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Systematic benchmark calculations for elemental bulks are presented to validate the accuracy of density
functional theory for superconductors. We developed a method to treat the spin-orbit interaction (SOI) together
with the spin fluctuation (SF) and examine their effect on the superconducting transition temperature. We found
the following results from the benchmark calculations: (1) The calculations, including SOI and SF, reproduce the
experimental superconducting transition temperature (Tc) quantitatively. (2) The effect by SOI is small excepting
a few elements, such as Pb, Tl, and Re. (3) SF reduces Tc’s, especially for the transition metals, whereas this
reduction is too weak to reproduce the Tc’s of Zn and Cd. (4) We reproduced the absence of superconductivity
for alkaline- (earth) and noble metals. These calculations confirm that our method can be applied to a wide range
of materials and implies a direction for the further improvement of the methodology.
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I. INTRODUCTION

The first-principles calculation of the superconducting
properties, such as the transition temperature (Tc) and the
gap function is of great interest to explore new materials as
well as to understand the physical mechanism of known su-
perconductors. Density functional theory for superconductors
(SCDFT) [1,2] is one of the frameworks for such calcula-
tions; this method enables us to perform fully nonempirical
simulations in the superconducting phases at a reasonable
computational cost. The anisotropic Migdal-Eliashberg (ME)
equations [3] and the McMillan’s formula [4,5] which is
the parametrization of the solution of the ME equations can
also be used to estimate Tc. However, to solve the Migdal-
Eliashberg equations [6], we need to perform the summation
of the Matsubara frequencies, and this summation requires
a substantial computational cost. Since McMillan’s formula
involves an adjustable parameter to evaluate the effect of
the Coulomb repulsion, the formula cannot compare the Tc’s
of a wide range of materials. In SCDFT, we can treat the
electron-phonon interaction, the electron-electron repulsion,
and the spin-fluctuation- (SF-) mediated interaction [7] in a
first-principles manner. SCDFT has been applied to various
kinds of materials, such as elemental materials (Al, Nb, Mo,
Ta, and Pb) [8], MgB2 [9], graphite intercalations [10], Li
under high pressure [11], the H2 molecule solid [12], hy-
drogen compounds [13], and FeSe [14]. On the other hand,
the methodological improvements have also been proposed
to include the anisotropic electron-phonon interaction, plas-
mons [15], spin fluctuation [7], and the spin-orbit interaction
(SOI) [16].

However, the accuracy of the current approximated func-
tional of SCDFT and the effects of SOI and SF have not been

*mkawamura@issp.u-tokyo.ac.jp

verified systematically, although such verification is highly
desirable before applying this method to a wide range of
materials. Such a high-throughput calculation was performed,
for example, in the exploration of low-thermal-conductivity
compounds using first-principles calculations together with
the materials informatics [17]. A benchmark is also a useful
tool used to find a guideline for improving the theory and
approximations of the superconducting density functional.
For this purpose, in this paper, we are presenting the bench-
mark calculations of SCDFT. As benchmark targets, we have
chosen the simplest superconducting and nonsuperconducting
materials, i.e., elemental materials; each material in this group
comprises a single element. The particular computational cost
is relatively low because most materials in this group contain
only one or two atoms in the unit cell. Moreover, we can see
the effects of the chemical difference and the strength of the
SOI of each element.

This paper is organized as follows: In Sec. II, we explain
the theoretical foundations of SCDFT, including SF and SOI,
and in Sec. III, details of the mathematical formulation and the
implementation are shown. Next, we list the results together
with the numerical condition in Sec. IV, and present the study
discussion in Sec. V. Finally, we summarize the study in
Sec. VI.

II. THEORY

In this section, we will explain in detail the SCDFT formu-
lation including plasmon-aided mechanism [15], SF effect [7],
and SOI [16]. We use the Hartree atomic units throughout the
paper. In this paper, we only consider the singlet supercon-
ductivity, whereas in Ref. [16], both the singlet- and triplet-
superconducting states were considered. Within SCDFT, Tc

is obtained as a temperature where the following Kohn-Sham
superconducting gap �nk becomes zero at all the band n’s and
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wave-number k’s:

�nk = −1

2

∑
n′k′

Knkn′k′ (ξnk, ξn′k′ )

1 + Znk(ξnk )

× �n′k′√
ξ 2

n′k′ + �2
n′k′

tanh

⎛
⎝

√
ξ 2

n′k′ + �2
n′k′

2T

⎞
⎠, (1)

where ξnk is the Kohn-Sham eigenvalue measured from the
Fermi level (εF) at the band index n and wave-number
k. ξnk is obtained by solving the following spinor Kohn-Sham
equation:(

−∇2

2 + V KS
↑↑ (r) − εF V KS

↑↓ (r)

V KS
↓↑ (r) −∇2

2 + V KS
↓↓ (r) − εF

)(
ϕnk↑(r)

ϕnk↓(r)

)

= ξnk

(
ϕnk↑(r)

ϕnk↓(r)

)
, (2)

where ϕnkσ (r) is the σ component of the spinor Kohn-Sham
orbital at (n, k) and V KS

σσ ′ (r) is the σσ ′ component of the
Kohn-Sham potential with SOI (σ, σ ′ = ↑,↓). Due to the off-
diagonal part of the Kohn-Sham potential, the spin-up state
and the spin-down state are hybridized. Therefore, the Kohn-
Sham eigenvalue ξnk does not have a spin index (σ ). The non-
linear gap equation (1) should be solved numerically at each
temperature. The integration kernel Knkn′k′ (ξ, ξ ′) indicates the
superconducting-pair breaking and creating interactions and
comprises the following three terms:

Knkn′k′ (ξ, ξ ′) ≡ Kep
nkn′k′ (ξ, ξ ′) + Kee

nkn′k′ (ξ, ξ ′) + Ks f
nkn′k′ (ξ, ξ ′),

(3)

namely, the electron-phonon, the Coulomb repulsion, and the
spin-fluctuation kernel, respectively. However, the renormal-
ization factor Znk(ξnk ) comprises only the electron-phonon
and spin-fluctuation terms as follows:

Znk(ξ ) ≡ Zep
nk (ξ ) + Zs f

nk (ξ ), (4)

because the Coulomb-repulsion contribution to this factor is
already included in the Kohn-Sham eigenvalue ξnk. The tem-
perature T is defined by considering the Boltzmann constant
kB = 1.

