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Planar optomagnonic cavities driven by surface spin waves
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A generalized rigorous Floquet scattering-matrix method for stratified anisotropic optical media, subject to
a periodic spatiotemporal modulation, is formulated and implemented. The method is applied for studying
an optomagnonic cavity formed by an in-plane magnetized ferrite film, in which a magnetostatic surface
spin wave propagates, sandwiched between two nonmagnetic dielectric Bragg mirrors. Our results provide
unambiguous evidence that externally incident light, when trapped in a cavity mode, experiences a strongly
enhanced interaction with the spin wave due to the increased coupling time, which can give rise to pronounced
effects if the appropriate selection rules are fulfilled. By means of systematic calculations we reveal and explain
some remarkable features of this interaction, such as formation of spectral gaps, controllable transmission,
and the emergence of inelastic diffracted beams, and show that efficient conversion of the optical wave can
be achieved by triply resonant inelastic scattering through (multi)magnon absorption and emission processes.

DOI: 10.1103/PhysRevB.101.134426

I. INTRODUCTION

The interaction of visible and near-infrared light with mag-
netostatic surface, so-called Damon-Eshbach [1], spin waves
has long been investigated within different contexts. Brillouin
light scattering, either by thermal incoherent magnetic excita-
tions [2,3] or by externally excited coherent magnons [4–6],
has been proven to be a powerful tool for the direct detection
of Damon-Eshbach spin waves in magnetic thin films. In an-
other perspective, epitaxially grown yttrium iron garnet (YIG)
films on gadolinium gallium garnet substrates have been thor-
oughly studied both theoretically and experimentally [7–11]
as high-frequency modulators for optical signal processing,
employing Damon-Eshbach spin waves generated, e.g., by a
microstrip line to diffract guided optical beams propagating
in the same infrared-transparent YIG film. Further, significant
effort has been devoted to improving the device performance
using other ferrite materials with higher magneto-optic cou-
pling constants [12–14] and/or designing multilayer config-
urations that comprise pairs of magnetic films [15–18]. For
the same purpose, diffraction of guided light by other types of
magnetostatic spin waves, such as forward-volume [9,19–21],
backward-volume [12], and multiple-character [22] modes, as
well as nonlinear magnetostatic surface waves [23] has been
investigated, while nonuniform bias magnetic fields have also
been applied [24,25] in order to enhance the diffraction and
conversion efficiency.

More recently, there is growing interest in dual cavities for
both light and spin waves, so-called optomagnonic, that would
allow for an efficient coherent and reversible conversion be-
tween microwave and optical photons, mediated by magnons.
This possibility would offer, among other things, a route for
interfacing superconducting quantum circuits, which operate
in the microwave frequency range, with optical and telecom
photons in view of quantum information processing and com-
munication applications [26,27]. In a broader perspective,

optomagnonic cavities provide a promising avenue for the
realization of strong photon-magnon interaction phenomena,
analogous to and even stronger than corresponding photon-
phonon coupling effects in cavity optomechanics, allowing for
coherent manipulation of elementary magnetic excitations in
solids by optical means and vice versa [28–31].

Submillimeter-sized polished YIG spheres, hosting high-
quality-factor and densely spaced optical whispering gallery
modes (WGMs) in the near-infrared part of the spectrum
and spin waves at gigahertz frequencies, can operate as op-
tomagnonic cavities. Inelastic light scattering by the uniform-
precession magnetic excitation in such cavities in the triple-
resonance regime, in which the magnon provides the required
energy and angular momentum for parity-conserving photon
transitions from an initial to a final WGM, was observed
[32–34] and analyzed [35]. However, the optomagnonic cou-
pling was quite weak, and the attained optical-to-optical
conversion efficiencies did not exceed 10−5. Significant ex-
perimental and theoretical effort was subsequently focused
on improving the conversion efficiency by enhancing the
mode overlap using higher-order Walker magnetostatic modes
with nontrivial spin textures [36–38] or surface magnons of
mixed dipolar-exchange character [39] interacting with opti-
cal WGMs in submillimeter-sized YIG spheres. Alternative
proposals to enhance the optomagnonic interaction by reduc-
ing the modal volume, either employing Zeeman-split optical
Mie resonances interacting with the uniform-precession spin
wave in a magnetic garnet microsphere [40] or optical WGMs
coupled through spin excitations localized at a magnetic vor-
tex in a YIG microdisk [41], were suggested as well.

Meanwhile, planar optomagnonic architectures were also
explored. Strong-coupling effects beyond the linear-response
approximation, which can lead to enhanced modulation of
externally incident light by perpendicular spin waves through
multimagnon emission and absorption processes, were antic-
ipated in a multilayer structure comprising a magnetic film

2469-9950/2020/101(13)/134426(10) 134426-1 ©2020 American Physical Society

https://orcid.org/0000-0003-2520-9380
https://orcid.org/0000-0003-1264-472X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.101.134426&domain=pdf&date_stamp=2020-04-22
https://doi.org/10.1103/PhysRevB.101.134426


