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Field-induced dimer orders in quantum spin chains
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Field-induced excitation gaps in quantum spin chains are an interesting phenomenon related to confinements
of topological excitations. In this paper I present a type of this phenomenon. I show that an effective magnetic
field with a fourfold screw symmetry induces the excitation gap accompanied by dimer orders. The dimer order
parameter and the excitation gap exhibit characteristic power-law dependence on the fourfold screw-symmetric
field. Moreover, the field-induced dimer order and the field-induced Néel order coexist when the external
uniform magnetic field, the fourfold screw-symmetric field, and the twofold staggered field are applied. This
situation is in close connection with a compound [Cu(pym)(H2O)4]SiF6 · H2O [J. Liu et al., Phys. Rev. Lett.
122, 057207 (2019)]. In this paper I discuss a mechanism of field-induced dimer orders by using a density-matrix
renormalization group method, a perturbation theory, and quantum field theories.

DOI: 10.1103/PhysRevB.101.134425

I. INTRODUCTION

Quantum spin-1/2 chains do not have a unique gapped
ground state in the presence of the time-reversal symmetry
unless either the U(1) spin-rotation symmetry or the trans-
lation symmetry is broken [1–3]. For example, the spin-1/2
Heisenberg antiferromagnetic (HAFM) chain has a unique
gapless ground state called the Tomonaga-Luttinger (TL)
liquid state [4]. Even when the time-reversal symmetry is
broken by the external magnetic field, the TL liquid does not
immediately acquire the gap, though it eventually does with
the saturated magnetization [5]. This is because the external
magnetic field is uniform in the scale of spin chains. It breaks
neither the U(1) rotation nor the translation symmetry. Inter-
estingly, however, there are several spin-1/2 chain compounds
where the magnetic field immediately opens the excitation
gap [6–8].

This puzzle of the field-induced gap was found in Cu ben-
zoate [6] and later solved with quantum field theories [9–11].
Essentially, the field-induced excitation gap in those com-
pounds comes from an absence of a bond-centered inversion
symmetry. This low crystalline symmetry allows the g tensor
of electron spins to have a twofold staggered component.
The magnetic field, when combined with the low symmetry,
generates a twofold staggered magnetic field that breaks the
translation symmetry. As a result, the uniform magnetic field
induces the excitation gap and also the Néel order in the direc-
tion of the effectively generated twofold staggered magnetic
field. Thanks to the dimensionality and strong interactions
among elementary excitations, the excitation gap and the Néel
order exhibit interesting power-law behaviors that deviate
from spin-wave predictions [9,10,12]. The phenomenon of the
field-induced excitation gap has drawn attention for its con-
nection with confinement of topological excitations [13,14].

In this paper I discuss a field-induced excitation gap phe-
nomenon. That is field-induced dimer orders in quantum spin
chains.

A key ingredient is a fourfold screw symmetry (Fig. 1).
The screw structure can violate two kinds of inversion sym-

metries at the same time, namely, the bond-centered in-
version symmetry and a site-centered inversion symmetry.
Such a fourfold structure is indeed incorporated in the g
tensor of spin-chain compounds BaCo2V2O8 [13,15] and
[Cu(pym)(H2O)4]SiF6 · H2O [16]. When the uniform mag-
netic field is externally applied, the fourfold screw symme-
try manifests itself as an effective fourfold screw-symmetric
magnetic field. The fourfold screw field brings dimer orders
to spin chains immediately. I discuss first a mechanism of the
dimer-order generation. Next I take the twofold staggered field
into account and discuss coexistent growth of the dimer and
Néel orders with increase of the uniform magnetic field.

This paper is organized as follows. I define a spin-chain
model and show numerical evidence of the field-induced
dimer orders in the simplest case in Sec. II. A qualitative
mechanism of field-induced dimer orders is discussed in
Sec. III, where the spin-chain model is replaced to a spinless
fermion model which is smoothly deformed from the original
spin-chain model. Here the low-energy effective Hamiltonian
is systematically derived. In Sec. IV, on the basis of observa-
tions made in Sec. III, I develop a quantum field theory that
explains quantitatively numerical results of Sec. II. The quan-
tum field theory also predicts the coexistence of the dimer and
Néel orders both of which grow with the uniform magnetic
field. This coexistent growth of the dimer and Néel orders
are discussed in Sec. V, which is supported by numerical
calculations. I also discuss relevance of theoretical results to
experiments in Sec. VI. Finally, I summarize the paper in
Sec. VII.

II. SCREW FIELD

A. Definition of the model

In this paper I discuss a quantum spin-1/2 chain with the
following Hamiltonian:

H = J
∑

j

S j · S j+1 − h0

∑
j

Sz
j − h2

∑
j

(−1) jSx
j

− h4

∑
j

δ jS
z
j, (2.1)
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FIG. 1. (a) A fourfold screw spin chain. Each ball represents a
spin operator. (b) A fourfold screw field symmetric under the bond-
centered inversion Ib. Arrows depict directions of the fourfold screw
field.

where S j is the S = 1/2 spin operator, J > 0 is the anti-
ferromagnetic exchange coupling, and δ j = 1, 1,−1,−1 for,
respectively, j = 0, 1, 2, 3 mod 4. Parameters h0, h2, and h4

denote the uniform magnetic field, the twofold staggered field,
and the fourfold screw field, respectively. Note that δ j has a
simple expression,

δ j =
√

2 cos

(
π

2 j − 1

4

)
. (2.2)

Throughout this paper I employ the unit of h̄ = a = 1 unless
otherwise stated, where a is the lattice spacing.

