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It is argued that an analog of a supersymmetric quantum mechanical spectrum can be realized in a Josephson
junction formed by a topological insulator. These Andreev bound states can be studied by means of a circuit
quantum electrodynamics setup. At the same time the equilibrium Josephson current has a more complicated
analytical structure and is not expressed in terms of the Andreev states by a standard formula.
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I. INTRODUCTION

The current experimental advancements enable studying
the Josephson junctions with transmission coefficients close
to unity. Among such systems there are junctions based on
carbon nanotubes [1–3], aluminium atomic break junction
[4], graphene [5,6], InAs nanowires [7–9], two-dimensional
(2D) [10] and 3D [11,12] topological insulators. The physical
mechanism underlying the high transmission coefficient in the
topological insulators is Klein tunneling, see, e.g., Ref. [13],
caused by the linearity of the spectrum of the surface states.
The high transmission coefficient implies the possibility
of the Andreev bound states going deep into the subgap
region.

One of the developed effective and economic tools for
the description of the superconductivity and superfluidity is
represented by the quasiclassical Eilenberger equations, see
review [14]. In the case of conventional superconductors this
approach relies on the possibility to linearize the electron
spectrum near the Fermi surface. Since the quasiclassical
function corresponds to the envelope of the microscopic
wave function, the corresponding boundary condition has
in a general case a nontrivial and nonlinear form, see Ref.
[15]. The approach of the quasiclassical equations has re-
cently been adapted to study of the topological insulators in
Refs. [16,17].

In this paper I discuss the possibility of formation of
the spectrum of Andreev bound states corresponding to the
supersymmetric quantum Hamiltonian spectrum, see Ref.
[18]. This suggestion relies on the spatial dispersion of
the tunneling between superconducting electrode and the
topological insulator, leading to a spatially modulated ef-
fective gap. The simplest way to obtain Andreev bound
states is to use Bogoliubov-de Gennes equation, that can be
transformed to the typical structure of the supersymmetric
quantum mechanics, resulting in the corresponding series of
eigenstates.

The intricate point concerning these Andreev bound states
is that the Josephson current is not defined by the standard
expression in their terms [see Eq. (18) below]. This expres-
sion for the case under consideration is rather leading to
the inaccurate result. The origin of the discrepancy can be

understood as follows. The standard mean-field description of
the superconductivity relies on Gorkov equations written in
terms of normal and anomalous Green’s functions (these can
be simplified to quasiclassical equations). In the equilibrium
case the Josephson current is obtained from the expression
for the normal Green’s function, summed over Matsubara
frequencies. The sum is transformed by means of complex
analysis into integral, which has contributions both from
poles and the branch cuts. The contribution from the poles
is identical to the contribution from the Andreev levels, while
the contribution from the branch cuts can also matter. In other
language, see, e.g., Ref. [19], this contribution corresponds
to the scattering continuum. The outlined procedure is per-
formed in the Appendix, where an explicit analytic expression
for the Josephson current in a small conventional junction
is presented. It is demonstrated that in the asymmetric case
(when the gaps on the sides of the junction are different), the
Andreev states can provide the subleading contribution to the
Josephson current.

Of course, the calculation of the Josephson current via
Gorkov equations in the Matsubara technique is just a matter
of convenience. The use of Bogoliubov-de Gennes equations
with the full description of the wave functions both of the
discreet and the continuum spectrum would result in the same
expression. This can be exemplified by the comparison of
Eq. (A14) and results of Ref. [19], where calculations were
performed in the Bogoliubov-de Gennes scheme. The latter
scheme was recently employed in Refs. [20,21] for quite com-
plicated Hamiltonians. The switch of the Josephson current
between zero and π states and the deviations of response to the
external magnetic field from the standard Fraunhofer pattern
were studied in these papers.

Similarly, the calculations within the Green’s functions
approach do not modify the spectrum of the Andreev bound
states obtained in this paper via Bogoliubov-de Gennes equa-
tion. It is worth noting that Andreev bound states can now
be experimentally studied using cQED setup [9,22] (circuit
quantum electrodynamics). The predictions of this paper,
e.g., appearance of new Andreev bound states at specific
values of superconducting phase jump, can be experimentally
tested.
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FIG. 1. Schematic realization of a Josephson junction through a
topological insulator.