PANTAZOPOULOS AND STEFANOU PHYSICAL REVIEW B 101, 134426 (2020)

between two nonmagnetic dielectric Bragg mirrors [42] as
well as in an all-magnetic dielectric one-dimensional dual
photonic-magnonic crystal with a localized defect [43], using
an adiabatic quasistatic method. However, in the spirit of the
adiabatic approximation, the frequency of the optical field re-
mains unchanged, and thus, triply resonant inelastic scattering
cannot be accounted for by this approach. A rigorous, fully
dynamic time-Floquet scattering-matrix method for the accu-
rate description of stratified optomagnonic structures that re-
main invariant parallel to the interfaces under the action of the
spin wave was subsequently developed [44]. Application of
this method to an in-plane magnetized ferrite film sandwiched
between two lossless dielectric Bragg mirrors revealed the
occurrence of strong triply resonant inelastic light scattering
by the uniform-precession mode, with high magnon-mediated
optical-to-optical conversion efficiencies reaching 30% [45].
A high-efficiency microwave-to-optical-photon converter for
quantum information processing and communication applica-
tions, based on the diffraction of guided light by a traveling
Damom-Eshbach spin wave in a design similar to that of
magneto-optical modulators, was also proposed [46]. How-
ever, a rigorous computational method for general planar
optomagnonic structures in the presence of spin waves that
induce, in addition to the temporal modulation, an in-plane
periodic spatial corrugation, such as the magnetostatic surface
and volume spin waves, is still lacking.

The present paper is meant to provide a comprehensive
theoretical study of the interaction of externally incident light
with Damon-Eshbach spin waves in a versatile planar opto-
magnonic cavity, formed by a magnetic garnet film between
two lossless dielectric Bragg mirrors, using a generalization of
our recently developed time-Floquet scattering-matrix method
to stratified photonic media driven by a spatiotemporal pe-
riodic stimulus. Some parts of the formalism presented here
cannot be deduced in a straightforward manner from our
previous method and require particular care. That is why we
deferred the derivation of those parts to the Appendix while,
for the rest of the method, the reader is referred to Ref. [44].
The fully dynamic spatiotemporal Floquet scattering-matrix
methodology reported here represents a considerable advance
over our previous work and could be useful, also, for studying
the more general class of driven Floquet space-time crystals
and metamaterials, which have received increasing attention
in recent years [47–50]. The remainder of the paper is orga-
nized as follows. In Sec. II we discuss the optical response
of our statically magnetized structure. In Sec. III we briefly
summarize the theory of magnetostatic surface spin waves
and deduce the selection rules that govern the optomagnonic
interaction in the case under consideration. Section IV is
devoted to the presentation and interpretation of our numerical
results for the inelastic light–spin-wave scattering, while the
last section concludes the paper.

II. STATICALLY MAGNETIZED STRUCTURE

In order to achieve simultaneous confinement of light and
spin waves in the same region of space, we consider the same
planar structure as that studied in Ref. [45]. It consists of a
cerium-substituted yttrium iron garnet (Ce:YIG) film sand-
wiched between two lossless Bragg mirrors, each composed

z

y

x

FIG. 1. (a) Schematic view of a symmetric planar optomagnonic
cavity, realized by a 340-nm-thick, in-plane magnetized Ce:YIG
film, sandwiched between two Bragg mirrors. Each Bragg mirror
consists of six periods of alternating Si and SiO2 layers with a
thickness of 110 and 265 nm, respectively. (b) Dispersion curves
of the p- and s-polarized resonant defect modes, ωp(qy ) and ωs(qy ),
within the lowest Bragg gap. The left inset depicts the corresponding
transmission resonances for light incident from the left with |qy| =
1 μm−1, neglecting material losses. The frequency difference of the
p and s modes at the same qy is shown in the right inset.

of six periods of alternating Si and SiO2 layers, as schemati-
cally depicted in Fig. 1(a). The structure is grown along the z
direction from left to right and is embedded in air. We consider
the Voigt geometry; that is, the Ce:YIG film is magnetically
saturated to M0 by an in-plane bias field H0 along the x
direction, and light propagates perpendicular to it (in the y-z
plane). We choose an in-plane component of the wave vector
qy = 1 μm−1 and an operation wavelength λ � 1.55 μm. Si
and SiO2 are optically isotropic materials and lossless at the
given wavelength (nSi = 3.5, nSiO2 = 1.47), at which Ce:YIG
is characterized by a relative electric permittivity tensor,

ε =
⎛
⎝ε 0 0

0 ε i f
0 −i f ε

⎞
⎠, (1)

with ε = 5.10 + i5 × 10−5 and f = −0.008 [51–53]. The
thickness of the layers is determined following the structure-
design strategy proposed in Ref. [45]: The quarter-wavelength
condition yields 110- and 265-nm-thick Si and SiO2 layers,
respectively, while the half-wavelength Ce:YIG film has a
thickness d = 340 nm. We note that the relative magnetic
permeability of the materials equals unity.