The spin-chain model (2.1) is related to a model pro-
posed for [Cu(pym)(H2O)4]SiF6 · H2O [16] but differs from
the latter in three points: field directions, a weak exchange
anisotropy, and a uniform Dzyaloshinskii-Moriya (DM) in-
teraction. In Ref. [16], h0 and h2 are applied in the x and
the y directions, respectively. The model used in Ref. [16]
contains a weak XXZ interaction and the uniform DM in-
teraction. Those differences hardly affect the ground state
of [Cu(pym)(H2O)4]SiF6 · H2O, which are to be clarified in
Sec. VI.

In the compound [Cu(pym)(H2O)4]SiF6 · H2O [16], the
twofold staggered field h2 and the fourfold screw field h4 orig-
inate from the g tensor of electrons and are thus proportional
to the externally applied uniform magnetic field h0. In this
section I first deal with an unrealistic but simplest situation
with h0 = h2 = 0 and h4 �= 0 in Sec. II B. I will discuss a more
realistic situation with h2 ∝ h0 and h4 ∝ h0 later in Sec. V.

B. Fourfold screw field

The fourfold screw field h4 can generate an excitation gap
all by itself to the ground state of the spin chain. To show this,
I set h0 = h2 = 0 and discuss the h4 dependence of the lowest-
energy excitation gap from the ground state. The Hamiltonian

FIG. 2. The lowest-energy excitation gap from the ground state
of the Hamiltonian (2.3) is plotted against the fourfold screw field
h4 for system sizes L ranging from L = 240 to 400. The gap is
extrapolated to the L → +∞ limit by using a formula � = a0 +
a1
L + a2

L2 , where an (n = 0, 1, 2) are fitting parameters. The error of
the extrapolated data is estimated to be 11% for h4/J = 0.05 and
<0.28% for h4/J � 0.1. The solid curve is the best fit of the extrap-
olated data by a function � = b0h4

b1 + b2 with fitting parameters
bn (n = 0, 1, 2). Though the fitted result has an unphysical offset
b2 �= 0, its h4 dependence implies the gap � ∝ J (h4/J )1.34. This
estimation of the agrees with the field-theoretical prediction (4.6).

is thus simplified as

H4 = J
∑

j

S j · S j+1 − h4

∑
j

δ jS
z
j . (2.3)

When h4 = 0, the ground state of the model (2.3) is gap-
less [4]. Figure 2 shows numerical results on the excitation
gap obtained by using the density-matrix renormalization
group (DMRG) method with the ITensor C++ library [17],
where I used the bond dimension χ = 400 and the truncation
error cutoff 1 × 10−10. Note that all the DMRG calculations in
this paper were performed with the open boundary condition.
The DMRG result implies that an infinitesimal h4/J immedi-
ately opens the excitation gap between the ground state and
the lowest-energy excited state,

� ∝ J

(
h4

J

)1.34

. (2.4)

Similarly to the twofold staggered field, the fourfold screw
field induces an excitation gap with a power law. However,
the power 1.34 differs from that, 2/3, of the twofold staggered
field [9,10].

Unlike the twofold staggered field, the fourfold screw field
h4 induces no Néel order. Instead, h4 induces dimer orders
(Figs. 3 and 4),

D⊥ = 1

L

∑
j

〈
(−1) j

(
Sx

j S
x
j+1 + Sy

j S
y
j+1

)〉
, (2.5)

D‖ = 1

L

∑
j

〈
(−1) jSz

jS
z
j+1

〉
, (2.6)
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FIG. 3. The transverse dimer order parameter (2.5) of the ground
state of the Hamiltonian (2.3) is plotted against the fourfold screw
field h4 for system sizes from L = 240 to 400. The dimer is extrapo-

lated to the L → +∞ limit by using a formula D⊥ = a′
0 + a′

1√
L

+ a′
2

L
because the scaling dimension of the dimer order parameter is 1/2.
The error of the extrapolated data is estimated to be 6.5% for
h4/J = 0.025 and <0.21% for h4/J � 0.1. The error monotonically
decreases with an increase of h4/J . The solid curve is the best fit
of the extrapolated data by a function D⊥ = b′

0h4
b′

1 + b′
2 with fitting

parameters b′
n (n = 0, 1, 2). Though D⊥ shows an unphysical offset

b′
2 �= 0, it implies a power law D⊥ ∝ (h4/J )0.672. It agrees with the

field-theoretical prediction (4.8).

where L is the length of the spin chain. The dimer order pa-
rameters (2.5) and (2.6) show different power-law dependence
on h4. DMRG results (Figs. 3 and 4) imply

D⊥ ∝
(

h4

J

)0.672

, (2.7)

D‖ ∝
(

h4

J

)1.07

. (2.8)

Induction of D‖ by h4 is easily understandable. Let us recall
that h4 is coupled to an operator,

f z
j =

√
2 cos

(
π

2 j − 1

4

)
Sz

j . (2.9)

The fourfold screw field induces the uniform f z order:∑
j

〈
f z

j

〉 �= 0. (2.10)

The longitudinal dimer order parameter D‖ is written in terms
of f z

j as

D‖ = 1

L

∑
j

〈
f z

j f z
j+1

〉
. (2.11)

Nonzero D‖ follows immediately from the uniform f z
j or-

der (2.10). However, the induction of the transverse dimer
order (2.7) is nontrivial.

