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Debye mechanism of giant microwave absorption in superconductors
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We discuss a novel mechanism of microwave absorption in superconductors, which is similar to the Debye
absorption mechanism in molecular gases. The contribution of this mechanism to the ac conductivity is
proportional to the inelastic quasiparticle relaxation time τin rather than the elastic one τel and therefore it can
be much larger than the conventional one. The Debye contribution to the linear conductivity arises only in
the presence of a dc supercurrent in the system and its magnitude depends strongly on the orientation of the
microwave field relative to the supercurrent. The Debye contribution to the nonlinear conductivity exists even
in the absence of dc supercurrent, and it is proportional to τin. Therefore the nonlinear threshold is anomalously
low. Microwave absorption measurements may provide direct information about τin in superconductors.
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I. INTRODUCTION

In this paper we discuss the theory of microwave absorp-
tion in superconductors. In linear response to the microwave
field E(t ) = Eω cos(ωt ), and in the limit of low frequencies
ω, the current density in a superconductor may be written as

j = e

m
Ns ps + σE. (1)

Here Ns is the superfluid density, e and m are, respectively,
the charge and the mass of the electron, and the superfluid
momentum is defined by ps = h̄

2 ∇χ − e
c A, with χ being the

phase of the order parameter, and A the vector potential. The
second term in Eq. (1), characterized by the conductivity σ ,
represents the dissipative part of the current.

The microwave absorption coefficient is controlled by the
conductivity σ . The value of σ is determined by the quasi-
particle scattering processes in the superconductor, which
are generally characterized by two relaxation times: elastic,
τel, and inelastic, τin, ones. In a typical situation, which we
assume below, τin � τel. The theory of transport phenomena
in conventional superconductors was developed long ago,
see, for example, Refs. [1–5]. The conventional result is that
the conductivity, and consequently the microwave absorption
coefficient, are proportional to the elastic relaxation time τel.
For example, at temperatures T near the critical temperature
Tc the conductivity of a superconductor σ is [3,4]

σ = σD

(
1 + �

2T
ln

�

ω

)
, (2)

where σD = e2νnD is the Drude conductivity in the normal
state, νn is the normal state density of states at the Fermi
level, D = v2

F τel/3 being the diffusion coefficient, and vF is

the Fermi velocity.1 Measurements of microwave absorption
in s-wave superconductors in the absence of an applied dc
supercurrent generally agree with the aforementioned the-
ory [6,7]. However, there is a marked lack of experimental
literature on measurements of microwave absorption in the
presence of an applied dc supercurrent. The recent paper
by Santavicca et al. [8] shows that the dependence of the
microwave absorption in an s-wave superconductor on an
applied dc supercurrent is not described by the conventional
theory, as their measurements are several orders of magnitude
larger than the conventional theory would suggest. We believe
this dependence of the microwave absorption coefficient on
an applied dc supercurrent could be described by our new
contribution discussed below.

In this paper we discuss a novel contribution to the con-
ductivity, σDB, which is proportional to the inelastic relaxation
time τin. As a result, it may exceed the conventional contribu-
tion by orders of magnitude. This contribution to the linear
conductivity exists only in the presence of a dc supercurrent.
Furthermore, it is strongly anisotropic and depends on the
relative orientation between Eω and the supercurrent. Even
in situations where this contribution is small in comparison
to the conventional result, it determines the dependence of
the conductivity on both the magnitude and direction of the
dc supercurrent. This enables determination of τin, which is
difficult to measure by other methods.

In the case of the nonlinear conductivity, a contribution
proportional to τin exists even at zero dc supercurrent. Con-
sequently, the nonlinear threshold for microwave absorption
turns out to be anomalously low.

1At small frequencies the logarithmic divergence in Eq. (2) is cut
off by taking into account inelastic quasiparticle scattering, the gap
anisotropy, and nonuniformity of the electron interaction constant.
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The physical mechanism of this contribution to the con-
ductivity is similar to the Debye mechanism of microwave
absorption in gases [9], Mandelstam-Leontovich mechanism
of the second viscosity in liquids [10], and Pollak-Geballe
mechanism of microwave absorption in the hopping con-
ductivity regime [11]. It can be qualitatively understood as
follows. Let us separate the superfluid momentum ps(t ) =
p̄s + δps(t ) into the dc part p̄s and the ac part δps(t ) whose
time evolution is determined by the microwave field

δ ṗs(t ) = eE(t ). (3)

Below we assume ω � �, where � is the pairing gap. In
this regime the quasiparticles may be characterized by the
instantaneous energy spectrum. Furthermore, for ω � τ−1

el ,
the quasiparticle distribution function n depends only on the
energy ε. Importantly, the density of states ν(ε, ps) depends
on the instantaneous value of the superfluid momentum ps. In
other words, as the value of ps changes, individual quasiparti-
cle levels move in energy space. At a nonzero temperature the
quasiparticles occupying these levels travel in energy space
as well. This motion creates a nonequilibrium quasiparticle
distribution. Relaxation of the latter due to inelastic scatter-
ing causes entropy production and energy dissipation. The
corresponding contribution to the conductivity is proportional
to τin. The reason why the Debye contribution to the linear
conductivity exists only at p̄s �= 0 is the following. The den-
sity of states is invariant under time reversal and thus can
depend only on the magnitude of the condensate momentum
ps = |ps|. As a result, in the linear in E approximation ν(ε)
changes in time proportionally to δps(t ) · p̄s.