The structure is illuminated from the left with linearly po-
larized light of angular frequency ω and in-plane wave-vector
component qy. In the chosen configuration, linearly polarized
light with its electric field oscillating in and normal to the
plane of incidence, termed p and s polarized, respectively,
is an eigenmode of the system [45]. Due to the presence of
the magnetic film, which can be considered a defect in the
periodic sequence of layers of the Bragg mirrors, the structure
supports resonant defect modes within the lowest Bragg gap
manifested as sharp peaks in the corresponding transmission
spectrum. Figure 1(b) shows the dispersion curves of these
modes, ωp(qy) and ωs(qy), as a function of |qy| because the
eigenfrequencies depend on the magnitude but not on the
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sign of qy since the structure remains invariant under the
combined operations of rotation through an angle π about the
y axis followed by time reversal, which transforms (qy, qz )
to (−qy, qz ). At any angle of incidence, θ = sin−1(cqy/ω),
with c being the speed of light in vacuum, the structure
exhibits two high-quality-factor defect resonances (one for
each polarization), with their frequency difference being of
the order of 10 GHz, as shown in the right inset of Fig. 1(b),
which matches the frequency of magnetostatic surface spin
waves (see the next section). The structure is fully transparent
at each of those resonances if material losses are neglected, as
shown, for instance, in the left inset of Fig. 1(b) for θ � 14◦
(qy = 1 μm−1).

When dissipative losses are taken into account, the po-
sition of the resonances remains practically unchanged, but
their quality factor and, consequently, the transmission peaks
are significantly reduced. For example, for qy = 1 μm−1, the
transmission at the p (s) resonance drops from 100% to 45%
(35%), while 44% (48%) of the incident light intensity is
absorbed. Nevertheless, the resonances remain well resolved.

III. OPTICAL-SPIN WAVE INTERACTION

The Ce:YIG film described in the previous section supports
magnetostatic surface spin waves that propagate with wave
number Q along the y direction. Their angular frequency �

obeys the dispersion relation [54]

�2 = �H(�H + �M) + �2
M

4
[1 − exp(−2Qd )], (2)

with �H = γμ0H0 and �M = γμ0M0, where γ is the gyro-
magnetic ratio and μ0 is the magnetic permeability of vacuum.
The dynamic magnetization field, which has the form of a
monochromatic harmonic wave, is related through the Polder
susceptibility tensor to the associated magnetic field. The
latter is derived from a magnetostatic potential that satisfies
Walker’s equation, subject to the appropriate boundary condi-
tions [54]. It comes out that, for each value of Q, there are
two modes of the same frequency, which propagate in the
positive (S = +) and negative (S = −) y directions, with the
corresponding magnetization field given by

M(r, t )/M0 = x̂ + ηSy(z)sin(SQy − �t )̂y

+ ηSz(z)cos(SQy − �t )̂z, (3)

where

ηSy(z) = η0{(Sχ + κ ) exp(−Qz)

+ S(χ + 2 + Sκ ) exp[Q(d + z)]},
ηSz(z) = η0{(χ + Sκ ) exp(−Qz)

− (χ + 2 + Sκ ) exp[Q(d + z)]}, (4)

with χ = �H�M/(�2
H − �2) and κ = ��M/(�2

H − �2) be-
ing the elements of the Polder susceptibility tensor and η0

being an arbitrary amplitude factor that must be chosen such
that the magnetization precession angle does not exceed a few
degrees in order to ensure that we are in the linear regime.
The magnetization profile given by Eq. (3) shifts from one
side of the film at z = −d/2 to the other at z = d/2 when the
propagation direction is reversed, which is a manifestation of

nonreciprocity of the Damon-Eshbach spin waves. For typical
values of the bias field and the saturation magnetization,
H0 = 2.6 kOe and M0 = 150 kA/m [51], �/2π is of the order
of 10 GHz. We note that exchange fields, quantified by the
exchange stiffness constant αex, may also be important for
the description of spin waves. However, in our case here
(αex ∼ 3 × 10−16 m2) [54], for Q of the order of 1 μm−1 or
less, their contribution can be ignored since αexQ2 < 10−3

and αexπ
2/d2 ∼ 10−2 [55,56]. Therefore, the exchange-free

description of Damon-Eshbach spin waves is appropriate, ex-
cept perhaps for narrow special regions due to the interaction
of surface and volume modes [55].

The interaction between light and magnetostatic surface
spin waves enters through the electric permittivity tensor.
Specifically, the magnetization field given by Eq. (3) induces
a spatiotemporal perturbation [42]

δε(y, z, t ) = 1
2 {δε(z) exp[i(SQy − �t )]

+ δε†(z) exp[−i(SQy − �t )]} (5)

in the electric permittivity tensor of the statically magnetized
material, where

δε(z) = f

⎛
⎝ 0 iηSz(z) −ηSy(z)

−iηSz(z) 0 0
ηSy(z) 0 0

⎞
⎠ (6)

and the dagger denotes Hermitian conjugation.
The selection rules that govern the optomagnonic inter-

action can be deduced from the expression of the coupling
strength associated with the photon-magnon scattering.
To first-order Born approximation, this is proportional to the
overlap integral G = 〈f| δε |i〉, where 〈αr′t ′|i〉 = Eiα (z)
exp[i(qixx + qiyy − ωit )] and 〈f|αrt〉 = E �

fα (z) exp[−i(qfxx +
qfyy − ωft )] denote Cartesian components (α = x, y, z) of the
incoming and outgoing monochromatic time-harmonic fields
in the static magnetic structure. Using Eq. (5), we obtain

G = δ(qix − qfx )[δ(qiy − qfy − SQ)δ(ωi − ωf − �)g−
+ δ(qiy − qfy + SQ)δ(ωi − ωf + �)g+], (7)

where

g+ = i
4π3 f

M0

∫
dzm(z) · [E�

f (z) × Ei(z)],

g− = i
4π3 f

M0

∫
dzm�(z) · [E�

f (z) × Ei(z)], (8)

with m(z) = M0[iηSy(z )̂y + ηSz(z )̂z]. The delta functions in
Eqs. (7) express conservation of in-plane momentum and
energy in inelastic light scattering processes that involve emis-
sion and absorption of one magnon by a photon, as expected in
the linear regime. Equations (8) provide the necessary selec-
tion rules that govern the optomagnonic interaction. When the
polarization vectors of Ei and Ef are real, as in the case of lin-
ear polarization considered here, nonvanishing optomagnonic
coupling is obtained for EM fields of orthogonal polarizations.