III. FREE SPINLESS FERMION THEORY

This section is devoted to a qualitative explanation on a
mechanism of the field-induced transverse dimer order (2.7).
For this purpose, I rewrite the spin chain (2.3) in terms of
spinless fermions with the aid of the Jordan-Wigner trans-
formation [4]. Let c†j and c j be creation and annihilation

FIG. 4. The longitudinal dimer order parameter (2.6) of the
ground state of the Hamiltonian (2.3) is plotted against the fourfold
screw field h4 for system sizes from L = 240 to 400. The dimer is
extrapolated to the L → +∞ limit in the same way as D⊥. The error
of the extrapolated data is estimated to be 6.4% for h4/J = 0.025
and <0.20% for h4/J � 0.1. The solid curve is the best fit of the
extrapolated data. It implies a power law D‖ ∝ (h4/J )1.07, which
differs from that for D⊥ [Eq. (2.7)].

operators of the spinless fermion at the site j, respectively.
The spin-chain model (2.3) is equivalent to the following
model of interacting spinless fermions:

H4 = −J

2

∑
j

(c†j c j+1 + H.c.) − h4

∑
j

δ j

(
c†j c j − 1

2

)

+ J
∑

j

(
c†j c j − 1

2

)(
c†j+1c j+1 − 1

2

)
, (3.1)

where H.c. denotes the Hermitian conjugate.
The interaction of spinless fermions, the second line of

Eq. (3.1), comes from the longitudinal component of the
exchange interaction J

∑
j Sz

jS
z
j+1. Even if this interaction is

ignored, qualitative aspects of the ground state are kept intact
since the HAFM chain and the XY chain belong to the same
TL-liquid phase [4]. Therefore, I discuss in this section the
free spinless fermion model,

HXY = −J
∑

j

(c†j c j+1 + H.c.) − h4

∑
j

δ j

(
c†j c j − 1

2

)
,

(3.2)

instead of the model (3.1). In terms of spins, it is the XY chain
in the fourfold screw field,

HXY = J
∑

j

(
Sx

j S
x
j+1 + Sy

j S
y
j+1

) + h4

∑
j

δ jS
z
j . (3.3)

A. Particle-hole excitations

Performing the Fourier transformation on Eq. (3.3), I ob-
tain

HXY =
∑

k

ε(k)c†k ck

− h4√
2

∑
k

(
e−π i/4c†k ck+ π

2
+ eπ i/4c†k+ π

2
ck

)
+ const. (3.4)
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FIG. 5. Particle-hole excitations are schematically drawn. Filled
and empty circles depict a particle and a hole, respectively. (a) The
twofold staggered field h2 and the bond alternation generate low-
energy particle-hole excitations with a wave number q = π . (b) The
fourfold screw field h4 generates high-energy excitations with q =
π/2 when they act on the ground state once. (c) The screw field can
generate low-energy excitations with q = π when they act on the
ground state twice.

where ε(k) = −(J/2) cos k and k ∈ (−π, π ] is the wave num-
ber. When J4 = 0, the spinless fermion is free and has the
simple cosine dispersion. Since the total magnetization is zero
in the XY chain, the cosine band is half occupied and the
Fermi points are located at ±π/2.

Let us make some observations on effects of the fourfold
screw field on the free spinless fermion chain in the TL-
liquid phase. Particle-hole excitations are the fundamental
low-energy excitation in the TL-liquid phase. An operator
ρq = ∑

k c†k+qck , which creates a particle-hole excitation with
a wave number q, can be written as a superposition of bosonic
creation and annihilation operators of the TL liquid [4]. When
the second line of Eq. (3.4) acts on the ground state of
the XY model, particle-hole excitations with wave numbers
q = ±π/2 are generated [Fig. 5(b)]. Apparently, such an h4

term hardly affects the low-energy physics of the XY model
because these particle-hole excitations have large excitation
energies of O(J ). However, applying the h4 term twice to
the ground state, I can generate low-energy particle-hole
excitations with the wave number q = π [Figs. 5(a) and 5(c)].
These observations show that though the fourfold screw field
is highly irrelevant, it will generates a relevant interaction in a
second-order perturbation process.

B. Low-energy effective Hamiltonian

To confirm the perturbative generation of the relevant inter-
action, I derive a simple effective Hamiltonian that governs the
low-energy physics of the fermion chain (3.4). Among several
options to derive such a low-energy effective Hamiltonian is
to use the Schrieffer-Wolff canonical transformation [18,19].
The generic theory is explained in Appendix A 1. Here I
briefly summarize the derivation. First, I perform a canonical
transformation,

H′
XY := eηHXYe−η (3.5)

with an antiunitary operator η. Two Hamiltonians HXY and
H′

XY have one-to-one corresponding lists of eigenstates with

exactly the same eigenenergies. Next, I perform a perturbative
expansion by using a projection operator P onto a low-energy
subspace {|φk〉}k with k ∈ R and

R = {k ∈ (−π, π ]| 0 � ||k| − |kF || < 
}, (3.6)

where 
 is a cutoff in the wave number and assumed as 
 �
1. Here |φk〉 is an eigenstate of the unperturbed Hamiltonian,
Eq. (3.4) for h4 = 0, with the total wave number k. P can ex-
plicitly be written as P = ∑

k∈R |φk〉 〈φk|. The projection onto
the low-energy subspace leads to the effective Hamiltonian

H̃XY = PH′
XYP. (3.7)

Choosing η properly, I can simplify the perturbative expansion
of the right-hand side of Eq. (3.7). The effective Hamiltonian
up to the second order of h4/J is then given by (see Ap-
pendix A 2)

H̃XY =
∑
k∈R

ε(k)c†k ck − i
h2

4

4

∑
k∈R

(c†k+π
ck − c†k ck+π )

×
(

1

ε(k) − ε(k + π
2 )

+ 1

ε(k + π ) − ε(k + π
2 )

)

+ h2
4

2

∑
k∈R

c†k ck

(
1

ε(k) − ε(k − π
2 )

+ 1

ε(k) − ε(k + π
2 )

)
.