The paper is organized as follows. In Sec. II we obtain a
general formula for the Debye contribution to the microwave
conductivity, σDB, in terms of the superfluid-momentum-
dependent quasiparticle density of states ν(ε, ps). In Sec. III
we apply this result to evaluate the Debye contribution to
the linear conductivity in s-wave superconductors at temper-
atures near the critical temperature. The results depend on
the microwave frequency and the degree of disorder in the
superconductor. In Sec. III A we focus on the clean case where
the quasiparticles responsible for microwave absorption move
ballistically. In Sec. III B we discuss the regime of diffusive
motion of the relevant quasiparticles, which may be realized
in both clean and dirty superconductors. In Sec. IV we study
the nonlinear Debye conductivity in s-wave superconductors
in the absence of a dc supercurrent. Technical details of the
derivations are presented in Appendixes A and B. We discuss
our results in Sec. V.

II. GENERAL FORMULA FOR DEBYE CONDUCTIVITY
IN SUPERCONDUCTORS

In this section we show that under very general conditions
the Debye contribution to the microwave conductivity, σDB,
may be expressed in terms the quasiparticle density of states
and its dependence on the superfluid momentum ps.

As noted above, under the condition ω � � quasiparticles
may be characterized by an instantaneous energy spectrum. To
describe the motion of the quasiparticle energy levels we note
that the number of levels in the system is conserved. Therefore
the density of states ν[ε, ps(t )] is subject to the continuity

equation in energy space ∂tν(ε, ps) + ∂ε[vν (ε)ν(ε, ps)] = 0,
where vν (ε, ps) is the level velocity in energy space. Using
the condensate acceleration equation (3) we can express the
latter in the form vν (ε, ps) = eE · V (ε, ps), where

V (ε, ps) = − 1

ν(ε, ps)

∫ ε

0
d ε̃

∂ν(ε̃, ps)

∂ ps
(4)

characterizes the sensitivity of the energy levels to changes of
ps. The quasiparticle distribution function n(ε, t ) describes the
occupancy of energy levels. In the absence of inelastic scat-
tering its time evolution due to the spectral flow is described
by the continuity equation ∂t (νn) + ∂ε (vννn) = 0. Combining
this with the continuity equation for ν(ε, ps) and allowing for
inelastic collisions we obtain the kinetic equation

∂t n(ε, t ) + eE(t ) · V (ε, ps) ∂εn(ε, t ) = I{n}, (5)

where I{n} is the collision integral describing inelastic scat-
tering of quasiparticles.

The power W of microwave radiation absorbed per unit
volume of the superconductor may be obtained by evaluating
the rate of work performed by the microwave field on the
quasiparticles, which is given by

W =
∫ ∞

0
dε〈ν[ε, ps(t )]n(ε, t )eE(t ) · V [ε, ps(t )]〉. (6)

Here 〈. . .〉 denotes time averaging. Below we characterize the
absorption power by the dissipative part of the conductivity
σDB defined by

σDB

2
E2

ω = W. (7)

Linear regime. For an equilibrium distribution the inte-
grand in Eq. (6) is a total derivative and W = 0. At small
microwave fields we can linearize the kinetic equation (5) in
E(t ) and the deviation of the quasiparticle distribution func-
tion from equilibrium, δn(ε, t ) = n(ε, t ) − nF (ε) � 1 (here
nF (ε) = [exp(ε/T ) + 1]−1 is the Fermi function). Below we
assume that the temperature is near the critical temperature,
|T − Tc| � Tc. In this case the density of states is affected
by the condensate momentum in a narrow energy window
|ε − �| � T . Since the energy transfer in a typical inelastic
collision is of order T the inelastic collision integral in Eq. (5)
may be written in the relaxation time approximation,

I{n} = −δn(ε, t )

τin
, (8)

where the inelastic relaxation time τin(T ) depends only on the
temperature T .

For an isotropic spectrum, which we assume below for sim-
plicity, the vector V (ε, ps) is parallel to ps. In this case only
the longitudinal conductivity, which corresponds to Eω ‖ p̄s,
is affected by inelastic relaxation. For a monochromatic elec-
tric field, the solution of the linearized kinetic equation (5),
with the collision integral in the form Eq. (8), is given by

δnω(ε) = −∂εnF (ε)
eEω · V (ε, p̄s)

−iω + τ−1
in

. (9)

Next we substitute this expression into Eq. (6) for the rate of
energy dissipation and note that in the relevant energy interval
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FIG. 1. Schematic plots of ν(ε, ps ) at: ps = 0, dashed green line,
in the diffusive regime �vF psτ

2
el � 1 - blue line, and in the ballistic

regime �vF psτ
2
el � 1, orange line.

where the density of states depends appreciably on ps we may
approximate −∂εnF (ε) ≈ 1

4T . Then, using Eq. (7) we obtain

σDB

σD
= 3τin

4τel

1

[1 + (ωτin )2]

∫ ∞

0

dε

T

ν(ε, p̄s)V 2(ε, p̄s)

νnv
2
F

. (10)

Equation (10) expresses the Debye contribution to the
conductivity in terms of the density of states in a current-
carrying superconductor. It applies to superconductors with
arbitrary symmetry of the order parameter.