Conservation of in-plane momentum and energy and polar-
ization conversion for one-magnon processes imply that, e.g.,
s-polarized incident light with in-plane wave-vector compo-
nent qiy and angular frequency ωi, through inelastic scattering
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by absorption or emission of n magnons, will be converted to
a final state with in-plane wave-vector component qfy = qiy −
nSQ, angular frequency ωf = ωi − n�(Q), and appropriate
polarization. We recall that the polarization of the photon
changes (remains the same) upon absorption or emission of
an odd (even) number of magnons n. Obviously, efficient
conversion occurs when resonant initial and final optical
modes are involved. For instance, for s-polarized light incident
with given {qiy, ωi} within the width of the corresponding
defect resonance at ωs(qiy) [see Fig. 1(b)], strong inelastic
scattering is expected when, upon absorption or emission of
magnons with {Q,�(Q)}, the conservation rules lead to a
final photon state at an appropriate defect resonance of the
statically magnetized structure [see Fig. 1(b)], with the triple-
resonance condition achieved exactly for ωi = ωs(qiy). Other-
wise, the dynamic structure behaves as if it were static. These
expectations are, indeed, verified by our results presented in
the subsequent section. We note that nonreciprocity of the
Damon-Eshbach spin wave is accounted for by the selection
rules and the magnetization profile through S, which changes
sign upon reversing the propagation direction.

IV. SPATIOTEMPORAL OPTOMAGNONIC STRUCTURE

The structure considered in the present study is the same
as the one in our previous work [45]; however, the system
is completely different because, here, the cavity is driven by
a Damon-Eshbach spin wave, which induces a spatiotemporal
and not simply a temporal modulation. This gives rise to some
remarkable peculiar effects, such as the formation of spectral
gaps and controllable transmission through triply resonant
inelastic diffraction, that will be analyzed below.

Let us assume continuous excitation of a magnetostatic
surface spin wave of wave number Q and frequency �(Q)
propagating in the positive y direction, noting that such a
mode can be excited more efficiently [9]. We take �H =
1.4�M, which yields � of the order of 10 GHz. We further as-
sume an appropriate amplitude factor η0 of the magnetization
field for every chosen value of Q corresponding to a maximum
cone angle of the (elliptical) magnetization precession of 7◦.
The structure is illuminated from the left by s-polarized light
with qiy = 1 μm−1 and angular frequency ωi within the width
of the corresponding defect resonance at ωs(qiy), depicted
in Fig. 1(b). The dynamic optical response of the structure
is calculated using an extension of our recently developed
time-Floquet scattering-matrix method [44] to stratified me-
dia driven by a spatiotemporal periodic stimulus, which is
summarized in the Appendix. Considering a cutoff of N = 10
in the Fourier series expansions involved and discretizing the
magnetic film into 40 elementary sublayers ensure excellent
convergence of our numerical results. To begin with, we ne-
glect materials’ losses in order to better highlight the effects.

Figure 2 displays the elastic transmittance [Figs. 2(a) and
2(d)] and reflectance [Figs. 2(b) and 2(e)] as a function of
the wave number of the spin wave and the detuning of the
input optical frequency from the s defect resonance (at the
given qiy = 1 μm−1) in regions about the lines ωi = ωp(qiy −
nQ) + n�(Q), where p = p or s for odd or even values of n,
respectively. These lines express the appropriate conservation
rules for photon transitions to a defect resonance (dashed

FIG. 2. The structure of Fig. 1(a), subject to continuous exci-
tation of a magnetostatic surface spin wave of wave number Q
propagating along the positive y direction, is illuminated from the
left by s-polarized light with qiy = 1 μm−1 and angular frequency
ωi within a short range about the corresponding defect resonance at
ωs = ωs(qiy ) [see Fig. 1(b)]. Material losses are neglected. For the
spin wave we assume �H = 1.4�M and an amplitude factor η0 corre-
sponding to a maximum cone angle of the (elliptical) magnetization
precession of 7◦ for each value of Q. Variation of (a) and (d) the
elastic transmission and (b) and (e) reflection spectra in the vicinity
of triply resonant optical transitions. The dashed lines express the
conservation rules for converting the input light to the appropriate
(p or s) final resonant state through n-magnon absorption (n < 0)
or emission (n > 0), denoted by the numbers in (b) and (e). (c) and
(f) Illustration of the corresponding triply resonant processes, where
open and solid circles refer to the initial and final states, respectively.

lines in Fig. 2), which are fulfilled either for Q � 2 μm−1

or for Q < 0.01 μm−1, as shown in the top and bottom
panels of Fig. 2. It is in the proximity of these lines that the
optical response of the structure is significantly affected by
the spin waves. Specifically, the elastic transmission is dras-
tically suppressed, while the elastic reflection is increased.
However, their sum does not equal unity, which indicates
an energy transfer from the elastic to the inelastic outgoing
beams. Remarkably, at the triple-resonance condition, the
elastic transmission practically vanishes. Figures 2(c) and 2(f)
depict the initial and final optical modes of the statically
magnetized structure for which the triple-resonance condition
is met through n-magnon absorption (n < 0) and emission
(n > 0) processes with |n| � 3. It is worth noting that the
triple-resonance condition is met also for nQ = 2 μm−1, n =
2, 3, but the effect is considerably weaker. We also note that
the elastic transmitted and reflected beams are predominantly
s polarized.