Let us explain each term in the kernel and the renormal-
ization factor below. The electron-phonon kernel Kep and
renormalization factor Zep are given by [16]

Kep
nkn′k′ (ξ, ξ ′) = 2

tanh[ξ/(2T )] tanh[ξ ′/(2T )]

∑
ν

∣∣gν
nkn′k′

∣∣2

× [I (ξ, ξ ′, ωk′−kν ) − I (ξ,−ξ ′, ωk′−kν )], (5)

Zep
nk (ξ ) = −1

tanh[ξ/(2T )]

∑
n′k′ν

∣∣gν
nkn′k′

∣∣2

× [J (ξ, ξn′k′ , ωk′−kν ) + J (ξ,−ξn′k′ , ωk′−kν )], (6)

where ωqν is the phonon frequency at wave-number q and
branch ν. I (ξ, ξ ′, ω) and J (ξ, ξ ′, ω) are derived with the
Kohn-Sham perturbation theory [18] and are written as

follows [2]:

I (ξ, ξ ′, ω) = fT (ξ ) fT (ξ ′)nT (ω)

×
[

eξ/T − e(ξ ′+ω)/T

ξ − ξ ′ − ω
− eξ ′/T − e(ξ+ω)/T

ξ − ξ ′ + ω

]
, (7)

J (ξ, ξ ′, ω) = J̃ (ξ, ξ ′, ω) − J̃ (ξ, ξ ′, ω), (8)

J̃ (ξ, ξ ′, ω) = − fT (ξ ) + nT (ξ )

ξ − ξ ′ − ω

[
fT (ξ ′) − fT (ξ − ω)

ξ − ξ ′ − ω

− fT (ξ − ω) fT (−ξ ′ + ω)

T

]
, (9)

where fT (ξ ) and nT (ω) are the Fermi-Dirac and the Bose-
Einstein distribution functions, respectively. The functions
I (ξ, ξ ′, ω) and J (ξ, ξ ′, ω) yield a temperature-dependent re-
tardation effect. The electron-phonon vertex g between Kohn-
Sham orbitals indexed with (n, k) and (n′, k + q), and the
phonon (q, ν) is computed as [19]

gν
nkn′k+q =

∫
d3r

∑
σσ ′=↑,↓

ϕ∗
n′k+qσ (r)ϕnkσ ′ (r)

×
∑

τ

ητ
qν · δqτV KS

σσ ′ (r)√
2Mτωqν

, (10)

where Mτ is the mass of the atom labeled by τ, ητ
qν is

the polarization vector of phonon (q, ν) and atom τ , and
δqτV KS

σσ ′ (r) is the Kohn-Sham potential deformed by the pe-
riodic displacement of atom τ and wave-number q,

δqτV KS
σσ ′ (r) =

∑
R

eiq·R δV KS
σσ ′[{rτR}](r)

δrτR
, (11)

where rτR is the position of the atom τ at the cell R. We have
obtained the deformation potential by the phonon calculation,
based on density functional perturbation theory (DFPT) [20].
The electron-phonon kernel Kep is always negative; there-
fore, it makes a positive contribution in forming the Cooper
pair. However, the electron-phonon renormalization factor Zep

weakens the effect caused by the kernels.
The electron-electron repulsion kernel Kee in Eq. (3) is [16]

Kee
nkn′k′ (ξ, ξ ′) = 2

π

∫ ∞

0
dω

|ξ | + |ξ ′|
(|ξ | + |ξ ′|)2 + ω2

V ee
nkn′k′ (iω),

(12)
where V ee

nkn′k′ (iω) is the dynamically screened exchange inte-
gral between the Kohn-Sham orbitals (n, k) and (n′, k′),

V ee
nkn′k′ (iω) =

∫∫
d3r d3r′VRPA(r, r′, iω)

×ρ
(0)
nkn′k′ (r)ρ (0)∗

nkn′k′ (r′), (13)

ρ
(0)
nkn′k′ (r) =

∑
σ=↑,↓

ϕ∗
nkσ (r)ϕn′k′σ (r). (14)

In this paper, we have computed the screened Coulomb in-
teraction VRPA by applying the random phase approximation
(RPA) [21] as
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VRPA(r, r′, iω) = 1

|r − r′| +
∫∫

d3r1d3r2VRPA(r, r1, iω)

×
00
KS(r1, r2, iω)

1

|r2 − r′| , (15)

where 
00
KS is the electronic susceptibility of the Kohn-Sham

system (the nonperturbed susceptibility). This electronic sus-
ceptibility is the α = 0 part of the following susceptibilities of
the Kohn-Sham system:


αα
KS(r, r′, iω) =

∑
kk′nn′

θ (−ξnk ) − θ (−ξn′k′ )

ξnk − ξn′k′ + iω
ρ

(α)
nkn′k′ (r)ρ (α)∗

nkn′k′ (r′),

(16)

where α takes 0, x, y, z, and

ρ
(x)
nkn′k′ (r) =

∑
σ=↑,↓

ϕ∗
nkσ (r)ϕn′k′−σ (r), (17)

ρ
(y)
nkn′k′ (r) =

∑
σ=↑,↓

σϕ∗
nkσ (r)ϕn′k′−σ (r), (18)

ρ
(z)
nkn′k′ (r) =

∑
σ=↑,↓

σϕ∗
nkσ (r)ϕn′k′σ (r). (19)

The spin susceptibility 
xx
KS, 


yy
KS, and 
zz

KS are used in
the spin-fluctuation term later on. Because of the factor
[θ (−ξnk ) − θ (−ξn′k′ )]/(ξnk − ξn′k′ + iω), these susceptibili-
ties are affected largely by the electronic states in the vicinity
of Fermi surfaces.