III. LINEAR DEBYE CONDUCTIVITY IN S-WAVE
SUPERCONDUCTORS

Below we focus on s-wave superconductors with an
isotropic spectrum and assume vF p̄s � �. In this case the
density of states is most strongly affected by the supercurrent
at energies near the gap �. Namely at p̄s �= 0 the peak in

the BCS density of states, ν(ε, 0) → νn

√
�

2(ε−�) at ε → �,

is broadened. The width and the shape of the broadening
depends on the magnitude of the condensate momentum p̄s

and the strength of disorder.

A. Ballistic regime

In the ballistic regime, vF p̄sτ
2
el� � 1, (which can be re-

alized only in clean superconductors, �τel � 1) the density
of states can be found from a simple consideration. In this
case one can use the standard expression for the quasiparticle
spectrum [1,12,13], ε(k) =

√
ξ 2

k + |�|2 + vk · p̄s, where k is
the quasiparticle momentum, ξk is the electron energy mea-
sured from the Fermi level, and vk = dξk/dk is the electron
velocity. The density of states at |ε − �| � � is given by

ν(ε, ps)

νn
=

√
�

2vF ps
[θ (z + 1)

√
z + 1 − θ (z − 1)

√
z − 1],

(11)

where z = (ε − �)/vF ps, and θ (z) is the Heavyside step
function. The width of the broadening of the BCS peak is
δε ∼ vF p̄s. The shape of the broadening is illustrated in Fig. 1.

Using Eqs. (4) and (10) we obtain for the Debye contribution
to the conductivity in the ballistic regime

σDB

σD
= Ib

τin

τel[1 + (ωτin )2]

�

T

√
vF p̄s

�
, (12)

where the numerical coefficient Ib = 8
45 is given by a definite

integral defined in Eq. (A16) of Appendix A. The power-law
dependence of σDB on the condensate momentum p̄s follows
from the simple scaling form of the density of states in
Eq. (11). The exponent of this power-law dependence, σDB ∝√

p̄s, can be understood from the following consideration.
The quasiparticle states whose energies are affected by the
supercurrent lie in a narrow energy window of width δε ∼
vF p̄s near ε = �. The number of such states per unit volume
may be estimated as νn

√
�vF ps. Since the characteristic level

displacement in the microwave field is given by vF δps ∼
vF eE0/ω one obtains an estimate for the absorption power
consistent with Eq. (12).

The above consideration of the density of states is valid
as long the condition of ballistic motion vF p̄sτel(ε) � 1 is
satisfied for most of the quasiparticles in the relevant energy
interval |ε − �| � vF p̄s. Here τel(ε) is the energy-dependent
quasiparticle mean-free time, which for |ε − �| � � is given

by the standard expression τ−1
el (ε) ≈ τ−1

el

√
2(ε−�)

�
(see, for

example, Ref. [14]). Therefore the regime of ballistic motion
of quasiparticles participating in the Debye mechanism of mi-
crowave absorption is realized at relatively large supercurrent
densities, where vF p̄sτ

2
el� � 1.

B. Diffusive regime

To study the Debye contribution to the conductivity outside
the ballistic regime we express the density of states in terms
of the disorder-averaged Green’s functions. This enables us
to utilize the standard theoretical methods developed in the
theory of disordered superconductors [2,15]. We show in
Appendix A that the density of states can be expressed as

ν(ε, ps)

νn
= 1√

2
�x−1, (13)

where the variable x satisfies the quintic equation (A9a).
In the ballistic regime, vF psτ

2
el� � 1, the latter reduces to

the biquadratic equation (A11) whose solution, when sub-
stituted into Eq. (13), reproduces Eq. (11). In the opposite
regime vF psτ

2
el� � 1, which corresponds to diffusive motion

of quasiparticles in the relevant energy interval, the quintic
equation (A9a) simplifies to

x(x2 + w) +
√

2ζ 2

3γ
= 0. (14)

Here ζ = vF ps/�, γ = (τel�)−1, and w = (ε − �)/�. The
solutions of this equation can be written in the scaling form
x = ζ 2/3

γ 1/3 x̃( wγ 2/3

ζ 4/3 ), where the explicit form of x̃( wγ 2/3

ζ 4/3 ) is given
by the Cardano formula, Eq. (A18). Substituting this form into
Eq. (13) [the corresponding ν(ε, ps) is plotted in Fig. 1], and
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using Eqs. (4) and (10), we obtain

σDB

σD
= Id

τin

τel

�

T

τel
(
�D2 p̄4

s

)1/3

1 + (ωτin )2 , (15)

where the numerical coefficient Id ≈ 0.0549 is given by a
definite integral defined in Eq. (A23) of Appendix A. This
expression is consistent with the result obtained in Ref. [4] by
a different method.

The exponent of the power-law dependence σDB ∝ p̄4/3
s in

Eq. (15) and its order of magnitude can be obtained by noting
that the width of the broadening of the BCS singularity in the
diffusive regime is δε ∼ (�D2 p̄4

s )1/3 and the number per unit
volume of levels that participate in microwave absorption is
∼νn(�2Dp̄2

s )1/3. It is worth noting that the diffusive regime
can be realized in both clean, �τel � 1, and dirty �τel �
1, superconductors. Accordingly Eqs. (13) and (14) for the
density of states and the resulting conductivity (15) can be
obtained using either the Gor’kov equations or the Usadel
equation, see Appendix A.