II. EQUATIONS DESCRIBING TOPOLOGICAL
INSULATOR INTERFACE

There is a growing interest in study of topological insu-
lators (TI), compounds characterized by an insulating bulk
but conducting edges or surfaces. The Josephson junction ap-
pearing as a resulting of depositing of two spatially separated
superconducting electrodes on the surface of a 3D TI shown
in Fig. 1, is described by the following Bogoliubov-de Gennes
equation, see Eq. (5.60) in Ref. [13]:

Q̂

⎛
⎜⎝

u↑(r)
u↓(r)
v↑(r)
v↓(r)

⎞
⎟⎠ = 0, Q̂ =

⎛
⎜⎝

E + μ − U (x) h̄v(i∂x + ∂y) 0 −�(x)
h̄v(i∂x − ∂y) E + μ − U (x) �(x) 0

0 �∗(x) E − μ + U (x) h̄v(i∂x − ∂y)
−�∗(x) 0 h̄v(i∂x + ∂y) E − μ + U (x)

⎞
⎟⎠. (1)

This equation is acting on the surface of the TI, and the
function �(x) originates from the tunneling Hamiltonian ap-
proach of Ref. [23]. It should not be confused with the super-
conducting order parameter of the intrinsic superconductor.
Since the coupling constant is assumed to be positive in TI,
the pair potential is identically zero there. However, there
appears the proximity induced nonzero anomalous function
in TI, modeled by the term �(x) in Eq. (1).

While the proximity induced effective gap in Eq. (1) is
momentum independent, it acquires such dependence (p-wave
type), if one switches to the basis of eigenstates of the Hamil-
tonian in the normal state of TI. This property is discussed in
Ref. [24] with the starting point equivalent to Eq. (1). This
interesting effect has been first predicted by Fu and Kane in
Ref. [25].

The Planck constant is later set to be unity h̄ = 1 and the
case of normal incidence ∂y = 0 is considered. The normally
incident modes are characterized by the transmission coef-
ficient equal to 1 (Klein tunneling) and mainly govern the
current-phase relationship of Josephson current in such junc-
tions, see Ref. [13]. Or one can have in mind the situation with
few conducting channels. Thus effectively one-dimensional
problem will be considered. When ∂y = 0, we see that Q̂
commutes with the matrix Ĉ

Ĉ =
(

σ̂x 0
0 −σ̂x

)
. (2)

So the solutions of the equation Q̂ψ = 0 can simultane-
ously be eigenfunctions of the matrix Ĉ with eigenvalues
λ = ±1 (helicity). We will treat the case λ = 1 (forward
motion), the case λ = −1 corresponds to the backward mo-
tion. The spectrum of the backward motion is related to
the spectrum of the forward motion. More precisely, E2

eigenvalues for the given phase jump χ will be the same
for the forward and backward motion. So for the given χ , if
there is E eigenvalue corresponding to the forward motion,
there is also −E eigenvalue corresponding to the backward
motion. This situation corresponds to the one studied in
Ref. [13].

So we shall write the forward solution of Eq. (1) as⎛
⎜⎝

u↑(r)
u↓(r)
v↑(r)
v↓(r)

⎞
⎟⎠ =

⎛
⎜⎝

f (x)
f (x)
ϕ(x)

−ϕ(x)

⎞
⎟⎠. (3)

We can get rid of U (x) − μ terms by writing [ f (x), ϕ(x)] →
exp[iω(x)][ f (x), ϕ(x)] and properly choosing ω(x). Thus we
come to the differential equations

(E + iv∂x ) f (x) + �(x)ϕ(x) = 0,

(E − iv∂x )ϕ(x) + �∗(x) f (x) = 0. (4)

Let us divide the first equation of (4) by �(x) and act on
the resulting equation with (E − iv∂x ). Then let us divide the
second equation (4) by �∗(x) and act on the resulting equation
with (E + iv∂x ). Thus we come to

E2ψ (x) =
(

−v2∂2
x + Ŵ 2 + ivσ̂z

∂Ŵ

∂x

)
ψ (x). (5)

Here,

ψ (x) =
(

f (x)
ϕ(x)

)
, Ŵ (x) =

(
0 �(x)

�∗(x) 0

)
. (6)

The equation in the case of the backward motion will be the
same as Eq. (5).

