATION

In this section, we provide a detailed description of var-
ious contributions to F̃ (L) used in the analysis of the front
dynamics. As was shown in Sec. III D, the spatial distribu-
tion of the decay term D ≈ αβc2

2L0L2 essentially follows
L2. This representation faithfully describes the integral form
(15) not only on average in the steady-state tangle but also
locally and instantaneously, including the transient stage of
the dynamics, as is shown in Fig. 24. To allow comparison,
the dimensionless values D† = Dκ/(V 0

ns)2 are plotted. The
model slightly overestimates the decay term at high T , but
otherwise should be considered very adequate everywhere

FIG. 24. The decay term Eq. (15) (thick lines) and its model form Eq. (20) with 95% confidence interval (shaded area) at different
conditions. [(a) and (c)] The streamwise profiles for the channel core for (a) T = 1.3 K, parabolic Vn with Uc = 3 cm/s and (c) T = 1.9 K,
parabolic Vn with Uc = 1 cm/s. [(b) and (d)] The wall-normal profiles for the conditions of (a) and (c), respectively, and matching flows with
flattened Vn profile. Dot-dashed black lines mark the edges of the bulk and the core regions for the streamwise and for the wall-normal profiles,
respectively. Thin solid lines in (b) and (d) are placed at the intervortex distance from the corresponding walls. The profiles are calculated as
described in Appendix B. For normalization in Eq. (15), Lcore

0 was used for the streamwise profiles in (a) and (c) and Lwall
0 for the wall-normal

profiles in (b) and (d).
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FIG. 25. The production terms: P1 [Eq. (12), purple dotted line], P2 [Eq. (13), green dashed line], P2 [Eq. (14), brown dot-dashed line],
and their sum (blue solid line) at different conditions. (a) T = 1.3 K, parabolic Vn with Uc = 3 cm/s; (b) T = 1.65 K, parabolic Vn with
Uc = 1.5 cm/s; (c) T = 1.9 K, parabolic Vn with Uc = 1 cm/s and (d) T = 1.3 K, flattened Vn profile. Dashed black lines mark the edges of
the core region. Thin solid lines are placed at the intervortex distance from the corresponding walls.

in the tangle. Note that the strong streamwise inhomogene-
ity, amplified compared to VLD, is well reproduced by the
model. The situation is different with the production term.
Directly interpreting the model form as a product of average
slowly varying fields, we get for P1 = α〈V x

ns,nl〉〈 s′ × s′′〉xL ≈
αV 0

nsI�,x L. So far, the problem of the closure for P1 amounted
to the question how to describe [6,16,29–31] I�,x in terms of
L and Vns. As it follows from the discussion in Secs. II D
and II G, in the inhomogeneous flows, there is no simple
answer to this question. Additional complication arises at
low T , at which the contributions of P2 = 〈s′ · V ′

nl 〉 L and
P3 = −α′Vns〈κ〉 L near the walls are not negligible. We do not
attempt here to find the best model representation, but rather
point out additional difficulties brought up by the presence of
large-scale superfluid motion.

The wall-normal profiles of the dimensionless P† =
Pκ/(V 0

ns)2 contributions to the production term are shown in
Fig. 25. The main contribution P1, shown by purple dotted
lines, is peaking in the channel core, where it is almost con-
stant, then quickly decreasing toward the walls. This behavior
is very similar to I�,x(y) at all studied temperatures, with
differences in the near-wall behavior. For the parabolic Vn

profiles, Figs. 25(a)–25(c), at high temperature, P1 remains
nonzero even very close to the walls, at intermediate T =
1.65 K P1 drops to zero at about intervortex distance from
the wall, while at low T it becomes negligible already at
about 2� from the nearest wall. Two other contributions, P2

and P3 are negligible compared to P1 in the channel core,
gradually increasing toward the walls and attaining the largest
values at the distance � from them. Here we see the largest

FIG. 26. [(a)–(c)] The streamwise profiles of the production terms: P1 [Eq. (12), thin lines], and the total production P1 + P2 + P3 (thick
lines) for different conditions. (a) T = 1.3 K, parabolic Vn with Uc = 3 cm/s; (b) T = 1.9 K, parabolic Vn with Uc = 1 cm/s; and (c) T = 1.3 K,
flattened Vn profile. [(d)–(f)] The streamwise profiles of ∂Jy/∂y. To calculate the derivative, at each x-point Jy(y) was fitted by seventh-degree
polynomial function. The resulting ∂Jy(x, y)/∂y was averaged over the core and the near-wall regions. The profiles ∂J wall

y /∂y are the sum
over both near-wall regions. Thin dot-dashed black lines mark the edges of the bulk region.
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difference between the high and low T behavior. At T =
1.9 K, the contributions of P2 and P3 may be safely neglected
everywhere in the channel. At T = 1.65 K, the contribution
of P2 becomes important, while at T = 1.3 K, both P2 and
P3 are dominant near the walls, such that overall production in
this region is about half of that in the channel core. As a result,
the total production wall-normal profile becomes similar to
that for the flattened Vn profile at this temperature, Fig. 25(d),
although in the latter case P1 has the dominant contribution
(about 90%) everywhere in the channel. For this type of the Vn

profile, the contributions of P2 and P3 may be neglected at all
temperatures, especially at high T . The difference between the
production in the channel core and in the near-wall regions is
much smaller than for the parabolic Vn profiles. These features
are even more pronounced at higher temperatures.

To see how the VLD production is distributed along the
tangle, we plot in Figs. 26(a)–26(c) the streamwise profiles of
P†

1 and of the total production P†
1 + P†

2 + P†
3 for the same

conditions as in Fig. 25. We do not show the profiles for T =
1.65 K, as they represent an intermediate case and do not bring
more information.

First of all, we can clearly distinguish the bulk, the hot
and the cold front regions. In the tangle bulk, the produc-
tion is almost constant, up to fluctuations that are stronger

in the channel core than in the near-wall region. In accor-
dance with profiles shown in Fig. 25, the contribution of P1

(thin lines) is dominant at high T , Fig. 26(b), both in the
core and near walls, as well as for the flows generated by
the flattened Vn profiles, Fig. 26(c). At low T , Fig. 26(a),
P1 constitutes about half of the total production in the
near-wall region.

In the hot front region, the production in the core has a
pronounced peak in the channel core, very close to the tangle
edge, which is dominated by P1. The VLD produced in this
region is then taken to the walls by the transverse flux, as
is well seen in Figs. 26(d)–26(f) where we plot ∂J †

y (x)/∂y,
for the dimensionless J †

y = Jyκ/(V 0
ns)2. Although this peak

is not as pronounced in the flows generated by the flattened
Vn profiles, the production is still stronger in the channel
core than near the walls. The horseshoe shape of the VLD
distribution, as in Fig. 10(c), is the result of this dominant
production in the channel core and the outward flux in the
hot front region.

The situation is completely different in the cold front
region, where the production and the fluxes are strongly
suppressed. Here, the production, the decay, and the fluxes
balance each other in a manner that strongly depends on the
flow conditions.
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