Let us further analyze the one-magnon emission processes
(n = 1) for Q � 2 μm−1, evident in the top panel of Fig. 2. As
expected from Figs. 2(a) and 2(b), the total elastic outgoing
beam intensity, I0 = T0 + R0, shown in Fig. 3(a), is reduced
only in the vicinity of Q and ωi for which the conservation
rules are met. That is where the total inelastic n = 1 beam
intensity I1 is increased, as illustrated in Fig. 3(b). In other
words, energy is transferred from the n = 0 to the n = 1
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FIG. 3. The structure of Fig. 1(a), subject to continuous exci-
tation of a magnetostatic surface spin wave of wave number Q
propagating along the positive y direction, is illuminated from the
left by s-polarized light with qiy = 1 μm−1 and angular frequency
ωi within a short range about the corresponding defect resonance
at ωs = ωs(qiy ) [see Fig. 1(b)]. Material losses are neglected. For
the spin wave we consider �H = 1.4�M and an amplitude factor
η0 = 0.015. Variation of (a) the total elastic (n = 0) and (b) n = 1
inelastic outgoing light beam intensities, I0 and I1, respectively,
in the vicinity of triply resonant optical transitions. The dashed
line expresses the conservation rules for converting the input light
to a p final resonant state through one-magnon emission (n = 1):
ωi = ωp(qiy − Q) + �(Q). The dotted line corresponds to ωi = ωs.
(c) Corresponding variation of the total optical absorption. (d) Vari-
ation of I0 versus the detuning of the incident light frequency at
Q = 2 μm−1, for which � = ωs − ωp(qiy − Q). From this diagram,
the optomagnonic coupling strength gom can be readily deduced. (e)
Variation of I1 versus Q for ωi = ωs. (f) Schematic illustration of the
opening of the Bragg gap due to the excitation of spin waves with
wave number Q = qiy − qfy.

outgoing light beam. I1 is predominantly p polarized and
almost equally distributed between the corresponding trans-
mitted and reflected beams.

Interestingly, right at the triple-resonance condition, in-
elastic light scattering is not maximized; on the contrary, it
is greatly reduced. This apparently counterintuitive feature
can be understood as follows. Enhanced inelastic scattering
of light occurs when the wave number Q and corresponding
angular frequency �(Q) of a magnon match a photon tran-
sition between two resonant modes (triple-resonance condi-
tion). In this respect, based on the results for the statically
magnetized structure, depicted in Fig. 1(b), for an optical
defect resonance at ωs(qiy), say, with qiy > 0, excited by s-
polarized light incident with the given qiy, one would expect
considerable intensity in the outgoing beam of photons that
emitted one magnon (n = 1) if the final photon state is at
a p-polarized resonance with ωp(qfy) = ωs(qiy) − �(Q) and
qfy = qiy − Q. However, this picture is not quite correct. The
spin wave induces a (dynamic) corrugation in the y direction,
with period � = 2π/Q, which leads to the opening of Bragg
gaps at qy = Q/2, i.e., at qy = (qiy − qfy)/2 � qiy in our
case, since qfy � qiy. Therefore, in the driven system, there

appear two defect resonant modes at qiy, which are relatively
largely shifted downwards and upwards in frequency from the
respective original optical resonance at ωs(qiy), as schemat-
ically depicted in Fig. 3(f). As a result, in the vicinity of
Q, as estimated from the statically magnetized structure, we
obtain strong inelastic light scattering in the bright regions
of Fig. 3(b) that satisfy the triple-resonance condition at fre-
quencies considerably redshifted and blueshifted away from
ωs(qiy). For larger or smaller values of Q, the Bragg gaps
open up at higher or lower frequencies, respectively, and thus,
the optical resonance of the statically magnetized structure at
ωs(qiy) is less affected. Therefore, these bright areas tend to
approach that frequency, although they quickly disappear as
Q increases or decreases further because the triple-resonance
condition can no longer be satisfied. The strong inelastic
light scattering depicted in Fig. 3(b), which can be as large
as 50%, is accompanied by an excess number of magnons
emitted, which can be accounted for by our fully spatiotem-
poral Floquet scattering-matrix method. This is manifested
as increased optical absorption in the bright regions in
Fig. 3(c).