The right-hand side of Eq. (5) is identical to the Hamilto-
nian of Witten’s supersymmetric quantum mechanics, see Ref.
[18], but for Ŵ (x) being the matrix, not the scalar function.
It should be emphasized, that semiconducting structures are
often described by a Hamiltonian having supersymmetric
structure, see Ref. [26]. The different possibilities for Andreev
levels resulting from Eq. (5) are discussed in the next section.

III. DIFFERENT SOLUTIONS FOR ANDREEV LEVELS

The most typical case considered for the Josephson junc-
tion formed by two superconductors separated by a layer
of topological insulator corresponds to the function �(x)
changing abruptly from |�|eiχ/2 to |�|e−iχ/2 at x = 0. In this
situation the integration of Eq. (5) near x = 0 provides the
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jump of the derivatives of f , ϕ near x = 0. Matching these
with the solutions decaying into the depth one can obtain [13]

E2 = �2 cos2 χ

2
. (7)

However, even if the deposited superconductors are the
same, the effective �(x) in Eq. (5) involves the tunneling am-
plitudes (see Appendix in Ref. [27]) and these can be different.
So the general situation for a short junctions corresponds to
�(x) on the left equal to �1eiχ/2 and on the right to �2e−iχ/2.
The parameters �1,2 are taken to be real and positive. Then in
the same manner one can obtain

E2 = �2
1�

2
2 sin2 χ

�2
1 + �2

2 − 2�1�2 cos χ
(8)

with the following important stipulation, identical to the Ref.
[28]. The solution is valid only for cos χ < �1/�2 (it is
assumed for definiteness that �1 < �2). For cos χ > �1/�2

there are no Andreev bound states. This statement holds
irrespective of the transmission coefficient of the given con-
ducting channel. The expression (8), naturally, corresponds to
results of Ref. [28] and to Ref. [29], where the asymmetric
case with the presence of Zeeman field was considered.

The Appendix deals with short conventional asymmetric
(�1 �= �2) junction. Emphasis is laid on the analytic proper-
ties of the Josephson current. It is demonstrated that the usual
formula for the Josephson current in terms of the Andreev
levels energy can give the result essentially different from the
correct one.

The absence of the Andreev bound states for cos χ >

�1/�2 limits the validity of widely used reasoning about
the adiabatic evolution of forward and backward states in the
context of the 4π periodic Josephson current. This reasoning
relies on the protection of the forward and backward states due
to the time reversal symmetry with the resulting possibility of
nonequilibrium occupancy of these states.

Let us now explore another possibility for the Andreev
bound states under the assumption that the tunneling is soft,
in a sense that the resulting �(x) distribution is given by (the
superconductors are close)

�(x) = �L

1 + ex/a
+ �R

1 + e−x/a
. (9)

Here a is the length parameter, characterizing the tunneling
Hamiltonian. So this model assumes that the superconducting
electrodes are close, but the tunneling has some distance scale
a. Taking the function �(x) deep in the left and deep in the
right to be �L = |�|eiχ/2, �R = |�|e−iχ/2, we obtain

�(x) = |�| cos
χ

2
− i|�| sin

χ

2
tanh

x

a
. (10)

We see from Eq. (10), that the main feature of this model is
the change of the superconducting phase on the scale a. If a is
small, we recover the previous model of the abrupt change of
χ , if a is not that small, we have the gradual change of χ with
the distance. Hence we come to the equation

E2ψ =
[
−v2∂2

x + |�|2 cos2 χ

2
+ |�|2 sin2 χ

2
tanh2 x

a

+ v

a cosh2(x/a)
|�| sin

χ

2
σ̂x

]
ψ. (11)

Making the unitary transformation to diagonalize σ̂x

1

2

(
1 1

−1 1

)(
0 1
1 0

)(
1 −1
1 1

)
=

(
1 0
0 −1

)
, (12)

we come to the typical structure of the supersymmetric quan-
tum mechanics

E2ψ =
[

− v2∂2
x + |�|2 cos2 χ

2
+ W 2(x) + vW ′(x)σ̂z

]
ψ.