IV. NONLINEAR DEBYE CONDUCTIVITY IN S-WAVE
SUPERCONDUCTORS

Let us now consider the situation in which the dc super-
current is absent, p̄s = 0. In the presence of the microwave
field the oscillation amplitude of the condensate momentum
is given by δps = eEω/ω. Since the Debye contribution to the
nonlinear conductivity defined by Eq. (7) is proportional to
τin the nonlinear threshold for the microwave absorption is
anomalously low. To evaluate microwave absorption in the
nonlinear regime it is convenient to introduce the integrated
over energy density of states

N (ε, t ) =
∫ ε

0
dε ν(ε, t ) (16)

and consider the quasiparticle distribution function not as a
function of energy ε and time t but rather as a function of N
and t . The change of variables n(ε, t ) → n(N, t ) is equivalent
to the transformation from Eulerian to Lagrangian variables
in fluid mechanics [10]. In this representation the kinetic
equation (5) acquires a very simple form,

∂t n(N, t ) = I{n} = −n(N, t ) − nF [ε(N, t )]

τin
. (17)

Note that the electric field enters this equation only via the
time dependence of the quasiparticle energy level ε(N, t ).
In the presence of the microwave field the latter undergoes
nonlinear oscillations ε(N, t ) = ε0(N ) + δε(N, t ) whose form
is determined by Eq. (16). Note that the linearization of
the collision integral is justified in the nonlinear regime as
long as the amplitude of δε(N, t ) is small as compared to
T . The solution of Eq. (17) can be written as n(N, t ) =
nF [ε0(N )] + dnF [ε0(N )]

dε0(N )

∫ ∞
0

dτ
τin

e− τ
τin δε(N, t − τ ). The absorp-

tion power per unit volume in this representation is given by
W = ∫ ∞

0 dN〈n(N, t )∂tε(N, t )〉. Substituting the solution for
n(N, t ) into this expression we get

W =
∫ ∞

0
dN

∫ ∞

0

dτ

4T
e− τ

τin 〈∂tε(N, t )∂tε(N, t − τ )〉. (18)

Here the level velocity is given by ∂tε(N, t ) = vν (ε, t ) = eE ·
V (ε, ps), with V (ε, ps) defined in Eq. (4). This can be shown
by taking the time derivative of (16).

Equation (18) expresses the power of nonlinear microwave
absorption in terms of the correlation function of level ve-
locities ∂tε(N, t ), which are defined by Eq. (16). Similarly
to the linear regime, the results depend of the degree of
disorder, the amplitude of the microwave field Eω and the
frequency of radiation ω. They simplify in the ballistic regime
eEωvF �τ 2

el � ω and in the diffusive regime eEωvF �τ 2
el � ω

where the nonlinear conductivity has a simple power-law
dependence on the amplitude of the microwave field Eω. In
the ballistic regime we obtain

σ nl
DB

σD
= τin

τel

�

T

√
vF eEω

ω�
Fb(ωτin ), (19)

while in the diffusive regime we find

σ nl
DB

σD
= τin

τel

�

T

�1/3D5/3|eEω|4/3

v2
F ω4/3

Fd (ωτin ). (20)

The functions Fb(ωτin ) and Fd (ωτin ) that describe the fre-
quency dependence of nonlinear microwave conductivity are
given Eqs. (B5) and (B11) in Appendix B. Although, in
contrast to Eqs. (12) and (15), they do not have a simple
Lorentzian form, their high- and low-frequency asymptotic
behavior is similar; at low frequency Fb(0) ≈ 0.10848 and
Fd (0) ≈ 0.10909 while at high frequencies they behave as
1/(ωτin )2.

V. DISCUSSION OF THE RESULTS

In summary, we have identified a mechanism of microwave
absorption in superconductors, which arises from the motion
of quasiparticle energy levels in the presence of microwave
radiation. The corresponding contributions to both the non-
linear microwave conductivity, and to the linear conductivity
in the presence of a dc supercurrent are proportional to the
energy relaxation time τin. Therefore, they can be several
orders of magnitude larger than the conventional ones. Let us
now discuss conditions of applicability of our main results.

The nonanalytic dependences of σDB on p̄s in Eqs. (12)
and (15), and of σ nl

DB on Eω and ω in Eqs. (19) and (20)
are related to the divergence of the BCS density of states at
ε = �. In real superconductors this divergence is smeared
by the anisotropy of the order parameter in k space and
by pair-breaking processes, which are characterized by a
broadening parameter � � �. Consequently, at δε( p̄s) � �

the p̄s dependence of the linear conductivity should become
analytic, σDB = c p̄2

s . The magnitude of the coefficient c can
be estimated by matching this expression to Eqs. (12) and (15)
at the values of p̄s determined by the condition that the energy
broadening of the BCS singularity, δε( p̄s) be of order �.