From the variation of I0 versus the detuning of the inci-
dent light frequency, at Q = 2 μm−1, for which � = ωs −
ωp(qiy − Q), one can estimate the optomagnonic coupling
strength gom [57]. From Fig. 3(d), we extract gom = 2.3 GHz,
which is comparable to the width of the optical resonance(s),
indicating that we are in the strong-coupling regime. On
the other hand, for ωi = ωs(qiy), although the Bragg gap
is clearly manifested in the variation of I1 at Q = 2 μm−1

(triple-resonance condition), the intensity of the n = 1 in-
elastic outgoing beam exhibits a maximum reaching 15%,
as shown in Fig. 3(e), because of the finite lifetime of the
modes in the vicinity of the Bragg gap. This feature indicates,
along with the fact that the elastic transmission vanishes, that
only the converted p-polarized light with frequency ωs − � is
transmitted through the structure at an angle of about −14◦.

We shall now focus on the region Q < 0.1 μm−1 shown
in the bottom panel of Fig. 1. In this case, the conservation
rules are accomplished for up to n = 10; however, the most
prominent effects occur for |n| � 3. Figure 4 displays the
variation of the total elastic and inelastic outgoing light beam
intensities In for |n| � 3 versus the detuning of the input
frequency from the s defect resonance and the wave number
of the spin wave, along with the corresponding variation of the
total optical absorption. As before, s-polarized light impinges
on the structure from the left with qiy = 1 μm−1 and angular
frequency ωi. It can be seen that, again, when the appropriate
conservation conditions are met for given n, energy is trans-
ferred from the elastic to the corresponding inelastic beam,
resulting in bright areas in the relevant diagrams. Right at
the triple-resonance conditions, Bragg gaps open up, although
their fingerprints are not clearly discernible in the diagrams
for n = ±2,±3. Depending on the process, i.e., magnon
emission (absorption), there is a net energy transfer from
(to) the photon to (from) the magnon field, yielding optical
loss (gain) in the absorption spectrum displayed in Fig. 4(e).
We note that, here, the total inelastic outgoing light intensity
is almost equally distributed between the transmitted and
reflected beams and is predominantly p (s) polarized for odd
(even) n. Remarkably, except for the high magnon-mediated
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FIG. 4. The structure of Fig. 1(a), subject to continuous excitation of a magnetostatic surface spin wave of wave number Q propagating
along the positive y direction, is illuminated from the left by s-polarized light with qiy = 1 μm−1 and angular frequency ωi within a short
range about the corresponding defect resonance at ωs = ωs(qiy ) [see Fig. 1(b)]. Material losses are neglected. For the spin wave we consider
�H = 1.4�M and an amplitude factor η0 = 0.04. (a)–(d) and (f)–(h) Variation of the total elastic and inelastic outgoing light beam intensities
In, |n| � 3, in the vicinity of triply resonant optical transitions and (e) the corresponding variation of the optical absorption.

optical-to-optical conversion efficiency, reaching 50% for the
one-magnon (n = ±1) processes, high conversion efficiency,
up to 25%, is attained for absorption and emission of two
or three magnons by a photon. In other words, the optical
response of the structure is strongly modulated through the
excitation of the spin waves. In the particular case of incident
light at the s defect resonance, when the triple-resonance
condition is met, e.g., for n = ±1, the elastic transmission
practically vanishes. Most of the outgoing light is directed to
the elastic reflection channel, and the rest is almost equally
distributed between the inelastic transmitted and reflected

beams. However, since Q � qiy, the deflection of the inelastic
outgoing beams is very small. We note in passing that the op-
tomagnonic coupling strength for the one-magnon absorption
process here is 2.9 GHz, which is similar to that obtained in
the one-magnon emission process for Q = 2 μm−1 discussed
above.

When dissipative losses are taken into consideration, the
static structure is no longer fully transparent at both s and
p defect resonances. Moreover, while the main features of
the diagrams associated with elastic and inelastic processes
are not qualitatively altered (compare Figs. 4 and 5 for the

FIG. 5. The structure of Fig. 1(a), with realistic material losses, subject to continuous excitation of a magnetostatic surface spin wave of
wave number Q propagating along the positive y direction, is illuminated from the left by s-polarized light with qiy = 1 μm−1 and angular
frequency ωi within a short range about the corresponding defect resonance at ωs = ωs(qiy ) [see Fig. 1(b)]. For the spin wave we consider
�H = 1.4�M and an amplitude factor η0 = 0.04. (a)–(d) and (f)–(h) Variation of the total elastic and inelastic outgoing light beam intensities
In, |n| � 3, in the vicinity of triply resonant optical transitions and (e) the corresponding variation of the optical absorption.
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low-Q region, but similar results are obtained for Q about
2 μm−1 as well), the elastic transmission and the inelastic
outgoing light beam intensities are significantly lowered. In
addition, material losses, now, dominate the absorption spec-
trum [compare Figs. 4(e) and 5(e)], except for the Bragg-gap
regions where light is mostly reflected. Remarkably, the op-
tomagnonic structure under study, even under realistic condi-
tions, at the triple-resonance condition for n = ±1 blocks the
elastic transmission channel with the corresponding inelastic
transmitted and reflected beam intensities being as high as 5%.
Moreover, high optical-to-optical conversion efficiencies can
also be obtained through multimagnon exchange processes.
For example, at the triple-resonance condition, almost 6% and
2% of the incident light can be transmitted via two- and three-
magnon absorption and/or emission processes, respectively.
We also note that the dissipative losses do not significantly
reduce the optomagnonic coupling strength, which, for the
one-magnon processes, equals 2.2 and 2.8 GHz for large and
small values of Q, respectively. As a final remark we mention
that, by reducing the spin-wave amplitude, while Bragg gaps
and multimagnon processes are gradually suppressed, one-
magnon effects remain considerable.