(3.8)

Since the cutoff 
 is small enough, the kinetic term of
Eq. (3.8) can be linearized around the Fermi surface [4].
Creation operators c†k at k ≈ π/2 and k ≈ −π/2 are replaced
with those of different species, which I denote as c†k,R and c†k,L,
respectively. R and L refer to right movers and left movers of
fermions. The low-energy Hamiltonian thus turns out to be

H̃XY ≈
∑
k∈R

{vF (k − kF )c†k,Rck,R − vF (k + kF )c†k,Lck,L}

+ i
h2

4

J

∑
k∈R

(c†k,Rck,L − c†k,Lck,R), (3.9)

where vF is the Fermi velocity. Note that the last term of
Eq. (3.8) was discarded in the linearized Hamiltonian (3.9)
because the coefficient of c†k ck is O(
h2

4/J ) and thus negligi-
bly small for k ∈ R. The Hamiltonian (3.9) is diagonalized in
terms of Majorana fermions,

ξk,ν = ck,ν + c†k,ν√
2

, χk,ν = ck,ν − c†k,ν√
2i

. (3.10)

The second line of Eq. (3.9) becomes mass terms,

i
h2

4

J

∑
k∈R

(c†k,Rck,L − c†k,Lck,R) = i
h2

4

J

∑
k∈R

(ξRξL + χRχL ),

(3.11)

which indicate that these Majorana fermions have the exci-
tation gap � = h2

4/J [20]. Note that the gap does not repro-
duce the power law (2.4). This discrepancy of the power is
attributed to interactions of fermions. I will come back to this
point in Sec. IV.
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The mass terms (3.11) are nothing but the bond alternation
Jδ⊥

∑
j (−1) j (Sx

j S
x
j+1 + Sy

j S
y
j+1) with δ⊥ = (h4/J )2 [4]:∑

j

(−1) j
(
Sx

j S
x
j+1 + Sy

j S
y
j+1

)

= −1

2

∑
j

(−1) j (c†j c j+1 + c†j+1c j )

≈ i
∑
k∈R

(c†k,Rck,L − c†k,Lck,R). (3.12)

For comparison, the following is the twofold staggered field
term in terms of fermions:

h2

∑
j

(−1) jSz
j ≈ h2

∑
k∈R

(c†k,Rck,L + c†k,Lck,R). (3.13)

Here I comment on effects of the canonical transforma-
tion (3.5) on observables. The canonical transformation also
transforms an operator, say, O, in the original model HXY to

Õ = eηOe−η. (3.14)

Note that one observes 〈O〉 in experiments, not 〈Õ〉. Equa-
tions (3.12) and (3.13) refer to the latter. According to the
generic framework of Appendix A 1, the operator eη can be
expanded with h4/J ,

Õ = O + [η, O] + [η, O] + 1
2 [η, [η, O]] + · · · . (3.15)

A relation 〈Õ〉 ≈ 〈O〉 is valid for h4/J � 1. I can thus
basically identify O and Õ but their small discrepancy [η1, O]
would affect dynamics of spin chains (see Appendix B).

C. Symmetries

I showed that the fourfold screw field yields the bond
alternation instead of the twofold staggered field. Actually,
the bond-centered inversion symmetry of the spin chain (2.3)
forbids the twofold staggered field from emerging in the
effective Hamiltonian (3.9).

The uniform spin chain is symmetric under two types of
spatial inversions: the site-centered inversion Is and the bond-
centered inversion Ib. These spatial inversions act on spins
as Is : S j �→ S− j and Ib : S j �→ S1− j . The twofold staggered
field is invariant under Is but not under Ib. On the other
hand, the bond alternation and the fourfold screw field are
invariant under Ib but not under Is. In general, a low-energy
effective Hamiltonian keeps the symmetries that the original
Hamiltonian possesses. In this sense, the low-energy effective
Hamiltonian of the spin chain (2.3) cannot have the twofold
staggered field term that breaks the bond-centered inversion
symmetry of the original Hamiltonian (3.3).

IV. INTERACTING BOSON THEORY

The second-order perturbation turned out to give rise to
the bond alternation in the low-energy effective Hamiltonian
of the XY model in the screw field (3.3). However, the free
spinless fermion theory does not explain the power-law be-
havior of the excitation gap. In this section I present a simple
theoretical explanation for the numerically found power law,
incorporating the interaction of spinless fermions.

Discussions in the previous section prompt us to make
an ansatz that the low-energy effective Hamiltonian of the
HAFM model in the fourfold screw field (2.3) should be

H̃4 : = PeηH4e−ηP

= J
∑

j

S j · S j+1 + Jδ⊥
∑

j

(−1) j
(
Sx

j S
x
j+1 + Sy

j S
y
j+1

)
.

(4.1)

Here the effective bond alternation is characterized by the
parameter δ⊥ ∝ (h4/J )2.