So far we focused our consideration on the
temperature interval near Tc. At low temperatures,
T � �, the dimensionless quasiparticle concentration
x = (νn�)−1

∫ ∞
0 dεν(ε)nF (ε) in s-wave superconductors

is exponentially small; x ∼
√

T
�

exp(−�/T ). Consequently
the conventional contribution to the microwave absorption
coefficient, which is proportional to τel, is exponentially
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small as well. It is interesting that the Debye contribution
to the microwave absorption coefficient in this regime
does not contain the exponentially small factor and is,
roughly speaking, comparable to that near Tc. Indeed, at
T � � there are two quasiparticle inelastic relaxation rates
in superconductors. The quasiparticle-phonon relaxation
processes that conserve the number of quasiparticles
are characterized by the rate 1/τ

(st)
in (T ) (which is of the

same order as a electron-phonon relaxation rate in normal
metals, see, for example, Ref. [3]). The second type of
inelastic relaxation processes correspond to recombination,
which changes the total number of quasiparticles. The
recombination rate is proportional to the quasiparticle
concentration 1/τr ∼ x/τ (0)

r � τ
(st)
in , where τ (0)

r ∼ τ
(st)
in (�).

The Debye contribution to the dissipative kinetic coefficients
is proportional to the longest relaxation time in a system
(see, for example, Ref. [10]). At T � � it is τr . Therefore,
in the low-frequency limit, ωτr � 1, the exponentially small
factor exp(−�/T ) is canceled from the expression for the
conductivity. Below we illustrate this fact for the linear Debye
conductivity in the diffusive regime, and at � � δε( p̄s) � T .
In this case the magnitude of the level velocity in the interval
of energies of order T is V ∼ 1

p̄s
δε ∼ (�D2 p̄s)1/3 and we get

from Eq. (10)

σDB

σD
∼ τ (0)

r

τel

√
�

T
τel

(
�D2 p̄4

s

)1/3
. (21)

The situation with a spatially uniform supercurrent density
that was considered above can only be realized in thin super-
conducting films. In bulk superconductors in the presence of
a magnetic field H < Hc1 that is parallel to the surface p̄s is
nonzero only within the London penetration depth λL near the
surface. The mechanism of microwave absorption discussed
above will still apply in this geometry and the presented
above results still hold up to a numerical factor of order unity.
The reason for this is that the quasiparticles that give the
main contribution to microwave absorption have energies that
lie in a narrow interval near the gap, |ε − �| � δε, where
δε = vF p̄s in the ballistic regime and δε = (�D2 p̄4

s )1/3 in the
diffusive regime. Roughly half of these quasiparticles have
energies below � and therefore they are trapped near the
surface within a distance of order λL.

The microwave absorption coefficient in thin films of d-
wave superconductors should also be proportional to τin.
However, its dependence on p̄s is expected to be different
from those in Eqs. (12), (15), (19), and (20). Moreover, in bulk
samples of d-wave superconductors in the presence of a mag-
netic field parallel to the surface the situation is substantially
different. In a gapless superconductor the quasiparticles in the
relevant energy interval can diffuse into the bulk. Therefore
in this case the characteristic relaxation time is given by the
minimum between the inelastic relaxation time and the time
of diffusion from the surface layer of thickness λL.

Finally, we would like to note that the considered above
mechanism of the microwave absorption is closely related to
the mechanism of ac conductivity of SNS junctions discussed
in Refs. [16–18].
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APPENDIX A: DERIVATION OF THE DEBYE
CONTRIBUTION TO THE LINEAR CONDUCTIVITY IN

S-WAVE SUPERCONDUCTORS

In order to evaluate the linear conductivity in the presence
of supercurrent we express the density of states in a super-
conductor in terms of the dimensionless disorder-averaged
retarded Green’s function g(ε) at coinciding points

ν(ε, ps)

νn
= − 2

π
Im g(ε). (A1)

The latter can be expressed as [15,19]

g(ε) =
〈

ε̃ − v · ps√
(ε̃ − v · ps)2 − |�̃|2

〉
, (A2)

where 〈. . .〉 denotes averaging over the Fermi surface and the
disorder-renormalized energy ε̃ and order parameter �̃ are
given by

ε̃ = ε + i

2τel

〈
ε̃ − v · ps√

(ε̃ − v · ps)2 − |�̃|2

〉
, (A3a)

�̃ = � + i

2τel

〈
�̃√

(ε̃ − v · ps)2 − |�̃|2

〉
, (A3b)

where we set h̄ = 1. For simplicity we assume the Fermi
surface to be spherical. Performing the angular averaging and
introducing the dimensionless variables δ = �̃/�, u = ε̃/�̃

we can write the disorder-renormalization equations for ε̃ and
�̃ in the following form:

uδ = ε

�
+ iδγ

4ζ
(
√

u2+ − 1 −
√

u2− − 1), (A4a)

δ = 1 + iδγ

4ζ
ln

⎛
⎝u− −

√
u2− − 1

u+ −
√

u2+ − 1

⎞
⎠. (A4b)

Here γ = 1/(τel�) characterizes the disorder strength, ζ =
vF ps/� is a dimensionless measure of the condensate mo-
mentum, and we introduced u± = u ± ζ/δ. The Green’s func-
tion g(ε) in Eqs. (A1) and (A2) is expressed in terms of these
variables as

g = 2i

γ

( ε

�
− uδ

)
. (A5)

The system of Eqs. (A4), (A5), and (A1) describes the energy
dependence of the density of states in the presence of super-
current.