V. SUMMARY AND CONCLUSION

In summary, we reported a thorough investigation of the
interaction of light with magnetostatic surface spin waves
in a layered optomagnonic structure by means of rigorous
calculations using an extension of our recently developed fully
dynamic time-Floquet scattering-matrix method to stratified
media subject to a periodic spatiotemporal modulation. In
the design under consideration, concurrent localization of the
interacting optical and magnetization fields is achieved in an
in-plane magnetized Ce:YIG film which, placed between two
lossless symmetric Si/SiO2 Bragg mirrors, acts as a dual cav-
ity for both photons and magnons. As a result, the interaction
time greatly increases, and coupling strengths comparable to
the width of the optical resonance(s) can be attained. Based on
the optical response of the statically magnetized structure, we
derived general conservation and selection rules that govern
photon-to-photon conversion through absorption or emission
of magnons. When these rules are fulfilled, our systematic
calculations provide compelling evidence for the occurrence
of remarkable and strong inelastic scattering effects, which
subsist even in the presence of optical losses and enable effi-
cient modulation of propagating light. Intriguing phenomena,
such as formation of band gaps in the elastic and inelastic scat-
tering spectra, emergence of inelastic diffracted beams, block-
ing of the elastic transmission channel, and (multi)magnon-
mediated high optical-to-optical conversion efficiencies were
analyzed, and a consistent interpretation of the underlying
physics was provided. As a final note, we stress that the
spatiotemporal Floquet scattering-matrix method developed
here is directly applicable to planar optomagnonic structures
driven by an arbitrary surface or volume spin wave and can
be easily adapted to describe any kind of wave propagating
in a stratified medium subject to a periodic spatiotemporal
disturbance.
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APPENDIX: SPATIOTEMPORAL FLOQUET
SCATTERING-MATRIX METHOD

The dynamic optical response of the structure under con-
sideration, subject to continuous excitation of a magnetostatic
surface spin wave, can be studied by properly extending
the time-Floquet scattering-matrix method that we recently
developed for periodically time-varying stratified photonic
media [44]. In our case here, as dictated by Eq. (5), we have
to deal with a structure in which the spin wave induces, in
addition, a periodic spatial corrugation perpendicular to the
direction of growth.

Let us consider a medium, characterized by a scalar relative
magnetic permeability μ and a relative electric permittivity
tensor of the form ε(r, t ) = ε(y − S �

Q t ), which varies period-
ically with a period � = 2π/Q, i.e., ε(ξ ) = ε(ξ + �). Such a
variation can be induced by a sinusoidal pump wave of wave-
length � = 2π/Q and period T = 2π/�. If the time variation
of the permittivity is very slow compared to the period of an
optical wave, assuming Floquet-type solutions of the form
F(r, t ) = Re{F (r, t ) exp[i(qyy − ωt )]} for the electric and
magnetic fields (F = E, H), Maxwell equations read [44]

∇ × E (r, t ) exp[i(qyy − ωt )]

= −μ0μ
∂

∂t
{H(r, t ) exp[i(qyy − ωt )]},

∇ × H(r, t ) exp[i(qyy − ωt )]

= ε0
∂

∂t
{ε(y, t )E (r, t ) exp[i(qyy − ωt )]}, (A1)

where ε0 is the electric permittivity of vacuum.
The periodic spatiotemporal variation of the permittivity

tensor results in correspondingly periodic Floquet envelope
functions, and thus, Maxwell equations can be solved by
expanding these quantities in appropriate (truncated) Fourier
series. Considering solutions in the form of plane waves in the
x-z plane where the medium is homogeneous, we have

ε(r, t ) =
N∑

n=−N

ε(n) exp[−in(SQy − �t )],

E (r, t ) = E0

N∑
n=−N

e(n) exp[i(qxx + qzz)]

× exp[−in(SQy − �t )], (A2)

H(r, t ) = E0

Z0

N∑
n=−N

h(n) exp[i(qxx + qzz)]

× exp[−in(SQy − �t )],

where Z0 is the impedance of free space, e and h are polar-
ization vectors chosen such that

∑N
n=−N e(n) · e�(n) = 1, and
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E0 defines the field amplitude. Substituting Eqs. (A2) into
Eqs. (A1), we obtain

qn × h(n) + kn

N∑
n′=−N

ε(n − n′)e(n′) = 0,

qn × e(n) − knμh(n) = 0 (A3)

for n = −N,−N + 1, . . . , N , with qn = (qx, qy − nSQ, qz )
and kn = (ω − n�)/c, where c = 1/

√
ε0μ0 is the speed of

light in vacuum. Equation (A3) can be cast in the form of a
6(2N + 1) × 6(2N + 1) linear eigenvalue problem,(

k ε C
−C kμ

)−1( 0 D
−D 0

)(
e
h

)
= 1

qz

(
e
h

)
, (A4)

which can be solved by standard numerical algorithms [58].
In Eq. (A4), by a double underscore we denote 3(2N +
1) × 3(2N + 1) matrices; 0 is the zero matrix, and k =
diag(k−N , k−N+1, . . . , kN ), with kn = Ikn and I being the
3 × 3 unit matrix. C = diag(C−N , C−N+1, . . . , CN ) and D =
diag(D, D, . . . , D) are block diagonal matrices, with

Cn =
⎛
⎝ 0 0 qy − nSQ

0 0 −qx

−qy + nSQ qx 0

⎞
⎠,

D =
⎛
⎝ 0 1 0

−1 0 0
0 0 0

⎞
⎠, (A5)

while ε is the Toeplitz matrix of the Fourier coefficients of the
electric permittivity tensor

ε =

⎛
⎜⎜⎝

ε(0) ε(−1) · · · ε(−2N )
ε(1) ε(0) · · · ε(−2N + 1)

...
...