We propose the SF kernel Ks f in Eq. (3) and the renor-
malization Zs f in Eq. (4) constructed using the noncollinear
spinor wave functions. The following formulation is an exten-
sion of those quantities in the collinear magnetism [14]:

Ks f
nkn′k′ (ξ, ξ ′) = 2

π

∫ ∞

0
dω

|ξ | + |ξ ′|
(|ξ | + |ξ ′|)2 + ω2

�
s f
nkn′k′ (iω),

(20)

Zs f
nk (ξ ) = 1

π

∑
n′k′

∫ ∞

0
dω

(|ξ | + |ξn′k′ |)2 − ω2

[(|ξ | + |ξn′k′ |)2 + ω2]2
�

s f
nkn′k′ (iω),

(21)

where

�
s f
nkn′k′ (iω) =

∑
α=x,y,z

∫∫
d3r d3r′�s f

αα (r, r′, iω)

× ρ
(α)
nkn′k′ (r)ρ (α)∗

nkn′k′ (r′). (22)

�
s f
nkn′k′ has a similar form to the screened exchange integral of

Eq. (13), and it involves the summation over the x, y, and z
components of the following SF-mediated interaction:

�s f
αα (r, r′, iω) = −

∫∫
d3r1d3r2Iαα

XC (r, r1)

×
αα (r1, r2, iω)Iαα
XC (r2, r′), (23)

where 
αα is the spin susceptibility of the interacting system
as [22]


αα (r, r′, iω) = 
αα
KS(r, r′, iω) +

∫∫
d3r1d3r2


αα (r, r1, iω)

× Iαα
XC (r1, r2)
αα

KS(r2, r′, iω). (24)

In Eqs. (23) and (24), the spin-spin interaction is included
through the exchange-correlation kernel,

Iαα
XC (r, r′) ≡ δ2EXC

δmα (r)δmα (r′)
, (25)

which is the second-order functional derivative of the
exchange-correlation energy EXC with respect to the spin
density along the α direction mα . We have used the results
of the standard density functional calculations of the normal
(nonsuperconducting) state to calculate the above-mentioned
quantities. Therefore, we have computed Tc by solving the
gap equation (1) as a postprocess of the calculations of the
normal state. The treatment described, known as the decou-
pling approximation, is known to be reliable when the band-
width and the superconducting gap energy scales are largely
different [2].

III. IMPLEMENTATION

In this section, we will explain the practical procedure to
perform the calculations explained in the previous section.

A. Evaluation of exchange integrals
with Fourier transformation

The exchange integrals with Coulomb interaction part
V ee

nkn′k′ of Eq. (13) and the SF part �
s f
nkn′k′ of Eq. (22) can

be computed efficiently using the Fourier transformation as
follows: First, ρ (α)(r) in Eqs. (14) and (17)–(19) has the
periodicity of the lattice vector R together with the phase
factor from the Bloch theorem as

ρ
(α)
nkn′k′ (r + R) = ei(k′−k)·Rρ

(α)
nkn′k′ (r). (26)

Therefore ρ (α)(r) can be expanded with the Fourier compo-
nents of the reciprocal lattice vectors G as

ρ
(α)
nkn′k+q(r) =

∑
G

ei(q+G)·rρ̃ (α)
nkn′k+q(G), (27)

where ρ̃ (α)(G) is defined by the Fourier transformation of
ρ (α)(r) as follows:

ρ̃
(α)
nkn′k+q(G) ≡ 1

vuc

∫
uc

d3r e−i(q+G)·rρ (α)
nkn′k+q(r). (28)

Subsequently, the exchange integral of Eq. (13) is rewritten as

V ee
nkn′k+q(iω) =

∑
GG′

V q
RPA(G, G′, iω)ρ̃ (0)

nkn′k+q(G)ρ̃ (0)∗
nkn′k+q(G′),

(29)

where V q
RPA is the Fourier component of the screened Coulomb

interaction as follows:

V q
RPA(G, G′, iω)

≡
∫∫

d3r d3r′ei(q+G)·re−i(q+G′ )·r′
VRPA(r, r′, iω). (30)

However, the values of VRPA(r, r, iω) need not be found since
we show that V q

RPA(G, G′, iω) at each q can be computed
separately using the Bloch theorem as shown below. By
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substituting VRPA(r, r′, iω) of Eq. (15) into Eq. (30), we obtain

V q
RPA(G, G′, iω) = 4πδGG′

|q + G|2 +
∑
G1

V q
RPA(G, G1, iω)

×

00q
KS (G1, G′, iω)

4π

|q + G′|2

=
[ |q + G′|2δGG′

4π
− 


00q
KS (G, G′, iω)

]−1

,

(31)

where 

ααq
KS (G, G′, iω) is the Fourier component of the sus-

ceptibilities of the Kohn-Sham system of Eq. (16) given by



ααq
KS (G, G′, iω)

≡
∫∫

d3r d3r′ei(q+G)·re−i(q+G′ )·r′

αα

KS(r, r′, iω)

=
∑
knn′

θ (−ξnk ) − θ (−ξn′k+q)

ξnk − ξn′k+q + iω
ρ̃

(α)
nkn′k+q(G)ρ̃ (α)∗

nkn′k+q(G′). (32)

In the derivation of Eq. (31), we used the periodicity of each
term with respect to the lattice vector. The factor [θ (−ξnk ) −
θ (−ξn′k+q)]/(ξnk − ξn′k+q + iω) in the susceptibilities varies
rapidly in the vicinity of Fermi surfaces, and we need a dense
k grid to compute it accurately, which may require a huge
numerical cost. Therefore, we use the reverse interpolation
scheme explained in Sec. III.C.1 of Ref. [23]. In this scheme,
we compute the explicitly energy-dependent factor with a
dense k grid whereas we compute the other parts using a
coarse k grid because ρ̃

(α)
nkn′k+q(G)ρ̃ (α)∗

nkn′k+q(G′) varies more
smoothly than the energy-dependent factor. The SF term can
be computed in the same manner at each q separately. The
Fourier component of the SF-mediated interaction of Eq. (23)
is

�s f ,αα
q (G, G′, iω)

= −
∑

G1,G2

Iααq
XC (G, G1)

× [(



ααq
KS (G1, G2)

)−1 − Iααq
XC (G1, G2)

]−1
Iααq
XC (G2, G′),

(33)

where Iααq
XC is the Fourier component of the exchange-

correlation kernel of Eq. (25). In this paper, we employed the
local-density approximation (LDA) to describe this kernel as
follows: We approximate the exchange-correlation energy as

ELDA
XC =

∫
d3r εhom

XC [ρ(r), |m(r)|]ρ(r), (34)

where ρ(r) is the electronic charge density and εhom
XC (ρ, m) is

the exchange-correlation energy density of the homogeneous
electron gas whose charge and spin density are ρ and m. The
exchange-correlation kernel in Eq. (25) becomes

ILDA,αα
XC (r, r′) = δ(r − r′)ρ(r)

∂2ε(ρ(r), |m|)
∂|m|∂|m|

(
mα

|m|
)2∣∣∣∣

m=m(r)

.