In the limit ζ → 0 the solution of Eqs. (A4) is given
by u0 = ε/�, and δ0 = 1 + iγ

2
√

u2−1
. When substituted into

Eqs. (A1) and (A5) this yields the conventional result for the
density of states, ν(ε)/νn = ε/

√
ε2 − �2.
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At ζ = vF ps/� � 1 the density of sates ν(ε) is signif-
icantly affected by the condensate momentum ps �= 0 only
for energies near the gap, |ε − �| � |�|, see Eq. (11). This
interval of energies corresponds to |u± − 1| � 1. The ps

dependence of ν(ε, ps) in this interval is nonanalytic, cf.
Eq. (11), and the expansion of Eqs. (A4) in powers of u+ −
u− = 2ζ/δ fails. Formally, the expansion fails because at ζ =

0 the solution of Eq. (A4) approaches the branching point,
u = 1, of the radicals in that equation. To circumvent this
difficulty we introduce new variables x and y via

u = 1 − x2 − y2, δ = − ζ

2xy
(A6)

and rewrite Eqs. (A4) in the form

−ζ (1 − x2 − y2)

2xy
= 1 + w − γ

4ζd
[(x + y)

√
2 − (x + y)2 − (x − y)

√
2 − (x − y)2], (A7a)

− ζ

2xy
= 1 + iγ

4ζd
ln

[
1 − (x − y)2 − i(x − y)

√
2 − (x − y)2

1 − (x + y)2 − i(x + y)
√

2 − (x + y)2

]
. (A7b)

Here we have introduced the notation w = (ε − �)/�.
The advantage of writing the disorder renormalization equations in terms of the variables x and y is that the branching points

of the radicals in Eqs. (A4), which are located at u± = 1 − (x ± y)2 = 1, are resolved in terms of rational functions of x and y.
As a result the expressions in the right-hand side in Eqs. (A7) become amenable to a series expansion in x and y.

Although x and y enter Eqs. (A6) and (A7) on equal footing we choose y to be odd in ζ so that in the absence of supercurrent
y = 0. At small supercurrent, ζ � 1, the variable y is also small. In this regime, the density of states in the relevant energy
interval near the spectrum edge may be determined by expanding the expressions in the right-hand side of Eqs. (A7) to third
order in y:

ζ

γ

(
1 − x2 − y2 + 2xy(1 + w)

ζ

)
= y√

2 − x2

[
x2 − 1 + y2

(2 − x2)2

]
, (A8a)

− ζ

γ

(
2xy

ζ
+ 1

)
= y√

2 − x2

[
1 + 1

3

(1 + x2)y2

(2 − x2)2

]
. (A8b)

The relevant energy interval, |w| � 1, corresponds to
|x| � 1. In this case Eqs. (A8) can be simplified to

x(x2 + w)

(
2x + γ√

2

)2

= −ζ 2

(
x + γ

3
√

2

)
, (A9a)

y = −
√

2ζ

2
√

2x + γ
. (A9b)

The density of states is obtained by substituting Eqs. (A6)
into (A5) and expanding in small y then x. Within the accuracy
of our approximation ν(ε, ps) in the relevant energy interval,
|w| � 1, is given by

ν(ε, ps) = νn√
2
�x−1, (A10)

and may be determined by solving Eq. (A9a).
The quintic equation (A9a) for the variable x has five roots.

The complex solutions come in pairs of complex conjugate
numbers corresponding to retarded and advanced Green’s
functions. The retarded solutions correspond to �x−1 � 0,
cf. Eq. (A10). The roots of a general quintic equation
can be expressed via the Jacobi theta functions, however,
Eq. (A9a) simplifies significantly in the limiting regimes
ζ/γ 2 = vF p̄sτ

2
el� � 1, and ζ/γ 2 = vF p̄sτ

2
el� � 1, which

correspond to, respectively, ballistic and diffusive motion of
quasiparticles that participate in microwave absorption.

1. Ballistic regime

At relatively large supercurrent densities, ζ/γ 2 � 1, the
relevant root of Eq. (A9a) satisfies the condition |x| � γ . In
this case we may neglect γ in Eq. (A9a) to get a quadratic
equation for x2:

x4 + wx2 + ζ 2

4
= 0, (A11)

which yields the solution

x2 = ζ 2(√−w − ζ − √−w + ζ
)2 . (A12)

Substituting this into Eq. (A10) we obtain Eq. (11);

ν(ε, ps)

νn
= 1√

2ζ
[ηb(z + 1) − ηb(z − 1)]. (A13)

Here the dimensionless energy variable z and the function
ηb(x) are defined by

z = w

ζ
, ηb(x) = θ (x)

√
x. (A14)

Substituting Eq. (A13) into Eq. (4) we obtain,

V (ε, ps)

vF
= ηb(z + 1) + ηb(z − 1)

ηb(z + 1) − ηb(z − 1)

− 2

3

η3
b(z + 1) − η3

b(z − 1)

ηb(z + 1) − ηb(z − 1)
. (A15)

Substituting Eq. (A13) into Eq. (10) and using the dimen-
sionless variable z we obtain Eq. (12) for the longitudinal
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conductivity with Ib given by