...
ε(2N ) ε(2N − 1) · · · ε(0)

⎞
⎟⎟⎠. (A6)

Correspondingly, e and h are 3(2N + 1)-dimensional vectors,

e =

⎛
⎜⎜⎝

e(−N )
e(−N + 1)

...
e(N )

⎞
⎟⎟⎠, h =

⎛
⎜⎜⎝

h(−N )
h(−N + 1)

...
h(N )

⎞
⎟⎟⎠. (A7)

The 4(2N + 1) physically acceptable solutions, corre-
sponding to the nonzero eigenvalues of Eq. (A4), are char-
acterized by a superscript s = +(−), which denotes waves
propagating or decaying in the positive (negative) z direction,
a subscript p = 1, 2 indicating the two eigenpolarizations, and
another subscript, ν = −N,−N + 1, . . . , N , that labels the
different eigenmodes. The electric and magnetic field compo-
nents of these modes with eigenvalues qs

pνz and polarization
eigenvectors es

pν (n) and hs
pν (n), assuming unit amplitude,

according to Eq. (A2), are given by

E s
pν (r, t ) =

N∑
n=−N

exp
[
i(qxx + qs

pνzz)
]

× exp[−in(SQy − �t )]es
pν (n),

Hs
pν (r, t ) = 1

Z0

N∑
n=−N

exp
[
i(qxx + qs

pνzz)
]

× exp[−in(SQy − �t )]hs
pν (n). (A8)

In the case of static homogeneous media, Eq. (A4) is
reduced to a set of 2N + 1 independent eigenvalue equations
[59],(

knε Cn

−Cn knμI

)−1(
0 D

−D 0

)(
e
h

)
= 1

qz

(
e
h

)
, (A9)

one for each value of n = −N,−N + 1, . . . , N , where ε are
the elements of the corresponding static dielectric tensor.
From the physically acceptable eigenvectors es

pn and hs
pn of

Eqs. (A9), we construct the eigenvectors which appear in
Eqs. (A8), setting es

pν (n) = δνnes
pn and hs

pν (n) = δνnhs
pn, while

the corresponding wave vectors are qs
pν = qs

pn.
Scattering at a planar x-y interface between two different,

in general spatiotemporal periodic, media can be described
in the same manner as in Ref. [44] for corresponding time-
varying media, the only difference being that, here, the com-
mon periodicity of both media on either side of the interface
implies that not only the Floquet quasifrequency ω but also
the Floquet quasiwavenumber qy remains invariant. Imposing
continuity of the tangential components of the EM field at
the interface yields the appropriate transmission and reflection
matrices. The transmission and reflection matrices of such a
stratified medium are obtained by properly combining those
of its successive interfaces to take into account all multiple-
scattering processes. In the present work, we are concerned
with a multilayer slab comprising spatiotemporal periodic me-
dia, bounded by two semi-infinite homogeneous and isotropic
static media: A on its left and B on its right, characterized
by scalar relative electric permittivities εA, εB and magnetic
permeabilities μA, μB, respectively. The transmittance and
reflectance of this slab, for a light beam of order n′ and
polarization p′ incident from the left, are given by

T =
∑
p,n

Tpn =
∑
p,n

∣∣QI
pn;p′n′

∣∣2 Re
[
q+(B)

nz

]
μA

Re[q+(A)
n′z ]μB

, (A10)

R =
∑
p,n

Rpn =
∑
p,n

∣∣QIII
pn;p′n′

∣∣2 Re[q−(A)
nz ]

Re
[
q+(A)

n′z

] , (A11)

where q±(m)
nz = ±√

k2
nεmμm − q2

x − (qy − nsQ)2, with m =
A, B denoting the appropriate medium. QI

pn;p′n′ and QIII
pn;p′n′

are the elements of the transmission and reflection matrices
of the slab, respectively, for incidence from the left. Because
of the time variation of the permittivity tensor, the EM energy
is not conserved even in the absence of dissipative (thermal)
losses. In this case, A = 1 − T − R > 0 (< 0) means energy
transfer from (to) the EM to (from) the spin-wave field.

It should be pointed out that the formalism developed
here goes beyond the linear-response approximation, which is
usually employed in Brillouin light scattering studies [56,60]
(in fact, our method is correct to any order in perturbation
theory), and the quasistatic adiabatic approach [40,42,43]. It
is a rigorous, fully dynamic theory, which is able to describe,
among other things, the interaction of strongly modulated
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light as it propagates through a judiciously designed photonic
structure with spin waves when both fields are concurrently
localized in the same region of space (optomagnonic cavity).

In this respect, it is also not restricted to strongly reflecting
surfaces [56,60] or waveguide geometries [7–11] considered
in previous inelastic-light-scattering studies.
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