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The chiral p-wave superconducting state is comprised of spin-triplet Cooper pairs carrying a finite orbital
angular momentum. For the case of a periodic lattice, calculating the net magnetization arising from this
orbital component presents a challenge as the circulation operator r̂ × p̂ is not well defined in the Bloch
representation. This difficulty has been overcome in the normal state, for which a modern theory is firmly
established. Here, we derive the extension of this normal-state approach, generating a theory which is valid for a
general superconducting state, and go on to perform model calculations for a chiral p-wave state in Sr2RuO4. The
results suggest that the magnitude of the elusive edge current in Sr2RuO4 is finite, but lies below experimental
resolution. This provides a possible solution to the longstanding controversy concerning the gap symmetry of
the superconducting state in this material.
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I. INTRODUCTION

An unconventional superconducting state exhibits a lower
order of symmetry than the s-wave singlet pairing observed in
conventional BCS superconductors. An example of this is the
chiral p-wave paired state, which arises in conjunction with
a breaking of time-reversal symmetry at the superconducting
transition [1]. Such a state consists of spin-triplet Cooper pairs
carrying a finite orbital angular momentum. The symmetry
breaking associated with this pairing theoretically facilitates a
number of new and exotic phenomena, such as the Kerr effect
[2,3] and edge currents [4,5].

Of major significance in the study of this class of materials
is the topological nature of superconducting states with chiral
symmetry [6,7]. A chiral edge mode in a topological super-
conducting state would support a protected Majorana bound
state confined to the edges of the sample [8,9]. The existence
of these bound states is inextricably linked to the orbital
moment of the spin-triplet Cooper pairs, as both phenomena
arise from the chiral nature of the superconducting order
parameter.

Given this interest, it is surprising that there currently
exists no general framework with which to calculate the
total orbital magnetic moment in a superconducting state.
The orbital angular momentum carried by the Cooper pairs
should, in principle, lead directly to an orbital magnetization
in the superconducting lattice. Contributions to the magnetic
moment are expected from edge currents [4,5], while bulk
contributions are also predicted in multiorbital systems [10].
The goal of this paper is to present a general approach to this
problem.

A rigorous theory for the orbital magnetization in a normal-
state periodic lattice has been defined previously [11,12].
Obtaining a formalism of this nature had been an outstanding
issue due to the problem of evaluating the circulation oper-
ator (r̂ × p̂) in a Bloch representation. In an infinite lattice,
the position operator (r̂) is unbound and the cell-periodic

Bloch functions [uk(r)] are not localized. The coexistence of
these two factors means that the position expectation values
of Bloch wave functions cannot be evaluated directly. The
normal-state theory was developed by reformulating the prob-
lem in a localized basis, the Wannier representation [12,13].
Here, we extend this formalism to the orbital magnetization in
the superconducting state.

The new theory for the orbital moment in an infinite peri-
odic lattice has previously been applied to cases of insulators
and metals, for both single-band and multiband configurations
[12]. The derivation introduced two distinct contributions to
the total moment, referred to as the “local” and “itinerant”
circulations. The terms correspond to orbital moments gener-
ated by the movement of the centers of mass of orbital wave
functions (itinerant), and the moment due to self-rotation
about their centers of mass (local).

Extending this theory to a general superconducting state,
we obtain equivalent expressions for the local and itinerant
contributions. We further break down the local contribution
by performing a tight-binding expansion, extracting the purely
on-site component defined previously [10]. The formalism
developed here will then be applied to a multiband tight-
binding model of Sr2RuO4.

II. THEORY

We begin our analysis by giving an outline of the derivation
of the orbital moment in the superconducting state. In second
quantized form, the operator for the total orbital angular
momentum in an arbitrary state is given by

L̂z =
∫

dr â†(r) l̂z â(r), (1)

where a†, a are Fermi creation and annihilation operators,
respectively, and l̂z = [r̂ × p̂]z. The total orbital magnetic
moment is then given by γ 〈L̂z〉, where γ = −e/(2me).