(35)

Since we perform the nonmagnetic calculation in this paper,
we take the m(r) → 0 limit for this kernel. Within LDA,
Iααq
XC (G, G′) does not depend on q. This is equivalent to the

adiabatic local density approximation [22] in time-dependent
density functional theory [24].

B. Auxiliary gap equation

We have solved the gap equation (1) using the auxiliary
energy axis [23] to capture the rapid change in the explicitly
energy-dependent function in the vicinity of Fermi surfaces.
In this method, the gap function �nk depends also on the
auxiliary energy; the auxiliary gap function �̃nk(ξ ) satisfies
�̃nk(ξnk ) = �nk. Subsequently, the gap equation (1) becomes

�̃nk(ξ ) = −1

2

∫ ∞

−∞
dξ ′ ∑

n′k′
Dn′k′ (ξ ′)

Knkn′k′ (ξ, ξ ′)
1 + Znk(ξ )

× �̃n′k′ (ξ ′)√
ξ ′2 + �̃2

n′k′ (ξ ′)
tanh

⎛
⎝

√
ξ ′2 + �̃2

n′k′ (ξ ′)

2T

⎞
⎠,

(36)

where Dnk(ξ ) is the (n, k)-resolved density of states. In the
same manner, the electron-phonon and SF renormalization
factors of Eqs. (6) and (21) become

Zep
nk (ξ ) = −1

tanh[ξ/(2T )]

∫ ∞

−∞
dξ ′ ∑

n′k′ν

Dn′k′ (ξ ′)
∣∣gν

nkn′k′
∣∣2

× [J (ξ, ξ ′, ωk′−kν ) + J (ξ,−ξ ′, ωk′−kν )] (37)

and

Zs f
nk (ξ ) = 1

π

∫ ∞

−∞
dξ ′ ∑

n′k′
Dn′k′ (ξ ′)

∫ ∞

0
dω

× (|ξ | + |ξn′k′ |)2 − ω2

[(|ξ | + |ξn′k′ |)2 + ω2]2
�

s f
nkn′k′ (iω), (38)

respectively, where we employ the reverse interpolation
method again; the (n, k)-resolved density of states Dnk(ξ ) is
computed with the dense k grid, whereas the other parts are
computed on the coarse k grid; finally, we combine the parts
yielded.

C. Frequency integral

The integration in Eq. (12) involves the frequency ω span-
ning [0,∞]. Therefore, to perform the integration numeri-
cally, we change the variable as follows:

ω = (|ξ | + |ξ ′|)1 + x

1 − x
. (39)

Then, Eq. (12) becomes

Kee
nkn′k′ (ξ, ξ ′) = 2

π

∫ 1

−1
dx

1

1 + x2
V ee

nkn′k′

(
i(|ξ | + |ξ ′|)1 + x

1 − x

)
.

(40)

When |ξ | + |ξ ′| = 0, this integration becomes V ee
nkn′k′ (0).

To obtain V ee
nkn′k′ (iω) at an arbitrary ω, we first

compute V ee
nkn′k′ (iω) at discrete nonuniform points

ω = 0, ω1, ω2, . . . ,∞ and interpolate them. Using the
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FIG. 1. (a) The flow chart to perform the SCDFT calculation for each material in this paper. The indices of steps are the same as those
mentioned in Sec. III D. (b) The flow chart of the bisection method used to compute Tc.

same transformation as in Eq. (39), the frequency integral in
the SF renormalization term (38) is performed as follows:

Zs f
nk (ξ ) = 1

π

∫ ∞

−∞
dξ ′ ∑

n′k′
Dn′k′ (ξ ′)

∫ 1

−1
dx

−2x

(|ξ |+|ξn′k′ |)(1+x2)2

×�
s f
nkn′k′

(
i(|ξ | + |ξ ′|)1 + x

1 − x

)
. (41)

The numerical integration with respect to the variable x rang-
ing [−1, 1] can be performed using the Gauss quadrature.

D. Overall procedure

Figure 1(a) shows the calculation flow. We employ the
following three different wave-number grids to efficiently
perform the Brillouin-zone integrals:

Coarse grid. To reduce the computational cost, we use a
coarse grid for the wave-number q of phonons and suscep-

tibilities. The grid is shifted by half of its step to avoid the
singularity at the � point. This grid is also used for solving
the gap equation.

Medium-density grid. The atomic structure and the charge
density are optimized with the self-consistent field cal-
culation using k grid denser than the coarse grid. This
k grid is used to prepare electronic states in the DFPT
calculation.

Dense grid. To treat the explicitly energy-dependent factor
in the calculations of susceptibilities and the (n, k)-dependent
density of states in the gap equation (36), a dense k grid is
employed.

The overall calculations are performed as follows:
(1) First, we optimize the atomic structure and the charge

density using the standard density functional calculation with
the medium-density k grid. The following calculation is per-
formed on this optimized atomic structure and with the charge
density.
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(2) We compute the electron-phonon interaction and the
frequency of phonons, whose wave-number q is on the half-
grid shifted coarse grid. This step is further split into the
following two substeps:

(a) The phonon calculation based on DFPT is per-
formed; the electronic states used in this calculation have a
wave-number k on the medium-density grid.

(b) Electron-phonon vertex of Eq. (10) between the
Kohn-Sham orbitals (n, k) and (n′, k + q) is computed,
where the wave-number k is on the coarse grid.
(3) Next, we compute the exchange integrals of screened

Coulomb and SF-mediated interactions whose transitional
momentum q is on the half-grid shifted coarse grid. This step
is split into the following three substeps:

(a) One-shot DFT calculation on the dense k grid is
performed. The resulting energy dispersion ξnk is later used
to compute the explicitly energy-dependent term in the
susceptibilities in Eq. (32).

(b) One-shot DFT calculation on the coarse k grid with
and without a half-grid shift is performed. These two grids
are connected by the transitional momentum q on the
coarse of a half-grid shifted grid. The resulting Kohn-Sham
orbitals will be used to compute ρ (α)(r) of Eqs. (14) and
(17)–(19).