(13)

Here,

W (x) = |�| sin
χ

2
tanh

x

a
. (14)

Using results of Ref. [18] we get the following expressions
for the eigenvalues:

E2
n = �2 −

(
�

∣∣∣∣ sin
χ

2

∣∣∣∣ − n
v

a

)2

. (15)

The values of n are 0, 1, . . . and up to the largest integer less or
equal �| sin(χ/2)|a/v. Excluding n = 0, the levels are doubly
degenerate.

To be more specific, let us describe the structure of
the Andreev levels for 0 < χ < 2π . There is a level E =
|�| cos(χ/2) corresponding to the forward motion, the level
with the opposite sign E = −|�| cos(χ/2), corresponding to
the backward motion. If allowed by the condition

n
v

a
< �| sin(χ/2)|, (16)

there are also levels with n > 0, given by

En = ±
√

�2 −
(

�

∣∣∣∣ sin
χ

2

∣∣∣∣ − n
v

a

)2

. (17)

Each of the levels (17) is doubly degenerate—one state corre-
sponds to the forward motion and the other to the backward
motion. Note, that in the case of Andreev levels with several
n, the corresponding states are realized in different ranges
of χ . It contrasts with the case of states (8) and the similar
case of the short junction with several conducting channels,
characterized by different transmission coefficients. All the
Andreev states in the latter situation are realized for cos χ <

�1/�2.
One can assume, that substituting the values (15) into the

usual expression for the Josephson current in terms of the
Andreev bound states

I (A)
J = −2e

∑
n

En
′(χ ) tanh

En(χ )

2T
, (18)

one will have the answer [let us remind, that the summation
in Eq. (18) goes over positive Andreev levels]. However, as
explained in the next section this assumption is inaccurate.
The value of the current essentially differs from that given by
Eq. (18).

The similar discrepancy can also appear in the case of the
conventional SNS ballistic contact with equal gaps on two
sides. The Green’s function in Matsubara technique can be
calculated as discussed in Ref. [30], where the expression
(16), (17) for the Josephson current is presented. Similarly
to the Appendix the sum over Matsubara frequencies can be
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transformed as the sum over the poles plus the integral along
the branch cut. Naturally, the poles coincide with the usual
expression for Andreev levels, i.e., for a long junction they
have a standard form

En = v

2d
[π (2n + 1) ± χ ]. (19)

Here v is the Fermi velocity, d is the length of the normal
layer and n is an integer number. The integral over the branch
cut can be transformed to the integral from � to ∞. It can be
checked that for � ∼ v/d the branch cut contribution is com-
parable to the contributions from the poles. The similar effect
takes place in the case under consideration, when we have the
effective gap. The next section deals with the construction of
the Green’s function in Matsubara technique for the effective
gap distribution given by Eq. (10).

IV. JOSEPHSON CURRENT IN THE CASE OF THE
SUPERSYMMETRIC SPECTRUM OF ANDREEV STATES

Equation (4) exactly coincides with the Eq. (5) of Ref. [30]
after the replacement E → iωn. Reference [30] is devoted
to the construction of the Green’s functions and calculation
of the Josephson current in multiple-barrier structures. The
forward and the backward motion in that reference, naturally,
correspond to the expansion around exp(±ikF x), where kF is
the Fermi momentum. The situation considered in the current
context corresponds to the previous one with the stipulation of
the perfect transmission due to Klein tunneling for the normal
incidence mode. The Green’s functions can be constructed in
the same way as before.