2469-9950/2020/101(13)/134505(6) 134505-1 ©2020 American Physical Society

https://orcid.org/0000-0003-3780-4646
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.101.134505&domain=pdf&date_stamp=2020-04-10
https://doi.org/10.1103/PhysRevB.101.134505


ROBBINS, ANNETT, AND GRADHAND PHYSICAL REVIEW B 101, 134505 (2020)

In order to obtain a second quantized operator valid for a
gapped state, we perform the Bogoliubov-Valatin transforma-
tion on the creation and annihilation operators [14],

â =
∑
nk

θnk(r)γ̂nk + χ∗
nk(r)γ̂ †

nk, (2a)

â† =
∑
nk

θ∗
nk(r)γ̂ †

nk + χnk(r)γ̂nk, (2b)

where n is the number of spin-resolved bands, k is the
Bloch wave vector, and γ †, γ are quasiparticle creation and
annihilation operators. The functions θ , χ are, respectively,
electron and hole components of a Bloch-type wave function
ψ . This transformation recasts the equation into an expression
for the orbital moment arising from Bogoliubov quasiparticles
which appear as excitations in a superconductor.

To obtain the total orbital moment in an arbitrary super-
conducting state, we compute the expectation value of the
transformed operator by applying the following relations:

〈γ̂ †
nkγ̂n′k′ 〉 = δnn′δkk′ fnk, (3a)

〈γ̂nkγ̂
†
n′k′ 〉 = δnn′δkk′ (1 − fnk ), (3b)

〈γ̂nkγ̂n′k′ 〉 = 〈γ̂ †
nkγ̂

†
n′k′ 〉 = 0, (3c)

where f is the Fermi-Dirac function. The transformed equa-
tion and its associated operators then take the following form:

〈L̂z〉 =
∑
nk

∫
dr ψ

†
nk(r) Lz ψnk(r),

Lz =
(

l̂z fnk 0
0 −l̂∗

z (1 − fnk )

)
, ψnk(r) =

(
θnk(r)
χnk(r)

)
. (4)

At this point, we can defer to the derivation laid out
for the normal state in terms of Wannier orbitals [11,12],
where we now consider two-component Wannier wave func-
tions containing electron and hole amplitudes in correspon-
dence with the Bloch-type eigenfunctions. We also introduce
the cell-periodic components of the Bloch wave functions,
[unk(r), vnk(r)] = e−ik·r[θnk(r), χnk(r)].

Following the steps of this derivation, we are able to re-
move the dependence of Eq. (4) on the problematic operators
r̂ and v̂. Performing a Fourier transform on the real-space ex-
pressions obtained via this approach, we obtain two reciprocal
space expressions which generate the orbital magnetization
via Brillouin-zone integrals,

MLC = −γ Im

{∫
BZ

dk
(2π )3

∑
n

[〈∂kunk| × Ĥk|∂kunk〉 fnk

− 〈∂kvnk| × Ĥ∗
k |∂kvnk〉(1 − fnk )]

}
, (5)

MIC = γ Im

{∫
BZ

dk
(2π )3

∑
n

Enk[〈∂kunk| × |∂kunk〉 fnk

+ 〈∂kvnk| × |∂kvnk〉(1 − fnk )]

}
, (6)

where LC and IC refer to local and itinerant circulations,
as defined previously [11], and the total magnetization is
given by M = MLC + MIC. We have divided by the unit-cell

volume, to convert from the magnetic moment to magneti-
zation, and also introduced Dirac notation where, crucially,
the expectation values taken in Eqs. (5) and (6) are now
evaluated for the unit cell only. These equations constitute our
central result: a comprehensive framework for computing the
total orbital magnetization in a general bulk superconducting
state.

The cell-periodic functions are obtained through self-
consistent calculation of the Bogoliubov–de Gennes (BdG)
equation,

(
Ĥk(r) 	(r)
	†(r) −Ĥ∗

−k(r)

)(
unk(r)
vnk(r)

)
= Enk

(
unk(r)
vnk(r)

)
, (7)

where Ĥk is the k-dependent normal-state Hamiltonian [15].
The gap function (	) enforces the symmetry of the supercon-
ducting state in question.