(c) The exchange integrals of screened Coulomb and
SF-mediated interactions between the Kohn-Sham orbitals
(n, k) and (n′, k + q) are computed where the wave-
number k is on the coarse grid.
(4) The gap equation within SCDFT is solved on the

coarse k grid at each temperature. Then, Tc is obtained as a
minimum temperature where all �nk(ξ )’s vanish.

The transition temperature Tc is found using the bisection
method explained in Fig. 1(b). Although the initial lower limit
of Tc is set to zero, the initial upper limit is set to the Tc

estimated by the Bardeen-Cooper-Schrieffer theory [25,26]
(2�0/3.54, where �0 is the superconducting gap averaged
over Fermi surfaces at 0 K). If there is a finite gap even at this
upper limit, although it rarely occurs, we double the initial
upper limit; then we repeat the bisection step ten times and
find Tc.

IV. RESULT

In this section, we will first explain the numerical condition
of this paper, then show the result of the benchmark.

The numerical condition is as follows: We use the
DFT code QUANTUM ESPRESSO [27] which employs plane
waves and pseudopotentials. Perdew-Burke-Ernzerhof’s den-
sity functional [28] based on the generalized gradient ap-
proximation (GGA) is used. We use the optimized norm-
conserving pseudopotential [29] library provided by Schlipf-
Gygi [30,31]. The energy cutoff for the wave functions of each
element is specified using the criteria and the convergence
profiles in the standard solid-state pseudopotentials [31]. We
are using the optimized tetrahedron method [32] to perform
the Brillouin-zone integration. The number of grids along
each reciprocal lattice vector is proportional to the length of
that vector. Table I presents the above-explained conditions
for each element. The SCDFT calculation is performed using
the SUPERCONDUCTING TOOLKIT [33] software package. We

TABLE I. Structure, cutoff for the plane wave for wave func-
tions, q-grid for phonon, and the error of the lattice constant
〈�a/aexp〉 ≡ (Vcalc/Vexp)1/3 − 1. Vcalc and Vexp are the calculated and
experimental unit-cell volumes, respectively.

Structure Cutoff (Ry) Coarse grid 〈�a/aexp〉 (%)

Be hcp 65 10 × 10 × 5 −0.74
Na bcc 90 6 × 6 × 6 −0.60
Mg hcp 65 7 × 7 × 4 −0.77
Al fcc 65 8 × 8 × 8 −0.90

K bcc 120 5 × 5 × 5 0.61
Ca fcc 120 6 × 6 × 6 −1.20
Sc hcp 45 7 × 7 × 4 −0.49
Ti hcp 50 7 × 7 × 4 −0.28
V bcc 100 9 × 9 × 9 −1.19
Cu fcc 90 9 × 9 × 9 0.42
Zn hcp 90 8 × 8 × 4 −0.02
Ga α-Ga 150 5 × 5 × 4 1.35

Rb bcc 30 5 × 5 × 5 0.58
Sr fcc 30 5 × 5 × 5 −1.09
Y hcp 40 6 × 6 × 3 0.94
Zr hcp 50 7 × 7 × 4 0.09
Nb bcc 90 8 × 8 × 8 0.53
Mo bcc 35 8 × 8 × 8 0.44
Tc hcp 30 8 × 8 × 4 0.04
Ru hcp 35 8 × 8 × 4 −0.62
Rh fcc 35 8 × 8 × 8 0.73
Pd fcc 45 8 × 8 × 8 1.18
Ag fcc 50 8 × 8 × 8 1.42
Cd hcp 45 7 × 7 × 3 2.32
In bct 65 7 × 7 × 7 1.84
Sn β-Sn 50 7 × 7 × 7 1.72
Cs bcc 75 4 × 4 × 4 1.01
Ba bcc 30 5 × 5 × 5 −0.19
La hcp 120 6 × 6 × 3 0.60
Hf hcp 55 7 × 7 × 4 0.01
Ta bcc 50 8 × 8 × 8 0.79
W bcc 50 8 × 8 × 8 0.62
Re hcp 60 8 × 8 × 4 0.39
Os hcp 55 8 × 8 × 4 1.00
Ir fcc 40 8 × 8 × 8 1.29
Pt fcc 60 8 × 8 × 8 1.15
Au fcc 45 8 × 8 × 8 1.15
Hg Trigonal 50 6 × 6 × 6 6.81
Tl hcp 55 6 × 6 × 3 3.10
Pb fcc 35 6 × 6 × 6 1.77

have set the medium-density grid twice the density of the
coarse grid and set the dense grid twice the density of the
medium-density grid, for example, 83, 163, and 323 grids
were used for the coarse, medium-density, and dense grids,
respectively; all for Al. The minimum scale and the number
of points of the nonuniform auxiliary energy grid used in the
gap equation (36) were set to 10−7 Ry and 100, respectively.
In the calculation of the magnetic exchange-correlation kernel
of Eq. (25), we ignore the gradient correction. For stabilizing
the phonon calculation, the lattice constants and the internal
atomic coordinates are optimized; the deviation between the
optimized and the experimental lattice constants are listed in
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Table I. To compute the susceptibilities in Eq. (32) and solve
the gap equation (36), we have included 40Natom (20Natom )
empty bands for the calculation with (without) SOI, where
Natom is the number of atoms per unit cell.

Next, we move onto the results. Figure 2 shows the exper-
imental Tc (T exp

c ) [34], the theoretical Tc computed with and
without SOI/SF in a periodic-table form. Also, to examine
the effects of the electron-phonon interaction, the screened
Coulomb repulsion, and the spin fluctuation, we are showing
the following quantities in the same figure: The density of
states (DOS) at the Fermi level divided by the number of
atoms affects the strength of the mean field. Fröhlich’s mass-
enhancement parameter,

λ =
∑
qν

λqν, (42)

and the averaged phonon frequencies,

ωln = exp

[
1

λ

∑
qν

λqν ln(ωqν )

]
(43)

appear in the conventional McMillan formula [4,5],

Tc = ωln

1.2
exp

[ −1.04(1 + λ)

λ − μ∗(1 + 0.62λ)

]
, (44)

which has been used to estimate Tc semiempirically with
an adjustable parameter μ∗. The (q, ν)-dependent mass-
enhancement parameter λqν is computed as follows:

λqν = 2

D(0)ωqν

∑
knn′

∣∣gν
nkn′k+q

∣∣2
δ(ξnk )δ(ξn′k+q), (45)

where D(0) is the density of states at the Fermi level. We are
calculating, here, the Brillouin-zone integral, including two δ

functions using the dense k grid together with the optimized
tetrahedron method [32]. Because of the double δ function
δ(ξnk )δ(ξn′k+q), this summation involves the electron-phonon
vertices only between the electronic states at the Fermi
level. Therefore, Fröhlich’s mass-enhancement parameter λ in
Eq. (42) indicates the retarded phonon-mediated interaction
(2|g|2/ω) averaged over Fermi surfaces times the density of
state at the Fermi level. Similarly, ωln indicates the typical fre-
quency of phonons which couples largely with the electronic
states at the Fermi level. Therefore, λ and ωln closely relate
to the electron-phonon contribution to Tc. In an analogous
fashion to λ, we are showing parameters for the Coulomb
repulsion and SF as

μC = 1

D(0)

∑
kk′nn′

Kee
nkn′k′δ(ξnk )δ(ξn′k′ ), (46)

and

μs = 1

D(0)

∑
kk′nn′

Ks f
nkn′k′δ(ξnk )δ(ξn′k′ ), (47)

respectively. These parameters are the Coulomb [Eq. (12)] and
SF [Eq. (20)] kernels averaged over Fermi surfaces times the
density of states at the Fermi level.

We note that, in Fig. 2, some results are absent because
of the following reason: Li has a vast unit cell at a low
temperature, and it is computationally demanding. Cr, Mn,

FIG. 3. The convergence of calculated Tc (with SF, without SOI),
the density of states at the Fermi level, the averaged phonon frequen-
cies ωln, Fröhlich’s mass-enhancement parameter λ, the averaged
Coulomb interaction μC in Eq. (46), and the averaged SF term μs

in Eq. (47) with respect to the density of the wave-number grids. We
pick up Al, V, Nb, and Pb.

Fe, Co, and Ni show a magnetic order at the low temperature.
Therefore, the formalism of the spin fluctuation (23) used in
this paper breaks down; the matrix,

δGG′ −
∑
G1



ααq
KS (G, G1)Iααq

XC (G1, G′) (48)
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FIG. 4. The convergence of the Tc (with SF) with respect to the
number of points for the energy integral in Eq. (36) for Al, V, Nb,
and Pb.

does not become positive definite (Stoner’s criterion) for those
materials. For Be and Ba, there is no pseudopotential together
with SOI in the pseudopotential library used in this paper.

Since we are trying to unify the condition of the calculation
for all elements, we leave the result of these two materials
together with SOI blank. For Y, Zr, In (with SOI), La, Hf, and
Hg, we have obtained imaginary phonon frequencies because
of an artificial long-range structure instability. For such cases,
we could have not continued the calculation because of the
breakdown of the formulations of the electron-phonon kernel
[Eq. (5)] and renormalization term [Eq. (6)]. Therefore, we
leave the results for those cases blank.

We have checked the convergences of the numerical results
with respect to the density of k, q, and the auxiliary energy
grids. For this purpose, we have selected the typical four
materials, namely, Al, V, Nb, and Pb. Figure 3 shows the
convergence of calculated Tc (with SF, without SOI), the
density of states at the Fermi level, the averaged phonon
frequencies ωln, Fröhlich’s mass-enhancement parameter λ,
the averaged Coulomb interaction μC in Eq. (46), and the
averaged SF term μs in Eq. (47) with respect to the density
of the wave-number grids. Also, in the convergence check,
we have set the medium-density grid twice the density of
the coarse grid and have set the dense grid twice the density
of the medium-density grid. Although the λ’s of V and Nb
oscillate within 4% and 7%, respectively, when we change
the density of the coarse grid, other quantities, including Tc,

TABLE II. Fröhlich’s mass-enhancement parameter λ in Eq. (42) and the averaged phonon frequencies ωln in Eq. (43) computed in this
paper and earlier studies. Numerical conditions, the q grid of phonons, the k grid of electronic states for the calculation of phonon frequencies,
the k grid, and the smearing width for the integration in Eq. (45) are also written. In Ref. [35], only the number of q and k points in the
irreducible Brillouin zone (IBZ) are provided. In this paper and one of the earlier studies [36], the tetrahedron method is employed for
performing the Brillouin-zone integration in Eq. (45).

λ ωln (K) q grid k grid (phonon) k grid (λ) Smearing (eV) Functional Reference

Al (without SOI) 0.402 302 8 × 8 × 8 16 × 16 × 16 32 × 32 × 32 Tetrahedron GGA This paper
0.438 89 in IBZ 1,300 in IBZ 0.272 LDA [35]
0.417 314 8 × 8 × 8 12 × 12 × 12 32 × 32 × 32 0.272 LDA [15]
0.44 270 8 × 8 × 8 16 × 16 × 16 32 × 32 × 32 Tetrahedron LDA [36]

V (without SOI) 1.26 231 9 × 9 × 9 18 × 18 × 18 36 × 36 × 36 Tetrahedron GGA This paper
1.19 245 8 × 8 × 8 16 × 16 × 16 32 × 32 × 32 Tetrahedron LDA [36]

Cu (without SOI) 0.119 216 9 × 9 × 9 18 × 18 × 18 36 × 36 × 36 Tetrahedron GGA This paper
0.14 220 8 × 8 × 8 16 × 16 × 16 32 × 32 × 32 Tetrahedron LDA [36]

Nb (without SOI) 1.24 154 8 × 8 × 8 16 × 16 × 16 32 × 32 × 32 Tetrahedron GGA This paper
1.26 185 8 × 8 × 8 16 × 16 × 16 32 × 32 × 32 Tetrahedron LDA [36]

Mo (without SOI) 0.438 265 8 × 8 × 8 16 × 16 × 16 32 × 32 × 32 Tetrahedron GGA This paper
0.42 280 8 × 8 × 8 16 × 16 × 16 32 × 32 × 32 Tetrahedron LDA [36]

Pd (without SOI) 0.333 145 8 × 8 × 8 16 × 16 × 16 32 × 32 × 32 Tetrahedron GGA This paper
0.35 180 8 × 8 × 8 16 × 16 × 16 32 × 32 × 32 Tetrahedron LDA [36]

Ta (without SOI) 0.923 149 8 × 8 × 8 16 × 16 × 16 32 × 32 × 32 Tetrahedron GGA This paper
0.86 160 8 × 8 × 8 16 × 16 × 16 32 × 32 × 32 Tetrahedron LDA [36]