Ib = 3

4

∫ ∞

−1
dz

[ηb(z + 1) − ηb(z − 1)]√
2

V 2(ε, ps)

v2
F

. (A16)

Substituting Eq. (A15) into Eq. (A16) we obtain

Ib = 8

45
. (A17)

2. Diffusive regime

At small supercurrent densities, ζ/γ 2 � 1, the relevant
root of Eq. (A9a) satisfies the condition |x| � γ . In this
regime, which corresponds to diffusive motion of quasipar-
ticles participating in microwave absorption, Eq. (A9a) sim-
plifies to the cubic equation

x(x2 + w) +
√

2ζ 2

3γ
= 0. (A18)

Using the Cardano formula and substituting the root with
�x−1 � 0 into Eq. (A10) we can express the density of states
in terms of rescaled variables η ≡ 2ζ 2

3γ
, and w̃ = wη−2/3 in the

form

ν(ε, ps)=νn
ν̃d (w̃)

η1/3
, (A19)

ν̃d (w̃) = 1

2
√

3
θ

(
w̃ + 3

2

)[
α̃(w̃)

22/3
− 22/3w2

α̃(w̃)

]
, (A20)

where the function α̃(w̃) is defined by

α̃(w̃) = (4w̃3 + 27 +
√

27
√

8w̃3 + 27)1/3. (A21)

Substituting this form into Eq. (4) we obtain

V (ε, ps) = 1

ν̃d (w̃)

Dps

η1/3
I (w̃), (A22)

where D is the diffusion coefficient and I (w̃) is given by

I (w̃) =
∫ w̃

− 3
2

dx̃

25/3
√

3

[
24/3x̃2

α̃(x̃)
− α̃(x̃)

+
(

1

α̃2(x̃)
+ 24/3x̃2

α̃4(x̃)

)(
18 +

√
3

2

[
16x̃3 + 108√

8x̃3 + 27

])]
.

Using Eqs. (A22) and (A19) in Eq. (10) we get Eq. (15) for the
longitudinal Debye conductivity where the definite integral Id

is given by

Id = 1

25/3

∫ ∞

−3/2
dx̃

2
√

3(
α̃(x̃)
22/3 − 22/3 x̃2

α̃(x̃)

) I2(x̃) ≈ 0.054886. (A23)

a. Usadel equation

In dirty superconductors, when �τel � 1, the density of
states may be evaluated using the Usadel equation [20], which
has the following form for the retarded Green’s function[

τ̂3ε + �̂, ĝR
s

] = iD∇[
ĝR

s ∇ĝR
s

]
. (A24)

Here [ , ] denotes the commutator and the hat indicates 2 × 2
matrices in Gor’kov-Nambu space, which are given by

τ̂3 =
(

1 0
0 −1

)
, �̂ =

(
0 �

�∗ 0

)
, (A25)

ĝs =
(

gR
s F R

s

F R∗
s gR∗

s

)
. (A26)

The Green’s function satisfies the nonlinear constraint ĝR
s ·

ĝR
s = 1, and can be expressed in terms of the angles θ and χ

in the form gR
s = cos θ , F R

s = eiχ sin θ . The density of states
is given by

ν(ε) = νn�cos θ (E ) (A27)

and Eq. (A24) reduces to

D

2

(
p2

s sin θ cos θ − ∇2θ
) = iε sin θ + � cos θ, (A28a)

D∇(ps sin2 θ ) = 0. (A28b)

Here ps = ∇χ . As we are considering a thin film we
assume ps to be spatially uniform. Then Eq. (A28b) yields
∇θ = 0, while Eq. (A28a) reduces to

ε + i� cos θ = i� cot θ (A29)

with � = Dp2
s/2.

Defining ξ ≡ eiθ we can write Eq. (A29) as a polynomial
in ξ

2 − ξ−2w − i
η

2
ξ−3 = 0, (A30)

where w ≡ (ε − �)/� as before, η ≡ �/�, and we have
used the fact that we are concerned only with the energy range
|w| � 1, which corresponds to |ξ | � 1. The density of states
in this approximation becomes

ν(ε) = νn

2
�ξ−1. (A31)

One can easily see that the substitution ξ = ix/
√

2 and η =
2ζ 2

3γ
renders Eqs. (A30) and (A31) identical to Eqs. (A18)

and (A10).

APPENDIX B: DERIVATION OF THE NONLINEAR
CONDUCTIVITY IN THE ABSENCE OF DC

SUPERCURRENT

The microwave power absorbed per unit volume of the
sample is expressed in Eq. (18) in terms of the time depen-
dence of the energy level ε(N, t ). The latter is determined by
[cf. Eq. (16)]

N =
∫ ε(N,t )

0
dε ν(ε, t ). (B1)

Although the time dependence of the condensate momen-
tum in the presence of the microwave field is very simple,
ps(t ) = eEω

ω
sin(ωt ), the density of states ν(ε, t ), being a non-

linear function of ps(t ), is a complicated function of time in
the presence of a microwave field. As a result ε(N, t ) given
by the solution of Eq. (B1) has a complicated dependence
not only on time but also on the amplitude of the microwave
field, Eω. Because of this the absorbed power in Eq. (18) and
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the nonlinear conductivity are complicated functions of Eω

and ω. The situation simplifies dramatically in the limiting
regimes vF eEω�τ 2

el/ω � 1, and vF eEω�τ 2
el/ω � 1. In these

regimes the nonlinear conductivity has a simple power-law
dependence on Eω and ω.