In order to perform model calculations, we must recast the
Bloch equations into a tight-binding representation. Perform-
ing the k derivatives in (5) and (6) and expanding in terms of
the Bloch wave functions, we obtain

∂kunk(r) = e−ik·r[∂kθnk(r) − irθnk(r)], (8a)

∂kvnk(r) = e−ik·r[∂kχnk(r) − irχnk(r)]. (8b)

Substituting Eqs. (8) into (6), we find one term containing
r × r, which will vanish. For the local component, however,
this does not occur and we can split the equation into two parts
of the form ∂kθ

∗
nk × Ĥ∂kθnk and θ∗

nk[r × Ĥr]θnk, respectively.
Using the standard definition of the velocity operator, r × Ĥr
can be rewritten as −il̂z.

Having rewritten Eq. (6) in terms of θ , χ , we can subse-
quently apply a general tight-binding expansion of the Bloch
wave function via(

θnk(r)
χnk(r)

)
=

∑
L,R

eik·R
(

unL(k)
vnL(k)

)
φL(r − R), (9)

where L is the orbital index and φL is the corresponding orbital
wave function. Substituting Eq. (9) into (5), we obtain the
following terms:

M(1)
LC =−γ Im

{∑
nLL′

∫
BZ

dk
(2π )3

[∂ku∗
nL(k)×ĤLL′ (k)∂kunL′ (k) fnk

− ∂kv
∗
nL(k) × Ĥ∗

LL′ (k)∂kvnL′ (k)(1 − fnk )]
}
, (10)

M(2)
LC = γ Re

{∑
nLL′

∫
BZ

dk
(2π )3

[u∗
nL(k)(l̂z,LL′ )unL′ (k) fnk

+ v∗
nL(k)(l̂∗

z,LL′ )vnL′ (k)(1 − fnk )]

}
. (11)

The eigenvectors (unL, vnL) are computed by solving
Eq. (7) self-consistently in the tight-binding basis. The terms
ĤLL′ represent the matrix elements of the tight-binding Hamil-
tonian. Similarly, the matrix elements l̂z,LL′ correspond to the
orbital angular momentum expectation values of the orbitals
contained in the tight-binding basis. These elements can be
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calculated by direct consideration of the spherical harmonics
of the basis.

The second term, M(2)
LC, is identical to the purely on-site

orbital moment computed previously [10]. We therefore label
M(2)

LC as the “on-site” component and continue to refer to M(1)
LC

as the local contribution.

III. RESULTS FOR Sr2RuO4

Now that the framework for calculating the magnetic
moment has been set up, we briefly outline the model for
Sr2RuO4 that will be used to perform the calculations. The su-
perconducting state of Sr2RuO4 is widely believed to exhibit
chiral p-wave superconductivity below its transition temper-
ature of 1.5 K [16,17], such that the superconducting order
parameter is given by d∼ (sin kx ± i sin ky)ẑ. This hypothesis
is supported by measurements of spin susceptibility [18,19]
and indirect observations of time-reversal symmetry breaking
at Tc [20]. In addition, a finite Kerr shift has been measured
in this material [2], providing direct evidence of a macro-
scopic orbital magnetization in the bulk superconducting
state.

The classification of Sr2RuO4 as a p-wave superconductor
remains a point of controversy, however, as phenomenological
and quasiclassical approaches have predicted that large edge
currents should accompany the single-band chiral supercon-
ducting state [4,21,22]. Such currents have remained elusive
despite years of intensive experimental work [23–25]. A large
surface-based current would provide a significant contribution
to the total orbital magnetization. By generating a full theoret-
ical description of the orbital magnetic moment and its various
sources in such a state, we provide a vital avenue through
which we can attempt to reconcile these observations with
theory.

We have constructed a three-dimensional tight-binding
Hamiltonian consisting of three Ru 4d orbitals (dxy, dxz, and
dyz) contributing to the normal-state Fermi surface, resulting
in a two-dimensional (2D) band (denoted γ ) and two quasi-1D
bands (α and β). In many approaches to modeling Sr2RuO4,
the model is formulated such that superconductivity arises
primarily on γ , with accompanying gaps on α and β arising
only through proximity effects. Here, we treat all three bands
on an equal footing, resulting in a fully multiband supercon-
ductivity picture. The included 1D bands display horizontal
line nodes, leading to the experimentally observed power law
for the specific heat. This model has been covered in more
detail previously [15,26].