So we are dealing with the system of equations

(iωn + iv∂x ) f (x) + �(x)ϕ(x) = 0,
(20)

(iωn − iv∂x )ϕ(x) + �∗(x) f (x) = 0,

where ωn = (2n + 1)πT is the Matsubara frequency. Taking
the sum and the difference of the equations (20) for the distri-
bution of �(x) given by Eq. (10), we come to the following
equation on y(x) = f (x) + ϕ(x):

cosh2 x y′′(x) + [ν(ν + 1) − μ2 cosh2 x]y(x) = 0. (21)

The coordinate x was rescaled by the factor a, so that the new
coordinate x is dimensionless. Also

μ2 = a2

v2

(|�|2 + ω2
n

)
, ν = −a

v
|�| sin

χ

2
. (22)

The decaying solutions of Eq. (21) with Re μ > 0 are Ferrers
function Pμ

ν (see online information in Ref. [31]):

P−μ
ν (tanh x), when x → +∞

P−μ
ν (− tanh x), when x → −∞. (23)

So we know solutions of Eq. (20) with the proper behavior.
In constructing the Green’s function Gωn (x, x′) (depending on
Matsubara frequencies and two coordinates x, x′), we take
the linear combinations of products of solutions of Eq. (20)
on functions, depending on argument x′. Then imposing the
condition of needed behavior at x → x′, similarly to Ref. [30],
we obtain the Green’s function. Calculating the Josephson
current at x = 0, one has in the case of one conducting

FIG. 2. The phase dependence of the Josephson current de-
scribed by Eqs. (25) (lower curve) and (18) (upper curve) at
πT/|�| = 0.1 and a|�|/v = 1.

channel:

IJ = −eT ν cot
χ

2

∑
ωn>0

[
P−μ

ν (0)
(
P−μ

−ν

)′
(0) − P−μ

−ν (0)
(
P−μ

ν

)′
(0)

]

×
[

1(
P−μ

−ν

)′
(0)

(
P−μ

ν

)′
(0)

+ 1

μ2 − ν2

1

P−μ
ν (0)P−μ

−ν (0)

]
.

(24)

Taking from the Ref. [31] the values of Ferrers functions and
their derivatives at x = 0, we come to

IJ = −eT πν cot
χ

2

∑
ωn>0

21−2μ�(μ − ν)�(μ + ν)

×
[

μ − ν

�2(1 + μ

2 − ν
2 )�2( 1

2 + μ

2 + ν
2 )

− μ + ν

�2(1 + μ

2 + ν
2 )�2( 1

2 + μ

2 − ν
2 )

]
. (25)

This expression gives the final result for the Josephson current
in the case of one conducting channel and perfect transmission
(zero scattering potential). Naturally, in the case of short junc-
tion a → 0, we recover from Eq. (25) the standard expression

IJ = e|�| sin
χ

2
tanh

( |�| cos(χ/2)

2T

)
. (26)

The gamma function does not have zeros in the complex
plane. So the poles of the expression (25) at ωn taking the
imaginary values are defined by the poles of the gamma
function at nonpositive integers. Thus we recover the Andreev
levels (15). In the same manner the Andreev levels can be
recovered from the expression for the equilibrium current in
conventional Josephson junction as discussed in Ref. [32].

At the same time the expression for the Josephson current
provided by Eq. (25) essentially differs from that given by
Eq. (18) [with the Andreev spectrum (15)] as demonstrated in
the Figs. 2 and 3. There is no cause to wonder having in mind
that �(x) in Eq. (4) is the effective function, not the genuine
superconducting gap. However, it is also demonstrated in
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FIG. 3. The phase dependence of the Josephson current de-
scribed by Eqs. (25) (lower curve) and (18) (upper curve) at
πT/|�| = 0.1 and a|�|/v = 2.

the Appendix that even for the gap corresponding to the
real superconducting gap the current defined by the usual
expression (18) can give an essentially inaccurate answer.

V. CONCLUSION

To summarize, it is shown that the analog of the super-
symmetric quantum mechanics of Witten is possible in the
case of the Josephson junctions, see Eqs. (13) and (15).
This realization relies on the distribution of effective gap
�(x) given by Eq. (10). Such a distribution (plausible in the
junction formed by a topological insulator) corresponds to
the smoothly changing phase in the junction layout shown
schematically in the Fig. 1.

More careful treatment of the Josephson current through
this junction allows us to come to the explicit result (25) [with
notations introduced in Eq. (22)]. The Josephson current pro-
vided by Eq. (25) strongly deviates from the usual expression
for the Josephson current (18). Nevertheless, the pole structure
is not modified, and corresponding Andreev levels can be
studied by means of the circuit quantum electrodynamics.