Tl (without SOI) 1.03 47 6 × 6 × 3 12 × 12 × 6 24 × 24 × 12 Tetrahedron GGA This paper
1.0 8 × 8 × 8 24 × 24 × 16 36 × 36 × 24 0.2 LDA [19]

Tl (with SOI) 0.752 47 6 × 6 × 3 12 × 12 × 6 24 × 24 × 12 Tetrahedron GGA This paper
0.87 8 × 8 × 8 24 × 24 × 16 36 × 36 × 24 0.2 LDA [19]

Pb (without SOI) 1.04 67 6 × 6 × 6 12 × 12 × 12 24 × 24 × 24 Tetrahedron GGA This paper
1.20 89 in IBZ 1,300 in IBZ 0.272 LDA [35]
1.68 65 8 × 8 × 8 16 × 16 × 16 32 × 32 × 32 Tetrahedron LDA [36]
1.08 8 × 8 × 8 16 × 16 × 16 32 × 32 × 32 0.2 LDA [19]
1.24 8 × 8 × 8 16 × 16 × 16 40 × 40 × 40 0.272 LDA [3]

Pb (with SOI) 1.45 58 6 × 6 × 6 12 × 12 × 12 24 × 24 × 24 Tetrahedron GGA This paper
1.56 8 × 8 × 8 16 × 16 × 16 32 × 32 × 32 0.2 LDA [19]
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FIG. 5. Experimental and computed Tc’s. For the theoretical
value, only the result computed with SOI and SF is represented. The
shaded region indicates that the deviation of Tc (T SOI+SF

c /T exp
c ) is less

than 20%.

are unchanged. We are showing the convergence of Tc (with
SF, without SOI) with respect to the number of points for the
energy integral in Eq. (36) in Fig. 4. This result shows the Tc’s
have converged at the numerical conditions described above.

We compare λ in Eq. (42), ωln in Eq. (43), and μC in
Eq. (46) obtained in this paper and earlier studies. Table II
shows λ and ωln in this paper and earlier studies. Although
there are small deviations due to the different exchange-
correlation functional, these quantities are consistent with
those of earlier studies except for the case for Pb without SOI;
the reported λ’s of Pb without SOI are scattered and different
from the experimental value (λexp = 1.55) [37]. We also con-
firm that we reproduced the averaged Coulomb interaction μC

in Eq. (46) in the earlier works for Al and Nb; μC is 0.251 and
0.429 for Al and Nb, respectively, in this paper whereas those
in the earlier studies are 0.236 [38] and 0.488 [39].

In Fig. 5, we have plotted the experimental Tc together with
the Tc calculated the most precisely in this paper by including
SOI and SF. We note that since there is no computed data
for Be and In with SOI, we are showing the data for them
without SOI. Except for Cd, Zn, and V, we have accurately
reproduced the experimental Tc. Inside the target elements
of this benchmark, the three highest-Tc elements observed
experimentally are Nb (9.20 K), Tc (7.77 K), and Pb (7.19 K).
Also, the three highest-Tc elements in our calculation are Nb
(7.470 K), Tc (6.019 K), and Pb (6.010 K). Therefore, at least,
in the elemental metals at ambient pressure, we can predict the
highest-Tc materials.

V. DISCUSSION

In this section, we discuss the results shown in the pre-
vious section. To check the accuracy of the calculation of

the electron-phonon interaction, we will plot in Fig. 6, the
calculated- and experimental- [40] Sommerfeld coefficient
γS’s which are the prefactors of the specific heat at a low
temperature,

Cv = γST + O(T 3). (49)

This coefficient is estimated using the density of states and
Fröhlich’s mass-enhancement parameter as follows:

γS = π2D(0)

3
(1 + λ). (50)

The calculated γS agrees very well with the experimental
value. For Re, Pt, and Pb, this agreement becomes improved
by including SOI; since these heavy elements have large
SOI, this interaction is crucial to reproduce the experimental
Sommerfeld coefficient.

We have plotted the computed- and experimental-Tc data
contained in Fig. 2 into Fig. 7 to visualize the effect by SOI
and SF; we can detect the following trends by inspecting this
graph: SF always reduces Tc’s for the elemental systems. This
reduction becomes significant for the transition metals and is
crucial to reproduce the experimental Tc quantitatively. The
mechanism of this reduction is explained as follows [41,42]:
For isotropic superconductors, such as elemental materials,
ferromagnetic spin fluctuation becomes dominant and aligns
the spin of electrons parallel. This effect breaks the singlet
Cooper pair in the isotropic superconductors. On the other
hand, in cuprates and iron-based superconductors, highly
anisotropic antiferromagnetic spin fluctuation becomes
dominant and enhances the superconducting gaps with
sign changes [14]. In the transition metals, the effect of
SF weakens with the increasing in the period number in
the periodic table. For example, μs varies 0.722 (V) →
0.203(Nb) → 0.131(Ta),0.057(Mo) → 0.018(W),0.117(Tc)
→ 0.057 (Re), 0.122 (Ru) → 0.055(Os), and0.269 (Rh) →
0.108 (Ir). Also, the μs of Pd becomes negative; this indicates
the formulation of SF breaks down due to the magnetic
order. Although the magnetic order is a numerical artifact,
this result shows that Pd has larger SF than that of Pt.
This trend of SF can be explained as follows [42]: The
electronic orbitals become delocalized with the increasing
in the principal quantum number (3d → 4d → 5d); this
delocalization decreases the magnetic exchange-correlation
kernel in Eq. (25); also, the delocalized orbital has small DOS.
Therefore, the elements with the larger period number exhibit
smaller SF contribution. We cannot see this trend in the
alkaline metals. For these elements, μs does not decrease with
the increasing in the period number, i.e., this parameter varies
0.213 (Na) → 0.270 (K) → 0.280 (Rb) → 0.427 (Cs). This
behavior comes from the increasing in the DOS because
of the larger lattice constant (larger atomic radius) for
the alkaline metals having the larger period numbers. The
effect of SOI is small in most cases, except for Tc, Sn,
Re, Tl, and Pb. In these elements, Fröhlich’s parameter
λ changes drastically by turning on the SOI. For Pb, this
enhancement of λ (1.036 → 1.453) can be traced back
to the three contributions, i.e., the phonon softening (ωln

decreases from 67 to 58 K), the increased DOS at the
Fermi level (0.527 eV−1 → 0.564 eV−1), and the enhanced
deformation potential δqτVKS(r) due to the SOI term [19].
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FIG. 6. Theoretical and experimental [40] Sommerfeld coefficient γS’s. The horizontal axis is the atomic symbol together with the group
of the periodic table. Blue crosses and green circles indicate the Sommerfeld coefficient computed with and without SOI whereas magenta
“+” with an error bar indicates the experimental value of the Sommerfeld coefficient.