The distinct contributions to the magnetization in this
model are plotted in Fig. 1. It should be noted that the
contributions MIC and M(1)

LC diverge to plus and minus infinity,
respectively, as T approaches Tc. This problem arises due
to the fact that these components are not separately gauge
invariant, and thus we must take the sum of the two. It
has been shown previously that gauge-invariant forms of the
normal-state equations for MLC and MIC can be obtained
[27]. However, this requires an absolute distinction between
the occupied and unoccupied states in the electron band
structure. The Bogoliubov transformation enforces mixing
of the electron and hole states. This mixing is essential to
recover the quasiparticle band structure of the superconduct-
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FIG. 1. On-site moment M(2)
LC alongside the sum of the

itinerant and local components MIC + M(1)
LC for the model without

SOC.

ing state, but prevents any attempts to project excitations onto
occupied states, and thus our expressions cannot be separately
converted into gauge-invariant forms.

The comparison of the itinerant contributions and the on-
site component reveal that the latter is almost two orders of
magnitude smaller than the itinerant orbital moment. While
the on-site part corresponds to a magnetic field of the order of
∼3 mG, it is ∼300 mG for the itinerant part. This places the
on-site orbital moment around the the resolution of the most
recent attempts to experimentally identify an edge current in
Sr2RuO4 via magnetometry measurements (∼2.5 mG [25]).
On the other hand, the itinerant part, including edge and
unit-cell currents, is sizable in comparison to the experimental
resolution and is, in fact, compatible with μSR measurements
suggesting fields of 500 mG [20]. However, the latter part is
still a bulk property and will be affected by any experimental
situation where boundaries and finite size of the sample play
any significant role. Despite the fact that these results do not
trivially resolve the uncertainty around the magnetic moment
in Sr2RuO4, it established that the bulk orbital moment is
significantly smaller than some earlier models have been
predicting.

The reason for this suppression in the orbital moment in
comparison to other theoretical approaches likely lies in the
multiband, nodal nature of our tight-binding model and gap
structure. Significantly, this result agrees with other experi-
mental and theoretical observations which support the idea
that multiband superconductivity is prevalent in this material.
It has been shown previously that interorbital transitions are
necessary in order for the Kerr effect to arise intrinsically in
the superconducting state [15,28]. In order to see the effect
in a single band picture, extrinsic mechanisms such as skew
scattering must be considered [29]. The inclusion of the addi-
tional 1D, line nodal bands also leads to the correct specific
heat below Tc [28]. The nodeless 2D band would not produce
the experimentally observed power laws in heat capacity
[30] or nuclear magnetic resonance (NMR) spin-relaxation
rate [31].
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FIG. 2. Itinerant magnetic moment MIC + M(1)
LC for the models

with and without SOC.

A. The effect of spin-orbit coupling

We also wish to assess the influence of spin-orbit cou-
pling (SOC) on the magnetic moment in the chiral state.
To do this, we compare results using a tight-binding model
with an additional spin-orbit Hamiltonian derived in an on-
site approximation. As was shown previously [28], a model
including spin-orbit coupling with coupling parameter λ =
12.5meV is able to replicate experimental features such as the
Fermi surface, bandwidth, and heat capacity. In the following,
we compare the non-SOC case (λ = 0) to the case with SOC
(λ = 12.5 meV).

The results for the model including SOC are displayed
in Figs. 2 and 3. It is clearly visible that SOC leads to a
suppression of the orbital magnetic moment. We observe a
significant quantitative reduction in all contributions, without
any qualitative differences in the temperature dependence that
is displayed. This suppression is also of similar order to that
seen in the Kerr effect under the influence of SOC, as reported
previously [28].
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B. The spin-magnetic moment

In order to fully assess the influence of SOC, it is informa-
tive to also compute the spin moment of the chiral state. To do
this, we start with the equation for the spin expectation value
in the orbital basis,

〈Ŝz〉 =
∑

mm′σσ ′
〈mσ | h̄

2
σz|m′σ ′〉nσσ ′

mm′ , (12)

where m, σ are the orbital and spin degrees of freedom,
respectively, and n are the single-particle density matrices.