The Appendix demonstrates, that even in a simple realiza-
tion the current provided by Eq. (18) can give an inaccurate
result. It is compared with the derived general analytic expres-
sion (A10) for the Josephson current through a small junction.
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APPENDIX: JOSEPHSON CURRENT IN A SMALL
ASYMMETRIC JUNCTION

Let us consider a Josephson current through a point con-
tact, the dimensions of which are smaller than the supercon-
ducting coherence length. The Josephson current through it is
given by Eq. (19) of Ref. [32]

IJ = 4eT
∑
ω>0

∑
n

Tn f1 f2 sin χ

2 + Tn(g1g2 + f1 f2 cos χ − 1)
. (A1)

Here the summation goes over Matsubara frequencies and n
conducting channels with transmission coefficients Tn. The
Matsubara Green’s functions are given by

g1,2 = ω√
ω2 + �2

1,2

, f1,2 = �1,2√
ω2 + �2

1,2

. (A2)

Here �1,2 are real and positive. The expression for the Joseph-
son current (A1) results from the calculation of the quasi-
classical Green’s function with account of Zaitsev’s boundary
conditions [15]. Eq. (A1) is essentially equivalent to Eq. (35)
from the Ref. [15].

In the case of symmetric �1 = �2 Josephson junction the
square roots in the denominator of Eq. (A1) disappear and the
contribution to the sum comes from the poles in the complex
plane (Andreev levels)

IJ = e� sin χ

2

∑
n

Tn√
1 − Tn sin2(χ/2)

× tanh
�

√
1 − Tn sin2(χ/2)

2T
. (A3)

Introducing the Andreev levels

En(χ ) = �

√
1 − Tn sin2(χ/2), (A4)

we can rewrite the expression (A3) in the form (18).
The analytic expression for the Josephson current be-

comes more complicated in the asymmetric case �1 �= �2.
It amounts to finding the following sum for the given trans-
mission channel

∞∑
k=0

1√
(2k + 1)2 + a2

√
(2k + 1)2 + b2 + γn[(2k + 1)2 + ab cos χ ]

. (A5)

Here γn = Tn/(2 − Tn) lies in the range 0 � γn � 1 and we choose a � b for definiteness. Using the methods of the theory of
functions of a complex variable, one can rewrite this sum as

∞∑
k=0

1√
(2k + 1)2 + a2

√
(2k + 1)2 + b2 + γn[(2k + 1)2 + ab cos χ ]

= 1

2

∫ b

a

dx tanh(πx/2)
√

(x2 − a2)(b2 − x2)

(x2 − a2)(b2 − x2) + γ 2
n (x2 − ab cos χ )2

+ θ

(
a

b
− cos χ

)
πγn tanh(πx0/2)

4
(
1 − γ 2

n

)
x0

[
a2 + b2 − 2ab cos χ√

(a2 − b2)2 + 4abγ 2
n (a − b cos χ )(b − a cos χ )

− 1

]
. (A6)
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Here θ (x) is the Heaviside step function and

x2
0 = 1

2
(
1 − γ 2

n

) [
a2 + b2 − 2abγ 2

n cos χ

−
√

(a2 − b2)2 + 4abγ 2
n (a − b cos χ )(b − a cos χ )

]
.

(A7)

We take for x0 the positive square root of this expression. The
right-hand side of Eq. (A6) consists of the integral along the
cut and the pole (Andreev level) contribution. The pole ±ix0

exists only for cos χ < a/b irrespective of γn, i.e., irrespective
of the transmission coefficient.

Using Eq. (A6) we can rewrite the expression for the
Josephson current as

IJ = −2eθ

(
�1

�2
− cos χ

)∑
n

En
′(χ ) tanh

En(χ )

2T

+2e

π
�1�2 sin χ

∑
n

γn

∫ �2

�1

dx tanh(x/2T )
√(

x2 − �2
1

)(
�2

2 − x2
)

(
x2 − �2

1

)(
�2

2 − x2
) + γ 2

n (x2 − �1�2 cos χ )2
. (A8)

We take for definiteness �1 � �2. The square of the Andreev level energy in the nth conducting channel is given by