Let us investigate whether the ansatz (4.1) explains numer-
ical results. For small enough h4/J , one can bosonize the spin
operator [2],

Sz
j = 1√

2π
∂xφ + (−1) ja1 sin(

√
2πφ), (4.2)

S+
j = e−i

√
2πθ [(−1) jb0 + b1 sin(

√
2πφ)], (4.3)

where S+
j = Sx

j + iSy
j is the ladder operator. Coefficients

a1, b0, b1 depend on details of the lattice model and are
thus nonuniversal. They are numerically estimated [21]. The
Hamiltonian is then bosonized as

H̃4 = v

2

∫
dx{(∂xθ )2 + (∂xφ)2}

+ dxyJδ⊥
∫

dx cos(
√

2πφ). (4.4)

Here v is the spinon velocity and the coefficient dxy is a
nonuniversal constant [22,23]. This bosonic field theory (4.4)
is interacting but, fortunately, integrable [24].

The lowest-energy excitation gap of the sine-Gordon
model (4.4) is exactly given by [25–27]

� = 2v√
π

�(1/6)

�(2/3)

(
dxyπJ

2v

�(3/4)

�(1/4)
δ⊥

)2/3

. (4.5)

I thus find

� ∝ δ
2/3
⊥ ∝

(
h4

J

)4/3

. (4.6)

The power 4/3 shows an excellent agreement with the numer-
ical estimation (2.4).

The sine-Gordon theory also explains the power-law be-
havior of the transverse dimer order (2.7). In terms of the
sine-Gordon theory, the transverse dimer order is an average
of the vertex operator [25],

D⊥ = dxy 〈cos(
√

2πφ)〉

= dxy

[
�

√
π�(2/3)

v�(1/6)

]1/2

exp

[∫ ∞

0

dt

t

{
−1

2
e−2t

+ sinh2(t/2)

2 sinh(t/4) sinh t cosh(3t/4)

}]
. (4.7)

It immediately follows from Eq. (4.6) that

D⊥ ∝ �1/2 ∝
(

h4

J

)2/3

. (4.8)

The power 2/3 also agrees excellently with the numerical
estimation (2.7).
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The bosonization approach predicts the same power law
for the longitudinal dimer order. When I naively bosonize the
operator (−1) jSz

jS
z
j+1, I obtain

(−1) jSz
jS

z
j+1 ≈ a1√

2π
∂xφ(x) sin[

√
2πφ(x + a)]. (4.9)

An operator-product expansion on the right-hand side [28]
yields a more relevant interaction [29],

(−1) jSz
jS

z
j+1 ≈ dz cos[

√
2πφ(x)]

+ aa1√
2π

∂xφ(x) sin[
√

2πφ(x)] + · · · .

(4.10)

Here dz is a nonuniversal constant and precisely esti-
mated [22,23]. Note that dz and dxy satisfy the following
relation for small h4/J [22,23]:

2dz = dxy, (4.11)

which reflects the SU(2) symmetry of the exchange interac-
tion. The bosonization formula (4.10) indicates

D‖ = dz 〈cos(
√

2πφ)〉 ∝
(

h4

J

)2/3

. (4.12)

Nevertheless, the DMRG result (Fig. 4) implies Eq. (2.8).
This discrepancy remains unclear unfortunately. This will
be because the low-energy Hamiltonian fails to capture the
uniform f z order (2.10) properly.

V. COEXISTENCE OF NÉEL AND DIMER ORDERS

A. Renormalization groups

On the basis of the fact that the fourfold screw field induces
the transverse dimer order (4.8), here I investigate the realistic
case with h2 and h4 proportional to the uniform field h0. I
assume two proportional coefficients

α2 = h2/h0, α4 = h4/h0 (5.1)

are both constant. DMRG results for the dimer order param-
eters and the Néel order parameter are shown in Figs. 6, 7,
and 8 for (α2, α4) = (0.8, 0.4).

To understand DMRG results, I replace the Hamilto-
nian (2.1) to the low-energy effective Hamiltonian,

H̃ = J
∑

j

S j · S j+1 − h0

∑
j

Sz
j − h2

∑
j

(−1) jSx
j

+ Jδ⊥
∑

j

(−1) j
(
Sx

j S
x
j+1 + Sy

j S
y
j+1

)
, (5.2)

with δ⊥ ∝ (h4/J )2. I can immediately bosonize it:

H̃ = v

2

∫
dx

{
(∂xθ )2 + (∂xφ)2

} − h0√
2π

∫
dx ∂xφ

− g2

∫
dx cos(

√
2πθ ) + g4

∫
dx cos(

√
2πφ), (5.3)

where g2 = b0h2 and g4 = dxyJδ⊥. This complex Hamiltonian
consists of two parts. The first line of Eq. (5.3) favors the
gapless TL-liquid ground state for small h0/J . The second
line represents potential terms of φ and θ that give rise

FIG. 6. The transverse dimer order parameter (2.5) for system
sizes L = 100, 200, 400, 800 and its extrapolated value to the L →
+∞ limited are plotted. The error in the extrapolation is estimated as
<1 × 10−3%. The twofold staggered field h2 = 0.8h0 and the screw
field h4 = 0.4h0 are increased linearly with the uniform magnetic
field h0.

to an excitation gap. In general, the scaling dimensions of
cos(

√
2πθ ) and cos(

√
2πφ) are 1/4K and K , respectively.