These effects of SOI in Tc, Re, and Tl are opposite ones
in Pb and Sn; SOI reduces the electron-phonon coupling as
well as Tc in these three materials. We can reproduce the
absence of the superconductivity in alkaline, alkaline-earth,
and noble metals, except for Pt and Au with SOI and SF;
we have observed small finite Tc’s for these two elements;
we can reproduce the nonsuperconductivity also in Sc by
including SF whereas we observe Tc = 2.711 K by ignoring
SF. Since Sc has highly localized 3d electrons, the SF largely

reduces Tc. For the group-12 elements (Zn and Cd), Tc’s are
overestimated even if we include SF. For these materials,
the SF effect is small because the d orbitals are fully
occupied.

Finally, we have tried to find the factor which dominates
the accuracy of Tc. In Fig. 8, we have plotted the following
quantities for the elemental systems with finite Tc: (a) The
difference between the experimental Tc (T exp

c ) and theoretical
Tc computed with SOI and SF (T SOI+SF

c ). (b) The ratio be-

FIG. 7. Theoretical and experimental Tc’s. The horizontal axis is the atomic symbol together with the group of the periodic table. Downward
(upward) triangles indicate the Tc’s computed with (without) SF. Filled (empty) triangles indicate the Tc’s computed with (without) SOI. The
+ indicates the experimental value of Tc. The plot which ranges from 0 to 2 K in the upper panel is magnified into the bottom panel.
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FIG. 8. We plot the following quantities for the elemental sys-
tems which have finite Tc: (a) The difference between the experi-
mental Tc (T exp

c ) and the theoretical Tc computed with SOI and SF
(T SOI+SF

c ). (b) The ratio between T exp
c and T SOI+SF

c . (c) The density
of states at the Fermi level. (d) The averaged phonon frequencies
ωln. (e) Fröhlich’s mass-enhancement parameter λ. (f) The averaged
Coulomb interaction μC in Eq. (46). (g) The averaged SF term μs in
Eq. (47). The horizontal axis is the atomic symbol together with the
group of the periodic table. We note that since there is no computed
data for Be and In with SOI, we show the data for them without SOI.

tween T exp
c and T SOI+SF

c . (c) The density of states at the Fermi
level. (d) The averaged phonon frequencies ωln in Eq. (43).
(e) Fröhlich’s mass-enhancement parameter λ in Eq. (42).
(f) The averaged Coulomb interaction μC in Eq. (46). (g) The
averaged SF term μs in Eq. (47). Note that, since there is no
computed data for Be and In with SOI, we are presenting data
for these two elements without SOI. Tc’s of Zn and Cd (V,
Nb, Tc, and Pb) are overestimated (underestimated) in the
differential plot (a) whereas those of Zn Cd, W, and Ir (Be,
V, and Rh) are overestimated (underestimated) in the ratio
plot (b). Therefore, for V, Zn, and Cd, the focus should be
on examining the accuracy of Tc; therefore, we attempted to
find features of these three materials from elemental systems.
From Fig. 8(g), we can see that V has extremely large μs.
When the system has large SF, the SF-mediated interaction
in Eq. (33) changes rapidly because the inverse of the ma-
trix in Eq. (48) approaches a singular matrix. Therefore,
the SF of such systems needs to computed more precisely,
for example, by including the gradient collection into the
magnetic exchange-correlation kernel in Eq. (25). However,
it is difficult to identify the significant difference among
Zn, Cd, and other materials. For example, the parameters of
Ga are extremely close to those of Zn. However, the calcu-
lated Tc of Ga is in good agreement with the experimental
one.

By leaving the superconductivity, we can see the following
features from Fig. 8: DOS and μC are showing very simi-
lar behavior. Since μC in Eq. (46) can be approximated to
the DOS times the averaged Coulomb interaction, the syn-
chronicity indicates that the elemental materials in Fig. 8 have
nearly the same screened Coulomb repulsion. ωln has peaks
around groups 6–9 on both periods 5 and 6. Additionally, the
frequencies at both peaks are extremely close, although the
atomic masses of these periods are different; these behaviors
can be explained by the following Friedel’s theory [43]. The
materials in groups 6–9 have high cohesive energy because of
the half-filled d orbitals; the high cohesive energy leads to the
hardness and the high phonon frequencies of the materials.
Since 5d orbitals are more delocalized than 4d orbitals, the
binding energy increases for 5d materials. Therefore, the
phonon frequency is unchanged because of the cancellation
between the atomic mass and the stronger bonding.

VI. SUMMARY

We performed the benchmark calculations of SCDFT us-
ing our open-source software package SUPERCONDUCTING

TOOLKIT, which uses our method for treating SOI together
with SF. We presented benchmark results of superconducting
properties calculated by SCDFT for 35 elemental materials
together with computational details and discussed the accu-
racy of the predicted Tc and the effects of SF and SOI on
Tc. We found that the calculations, including SOI and SF,
can quantitatively reproduce the experimental Tc’s. The SF is
essential especially for the transition metals; still the effect
of SOI is small for elemental systems except for Tc, Sn, Re,
Tl, and Pb. We also reproduced the absence of the supercon-
ductivity in the alkaline, alkaline-earth, and noble metals. Our
result could be used to check the validity of future work,
such as the high-throughput calculation for exploring new
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superconductors. Moreover, the knowledge of this benchmark
can be used to improve the methodology of SCDFT. For ex-
ample, we can focus on Zn and Cd as a target for the next theo-
retical improvement. It is straightforward to extend the current
benchmark calculation into the binary, ternary, and quaternary
systems. From such a benchmark, we check systematically
the accuracy of SCDFT for the compound superconductors,
such as magnesium diboride [44], cuprates [45], iron-based
[46], heavy-fermion superconductors [47], etc. This type of
benchmark calculation should be performed whenever there
is room for theoretical improvements so that the applicability
of SCDFT can be extended as a universal tool.
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