The density matrix can be evaluated in terms of solutions
to the BdG equation, while the σz matrix elements are ±1 for
σ = σ ′ = ±1 and m = m′. The final expression is then

〈Ŝz〉 =
∑

m

h̄

2

(
n↑↑

mm − n↓↓
mm

)
, (13)

nσσ
mm = 1

N

∑
nk

∣∣uσ
nk

∣∣2
f (Enk ) + ∣∣vσ

nk

∣∣2
[1 − f (Enk )]. (14)

The spin-magnetic moment is given by γs〈Ŝz〉, where γs =
−eg/(2me) and g is the spin gyromagnetic ratio.

It is interesting to note here that the spin moment in this
context becomes nonzero when SOC is included (see Fig. 4),
but is zero otherwise. The spin moment in the SOC regime is
of similar order to the reduction in the on-site orbital moment
induced by the spin-orbit interaction (which we have denoted
	m(2)

LC). This would suggest that the spin-orbit interaction me-
diates a transfer of magnetic moment from the orbital degrees
of freedom (where it arises from the chiral order parameter)
to the spin degrees (which are otherwise disordered).

This observation provides an interesting insight into the
origin of the Kerr effect, a phenomenon which is driven by
the anomalous Hall conductivity present in systems with a
finite orbital moment. The microscopic origin of this effect in
unconventional superconductors has been extensively debated
[29,32]. The current controversy concerns whether the origin
is an extrinsic mechanism, i.e., arising from disorder [33–35],
or an intrinsic mechanism, i.e., arising from coupling of the
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pair state to orbital degrees of freedom at the Fermi level
[15,28,36].

In the normal-state ferromagnet, the intrinsic mechanism
facilitating the Kerr effect is induced by coupling of the
ordered spins to the orbital component via SOC. Namely, the
symmetry breaking in the spin degree of freedom is trans-
ferred to the orbital component via the spin-orbit interaction.
This is a clear analog to the results reported here, where orbital
order arises naturally due to the chiral superconducting order
parameter, and is then reduced via coupling to the disordered
spin component. These results coincide with the observations
reported previously, where the magnitude of the Kerr shift in
the same chiral superconducting model was also shown to
be suppressed by a similar order following the introduction
of SOC [28]. Our model is thus able to effectively describe
an intrinsic origin of the anomalous phenomena observed in
Sr2RuO4.

This analysis of the influence of SOC is further sup-
ported by assessing the regions of the Brillouin zone in
which the spin moment arises (see Fig. 5). Here we see that
the spin moment is present in regions of near degeneracies
between the orbital degrees of freedom in the band structure.
These regions on the Brillouin zone contribute strongly to
the Berry curvature, which gives rise to an anomalous Hall
conductivity [37]. This implies that these regions contain the

highest density of ordered orbital moments, which in turn
suggests that the spin magnetization is arising directly as
a result of coupling of the spins to the orbital degree of
freedom.

IV. CONCLUSION

In conclusion, a formalism for computing the orbital mag-
netization in a superconductor has been derived and calcula-
tions for the model chiral p-wave superconductor Sr2RuO4

have been performed. The results suggest that early estima-
tions of the itinerant magnetization in this state were too
generous. With the results that are presented here, the itinerant
moment is comparable to μSR experiments but the on-site
moment is probably below the resolution of magnetometry-
based investigations. This same model has been shown to also
give a physically reasonable estimate of the observed Kerr
effect [15]. An interesting insight into the influence of SOC on
a magnetic superconducting state has also been highlighted.
Generally, the SOC reduces the magnetic moment, but for the
on-site contribution the quantitative change is compensated by
the generation of an on-site spin-magnetic moment.

It should be stressed that the general result here is not
restricted to the model used. We note that our theory would
also apply to other pairing states which have been proposed
for Sr2RuO4, such as the chiral d-wave [38], f -wave [39],
or long-range p-wave [40] states. In addition, the equations
presented here could be used to investigate the unconventional
pairing symmetries observed in other materials, such as the
underdoped cuprates and heavy-fermion compounds.
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