Here K is a parameter called the Luttinger parameter that sig-
nifies strength of interactions [4]. The XY and the Heisenberg
chains have K = 1 and K = 1/2, respectively. In the latter
case, two cosine interactions are equally relevant. Therefore,
Néel and dimer orders can coexist in the ground state from the
viewpoint of the renormalization group (RG).

The coupling constant g2 of cos(
√

2πθ ), whose bare value
is b0h2, is increasing in the course of iterative RG transforma-
tions. g2 follows the RG equation,

dg2(�)

d�
≈ 3

2
g2(�). (5.4)

Here � characterizes the effective short-distance cutoff a(�) =
ae�. Note that a is the lattice spacing which was set to be unity.
The RG transformation of Eq. (5.4) is terminated when a(�)
reaches a correlation length of the lowest-energy excitation
v/�.

Despite the same value of scaling dimensions, behaviors
of the RG transformation of g4 differ from that of g2. This

FIG. 7. The longitudinal dimer order parameter (2.6) for system
sizes L = 100, 200, 400, 800 and its extrapolated value to L → +∞
are plotted. The error in the extrapolation is estimated as <1 ×
10−3%. Parameters (α2, α4) = (0.8, 0.4) are used.
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FIG. 8. The Néel order parameter (5.13) for system sizes L =
100, 200, 400, 800, and its extrapolated value to L → +∞ are plot-
ted. The error in the extrapolation is estimated as <1 × 10−6%.
Parameters (α2, α4) = (0.8, 0.4) are used.

is due to the Zeeman energy which competes with the trans-
verse bond alternation cos(

√
2πφ). I can absorb the Zeeman

energy in Eq. (5.3) into the kinetic term by shifting φ → φ +
h0/

√
2πv. The φ shift introduces an incommensurate oscilla-

tion to the transverse bond alternation term cos(
√

2πφ) →
cos(

√
2πφ + h0x/v). When the wavelength v/h0 is much

longer than the short-distance cutoff a(�), the incommensu-
rate oscillation is negligible and then the RG equation of g4 is
simply

dg4(�)

d�
≈ 3

2
g4(�). (5.5)

Otherwise, the incommensurate oscillation is rapid enough to
eliminate g4:

g4(�) = 0. (5.6)

The same argument can be found in Ref. [10].
Now I can classify into two cases the strong-coupling limit

that the RG flow eventually reaches. (i) When v/� � v/h0,
the coupling constants g2(�) and g4(�) grow equally following
Eqs. (5.4) and (5.5) and eventually reach O(1). Then the Néel
and the dimer orders coexist in the ground state. (ii) When
v/� � v/h0, the coupling constant g4(�) vanishes because
of the rapid incommensurate oscillation [Eq. (5.6)]. Then the
ground state has only the Néel order.

The correlation length v/� and the wavelength v/h0

are easily compared. If α2/α4 = 0, the gap becomes
� ∝ (h4/J )2/3 ∝ (h0/J )4/3. When h0/J � 1, the gap � ∝
(h0/J )4/3 never exceeds h0/J , in other words, v/� � v/h0.
Then the ground state does not have the dimer order. On the
other hand, if α2/α4 is finite, the gap is a complex function
of h0/J . Still, in the limit h0/J → 0, the gap is reduced
to the simple form of � ∝ (h0/J )2/3, which is much larger
than h0/J . In other words, v/� � v/h0 is valid and the first
scenario comes true. Therefore, finite |α2/α4| is necessary for
the coexistence of the Néel and the dimer orders.

B. Non-Abelian bosonization

There is one remaining problem in the RG analysis on the
coexistence of the Néel and the dimer orders. The transverse
Néel order (−1) jSx

j ≈ cos(
√

2πθ ) and the transverse dimer

order cos(
√

2πφ) seem to compete with each other since
φ and θ are noncommutative. However, this competition is
an artifact of the Abelian bosonization and these orders are
cooperative [30–32].

To avoid the artifact, I rewrite the Hamiltonian (5.2) as

H̃ = J
∑

j

{
1 + 2δ⊥

3
(−1) j

}
S j · S j+1 − h2

∑
j

(−1) jSx
j

− Jδ⊥
3

∑
j

(−1) j
(
2Sz

jS
z
j+1 − Sx

j S
x
j+1 − Sy

j S
y
j+1

)
, (5.7)

where I assume finite α2/α4. According to the RG analysis,
the uniform Zeeman energy is negligible for finite α2/α4.
Here I simply put h0 = 0 from the beginning. Note that the
second line of Eq. (5.7) yields only irrelevant interactions for
the relation (4.11) and is discarded hereafter.

Instead of the Abelian bosonization, I employ the non-
Abelian bosonization approach [2,33]. In the non-Abelian
bosonization language, the effective Hamiltonian (5.3) for
h0 = 0 is written as

H̃ = 2πv

3

∫
dx (JR · JR + JL · JL )

+ dxyJδ⊥
3

∫
dx tr(g) − i

b0h2

2

∫
dx tr(gσ x ). (5.8)

Here the spin operator S j is represented as

S j = JR + JL − ib0

2
tr(gσ), (5.9)

with SU(2) currents JR and JL, a fundamental field g ∈
SU(2), and the Pauli matrices σ = (σ x σ y σ z )T [2,33]. The
matrix g ∈ SU(2) is simply related to the U(1) bosons,

g =
(

ei
√

2πφ ie−i
√

2πθ

iei
√

2πθ e−i
√

2πφ

)
. (5.10)

Since global rotations keep the excitation spectrum un-
changed, I perform a global π/2 rotation in the spin space as
(σ x, σ y, σ z ) → (σ z, σ y, −σ x ). The rotation transforms the
Hamiltonian (5.8) into