E2
n (χ ) = 1

2
(
1 − γ 2

n

)[
�2

1 + �2
2 − 2�1�2γ

2
n cos χ −

√(
�2

1 − �2
2

)2 + 4�1�2γ 2
n (�1 − �2 cos χ )(�2 − �1 cos χ )] (A9)

and this expression coincides with the Eq. (23) from the Ref. [28]. Taking the zero-temperature (T 
 �1) integrals [33] one
comes to the expression for the equilibrium current of a small junction

IJ = −2eθ

(
�1

�2
− cos χ

)∑
n

En
′(χ ) + 2e

π
�1 sin χ

∑
n

γn

1 − γ 2
n

{
K

(
1 − �2

1

�2
2

)

− 1

ε̃2
n − E2

n

[(
ε̃2

n − �2
1

)
�

(
�2

2 − �2
1

�2
2 − ε̃2

n

, 1 − �2
1

�2
2

)
+ (

�2
1 − E2

n

)
�

(
�2

2 − �2
1

�2
2 − E2

n

, 1 − �2
1

�2
2

)]}
. (A10)

Here

ε̃2
n (χ ) = 1

2
(
1 − γ 2

n

) [
�2

1 + �2
2 − 2�1�2γ

2
n cos χ +

√(
�2

1 − �2
2

)2 + 4�1�2γ 2
n (�1 − �2 cos χ )(�2 − �1 cos χ )

]
(A11)

differs from the square of the Andreev level (A9) by a sign
in front of the square root. The complete elliptic integrals are
defined as

K (x) =
∫ π/2

0

dθ√
1 − x sin2 θ

,

� (x, y) =
∫ π/2

0

dθ

(1 − x sin2 θ )
√

1 − y sin2 θ
. (A12)

The expression (A10) reproduces all the known results
for the small junction. Naturally, the case of the symmetric
junction is trivial, since the current reduces to the result (A3),
see Ref. [34]. This expression reproduces the so-called KO-1
and KO-2 results for the diffusive and clean limits respectively
(see Ref. [32]). To obtain KO-1 result it is necessary to
additionally average over the Dorokhov distribution of the
transmission coefficients P(Tn) ∝ 1/(Tn

√
1 − Tn).

The asymmetric case is less trivial. In the case of the strong
asymmetry (�2  �1) Eq. (A10) results within the next to
logarithmic accuracy

IJ = 2e

π
�1 sin χ

∑
n

γn

[
ln

(
4�2

�1

)
− arctan

√
γ −2

n − 1√
γ −2

n − 1

]

−
∑

n

2e�1γ
2
n sin χ√

1 − γ 2
n cos2 χ

[
cos χ θ (− cos χ ) + | cos χ |

π

× arccos (γn| cos χ |)
]
. (A13)

For the single perfectly transparent conducting channel γn =
1 this expression leads to

IJ = 2e

π
�1 sin χ

[
ln

(
4�2

�1

)
− 1

]
− 2e

π
�1χ cos χ. (A14)

Equation (A14) is written for −π < χ < π , for other phases
the Josephson current is continued 2π periodically. Equation

FIG. 4. The zero-temperature Josephson current (upper curve)
of a perfectly transmitting conducting channel with �2/�1 = 100
and the Andreev level contribution to this current given by Eq. (18)
(lower curve).
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(A14) corresponds to the results of Ref. [19] and improves the
next to logarithmic accuracy.

In order to find the Josephson current in the diffusive limit,
it is again necessary to average Eq. (A13) with the Dorokhov
distribution. Using the value of the integral

∫ 1

0

γ arccos (γ | cos χ |)dγ√
1 − γ 2

√
1 − γ 2 cos2 χ

= π

2| cos χ | ln (1 + | cos χ |),
(A15)

one comes to

IJ = π�1

2eRN
sin χ ln

(
2�2

�1(1 + cos χ )

)
. (A16)

Here RN is the normal state resistance of the junction.
Eq. (A16) corresponds to Eq. (12) of Ref. [32].

The message of the Appendix is illustrated in the Fig. 4,
drawn for �2/�1 = 100 and the transmission coefficient
equal to 1. It can be seen, that the Andreev level contribution
[given by Eq. (18)] essentially differs from the total result.
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