1. Ballisic regime

For vF eEω�τ 2
el/ω � 1 the quasiparticles contributing to

the Debye conductivity are in the ballistic regime and the
density of states may be described by Eq. (A13). In this case
the time-dependent width of the energy window in which the
density of states is affected by microwave radiation is δε(t ) ∼
vF ps(t ). The characteristic density of quasiparticle levels
within the energy window where ν(ε, t ) is affected by mi-
crowave radiation may be estimated as δN ∼ νn

√
vF eEω�/ω.

Therefore it is convenient to introduce a rescaled level
density

Nb = N

νn�

√
ω�

vF eEω

(B2)

and express the time-dependent energy ε(N, t ) in terms of a
new function zNb (ωt ) as

ε(N, t ) = � + vF |ps(t )|zNb (ωt ). (B3)

Substituting the change of variables (B2), (B3) into Eq. (B1)
and using the form of the density of states in the ballistic
regime, Eqs. (A13) and (A14), we find that the dependence
of zN (φ) on the phase of the microwave field φ = ωt is
determined by the equation

Nb√| sin(φ)| =
√

2

3

[
θ
(
zNb (φ) + 1

)(
zNb (φ) + 1

)3/2

− θ
(
zNb (φ) − 1

)(
zNb (φ) − 1

)3/2]
, (B4)

which does not contain the amplitude Eω. Substituting the
change of variables (B3) into Eq. (18) we find that the non-
linear conductivity has a simple power law dependence on Eω

given by Eq. (19) with the function Fb(x) given by

Fb(x)=3
∫ ∞

0
dNb

∫ π

0

dφ

2π

∫ ∞

0
d τ̄ e−τ̄ fb(Nb, φ) fb(Nb, φ − xτ̄ ).

(B5)
Here fb(Nb, φ) denotes the function

fb(Nb, φ) = cos(φ)zNb (φ) + sin(φ)∂φzNb (φ). (B6)

In the low-frequency limit, ωτin � 1, Fb(ωτin ) in Eq. (B5) can
be easily evaluated using Eqs. (A13) and (A15),

Fb(0) = 2〈sin1/2(ωt ) cos2(ωt )〉Ib ≈ 0.108. (B7)

Here 〈. . .〉 denotes averaging over half the oscillation period
and Ib was defined in Eq. (A16). In the high-frequency regime

ωτin � 1 we find that Fb(ωτin ) ∼ 1
ω2τ 2

in
, which can most read-

ily be seen by Fourier transforming Eq. (18).

2. Diffusive regime

At vF eEω�τ 2
el/ω � 1 the quasiparticles contributing to the

Debye conductivity are in the diffusive regime, and the density
of states may be described by Eq. (A19). In this case the time-
dependent broadening of the singularity in the quasiparticle
density of states is δε(t ) ∼ [�D2 p4

s (t )]1/3. The characteristic
density of quasiparticle levels that participate in microwave

absorption can then be estimated as δN ∼ νn( �2De2E2
ω

ω2 )
1/3

.
Introducing a rescaled level density

Nd = 1

νn�

(
2�ω2

e2DE2
ω

)1/3

N (B8)

we express the time-dependent energy ε(N, t ) in terms of a
new function w̃Nb (ωt ) as

ε(N, t ) = � +
(

�D2 p4
s (t )

2

)1/3

w̃Nd (ωt ). (B9)

Substituting Eqs. (B8) and (B9) into (B1) and using the form
of the density of states in the diffusive regime, Eq. (A19),
we find the dependence of w̃Nd (φ) on the phase φ = ωt is
determined by

Nd

sin2/3(φ)
=

∫ w̃Nd (φ)

0
dw̃′ν̃d (w̃′), (B10)

where ν̃d (w̃′) is defined by Eq. (A20). Note that (B10) is inde-
pendent of the amplitude of the applied field Eω. Substituting
Eqs. (B8) and (B9) into Eq. (18) we obtain Eq. (20) with the
function Fd (x) given by

Fd (x) = 1

22/3π

∫ ∞

0
dNd

∫ π

0
dφ

∫ ∞

0
d τ̄ e−τ̄ fd

× (Nd , φ) fd (Nd , φ − xτ̄ ). (B11)

Here the function fd (Nd , φ) is defined by

fd (Nd , φ) = 2
3 sin1/3(φ) cos(φ)w̃Nd (φ)

+ 1
2 sin4/3(φ)∂φw̃Nd (φ). (B12)

In the low-frequency regime, ωτin � 1, Fd (ωτin ) can be
easily evaluated. Using Eqs. (A19) and (A22) we obtain

Fd (0) = 2 < sin4/3(ωt ) cos2(ωt ) > Id ≈ 0.109, (B13)

where 〈. . .〉 denotes averaging over half the oscillation period,
and Id is given by Eq. (A23). In the high-frequency limit,
ωτin � 1, Fd (ωτin ) ∼ 1

ω2τ 2
in

, which is most easily seen by
Fourier transforming Eq. (18).
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