H̃ = 2πv

3

∫
dx (JR · JR + JL · JL )

+ dxyJδ⊥
3

∫
dx tr(g) − i

b0h2

2

∫
dx tr(gσ z ). (5.11)

Translating it to the Abelian bosonizaion language, I can
express this Hamiltonian as

H̃ = v

2

∫
dx{(∂xθ )2 + (∂xφ)2}

+ 2dxyJδ⊥
3

∫
dx cos(

√
2πφ) − b0h2

∫
dx sin(

√
2πφ)

= v

2

∫
dx{(∂xθ )2 + (∂xφ)2} + g

∫
dx cos(

√
2πφ + α),

(5.12)

with the coupling constant g = √
(2dxyJδ⊥/3)2 + (b0h2)2

and the phase shift α = tan−1(3b0h2/2dxyJδ⊥). The
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complex model (5.2) is thus reduced to the simple
sine-Gordon model (5.12).

The incommensurate phase shift α realizes the coexistence
of the Néel order,

Nx :=
∑

j

(−1) j
〈
Sx

j

〉
/L, (5.13)

and the transverse dimer order (2.5). Their ground-state aver-
ages are given by

Nx ∝
√

�/J sin α ∝ (g/J )1/3 sin α, (5.14)

D⊥ ∝
√

�/J cos α ∝ (g/J )1/3 cos α. (5.15)

For h0/J → 0, the angle α approaches π/2. Therefore, at low
fields h0/J � 1, Nx and D⊥ are expected to follow power
laws:

Nx ∝ (h0/J )1/3, D⊥ ∝ (h0/J )4/3. (5.16)

The power law (5.16) is qualitatively consistent with Figs. 6
and 8 at low fields. For weak magnetic fields, the longitudinal
and the transverse dimer order parameters are almost equal.
On the other hand, they are much smaller than the Néel
order parameter Nx. If we assume δ⊥ = C⊥h4

2, the bosonized
theory (5.12) predicts a ratio D⊥/Nx given by

D⊥
Nx

= dxy

b0
cot α

= 2C⊥
3

(
dxy

b0

)2
α4

2

α2

h0

J
. (5.17)

The right-hand side is approximately estimated as
0.028C⊥h0/J for the parameters used in DMRG. If C⊥ ≈ 0.7,
the ratio (5.17) is roughly consistent with the DMRG data of
Figs. 6 and 8 for h0/J < 0.3.

VI. EXPERIMENTAL RELEVANCE

A. [Cu(pym)(H2O)4]SiF6·H2O

The model (2.1) that I have dealt with so far is sim-
ilar to a model proposed for the spin-chain compound
[Cu(pym)(H2O)4]SiF6 · H2O with the following Hamilto-
nian [16]:

Hexpt = J
∑

j

(
Sx

j S
x
j+1 + Sy

j S
y
j+1 + λSz

jS
z
j+1

)

+ h0

∑
j

Sx
j + h2

∑
j

(−1) jSy
j + h4

∑
j

δ jS
z
j

+ Du

∑
j

(
Sx

j S
y
j+1 − Sy

j S
x
j+1

)
, (6.1)

where λ ≈ 1. There are three differences in two models (2.1)
and (6.1): field directions, the weak exchange anisotropy,
and the uniform DM interaction. In this section I investigate
effects of these differences one by one and discuss an experi-
mental feasibility of the field-induced transverse dimer order.

B. Field directions

In the model (6.1), the magnetic field h0, the twofold
staggered field h2, and the fourfold screw field h4 are applied

in different directions. On the other hand, the model (2.1)
has the uniform field and the fourfold screw field in the
same direction. This difference in field directions is actually
insignificant in low-energy physics for small h0/J . When the
uniform DM interaction is absent (Du = 0), the model (6.1)
has the following low-energy effective Hamiltonian:

H̃expt ≈ J
∑

j

(
Sx

j S
x
j+1 + Sy

j S
y
j+1 + λSz

jS
z
j+1

)

+ h0

∑
j

Sx
j + h2

∑
j

(−1) jSy
j

+ Jδ⊥
∑

j

(−1) j
(
Sx

j S
x
j+1 + Sy

j S
y
j+1

)
, (6.2)

with δ⊥ ∝ (h4/J )2. Relabeling the spins (Sx
j , Sy

j , Sz
j ) →

(Sz
j, Sx

j , Sy
j ), I rewrite this Hamiltonian as

H̃expt ≈ J
∑

j

(
Sx

j S
x
j+1 + λSy

j S
y
j+1 + Sz

jS
z
j+1

)

+ h0

∑
j

Sz
j + h2

∑
j

(−1) jSx
j

+ 2Jδ⊥
3

∑
j

(−1) jS j · S j+1

− Jδ⊥
3

∑
j

(
2Sy

j S
y
j+1 − Sx

j S
x
j+1 − Sz

jS
z
j+1

)
. (6.3)

Since the last term of Eq. (6.3) is irrelevant, the bosonized
Hamiltonian of Eq. (6.3) is given by

H̃expt = v

2

∫
dx{(∂xθ )2 + (∂xφ)2} + h0√

2π

∫
dx ∂xφ

+ g2

∫
dx cos(

√
2πθ ) + g4

∫
dx cos(

√
2πφ)

+ ga

∫
dx sin(

√
8πθ ), (6.4)

with ga ∝ J (λ − 1). Except for the last term that comes from
the exchange anisotropy, the Hamiltonian (6.4) is identical to
the one (5.3) investigated in Sec. V.

C. Exchange anisotropy

The bosonized effective Hamiltonian (6.4) shows that the
small exchange anisotropy λ ≈ 1 gives rise to the sin(

√
8πθ )

interaction. Though this interaction itself can be marginally
relevant at most in the RG sense, it is negligible in the
presence of the much more relevant interaction cos(

√
2πθ ).

D. Uniform DM interaction

After all, the uniform DM interaction is the only significant
difference in the models (2.1) and (6.1). The major effect
of the uniform DM interaction is a chiral rotation. Let us
resurrect the uniform DM intearction in the rotated effective
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Hamiltonian (6.3):

H̃expt ≈ J
∑

j

(
Sx

j S
x
j+1 + λSy

j S
y
j+1 + Sz

jS
z
j+1

)

+ h0

∑
j

Sz
j + h2

∑
j

(−1) jSx
j

+ 2Jδ⊥
3

∑
j

(−1) jS j · S j+1

+ Du

∑
j

(
Sz

jS
x
j+1 − Sx

j S
z
j+1

)
. (6.5)

Here the irrelevant term is already dropped. The uniform DM
interaction itself is bosonized as [34]

Du

∑
j

(
Sz

jS
x
j+1 − Sx

j S
z
j+1

) ≈ γ Du

∫
dx

(
Jy

R − Jy
L

)
, (6.6)

with a nonuniversal constant γ > 0. I employed the non-
Abelian bosonization language (see Sec. V B). The right-hand
side of Eq. (6.6) resembles the Zeeman energy,

h0

∑
j

Sz
j = h0

∫
dx

(
Jz

R + Jz
L

)
. (6.7)

While the Zeeman energy (6.7) is nonchiral (i.e., symmetric
in the permutation of R ↔ L), but the uniform DM interac-
tion (6.6) is chiral. As far as only either the R part or the L
part is concerned, I cannot distinguish the Zeeman energy and
the uniform DM interaction.

A chiral rotation can combine the uniform DM interac-
tion (6.6) and the Zeeman energy (6.7) [30–32]:

Jν = R(θν )Mν, (6.8)

for ν = R, L. Here the rotation R(θν ) is defined as

R(θν ) =
⎛
⎝1 0 0

0 cos θν sin θν

0 − sin θν cos θν

⎞
⎠. (6.9)

I assume that h0 and γ Du are both positive. Then, the rotation
leads to

h0
(
Jz

R + Jz
L

) + γ Du
(
Jy

R − Jy
L

) = tφ
(
Mz

R + Mz
L

)
, (6.10)

with

tφ =
√

h0
2 + (γ Du)2, (6.11)

if θR and θL take the following values:

θR = tan−1

(
γ Du

h0

)
, (6.12)

θL = −θR. (6.13)

The chiral rotation R(θν ) transforms g into

g′ = eiσ xθL/2ge−iσ xθR/2. (6.14)

Effects of this chiral rotation on the low-energy Hamilto-
nian are explained in Appendix B. Here I show results only.

The chirally rotated Hamiltonian then becomes

H̃expt = v

2

∫
dx{(∂x�)2 + (∂x�)2} + tφ√

2π

∫
dx ∂x�

+ g′
2

∫
dx {cos(

√
2π�) cos θR+ cos(

√
2π�) sin θR}

+ g′
4

∫
dx {cos(

√
2π�) cos θR− cos(

√
2π�) sin θR},

(6.15)

where g′
2 ∝ h2 and g′

4 ∝ Jδ⊥. Note that the chiral rota-
tion (6.14) mixes the Néel and dimer orders. Though the
right-hand side of Eq. (6.15) is complex, its basic structure is
the same as that of Eq. (5.3) in a sense that coupling constants
g′

2 and g′
4 in the former follow the same RG equations as those

for g2 and g4 in the latter. Following the argument in Sec. V B,
I obtain the Néel and dimer orders in the ground state (see
Appendix B for details):

Nx ∝ (G/J )1/3 sin α′, (6.16)

D⊥ ∝ (G/J )1/3 cos α′, (6.17)

where the coupling constant G and the angle α′ are defined in
Eqs. (B31) and (B32). In analogy with Eq. (5.16), I obtain

Nx ∝ (h0/J )1/3, D⊥ ∝ (h0/J )4/3, (6.18)

at low fields h0/J � 1.
In short, the uniform DM interaction causes the chiral

rotation that mixes the Néel and the transverse dimer orders
if the following condition is met:

(h0/J )2/3 � tφ/J. (6.19)

When Du = 0, the condition (6.19) is trivially satisfied for
small h0/J . However, the inequality (6.19) can be violated at
extremely small magnetic fields h0/Du � 1.

Let me comment on effects of the uniform DM interac-
tion on electron spin resonance (ESR). In one-dimensional
quantum spin systems, the uniform DM interaction splits the
ESR peak that corresponds to the Zeeman energy [Eqs. (6.6)
and (6.7)] [35,36]. In some cases, the DM interaction changes
selection rules of ESR and yields an additional resonance that
occurs at a frequency away from the Zeeman energy [11,37–
40].

The experiment [16] on [Cu(pym)(H2O)4]SiF6 · H2O
found that ESR peaks of this compound exhibit unconven-
tional power-law dependence on the magnetic field. A part
of this unconventional behavior is attributed to the chiral
rotation and the complex dependence of the coupling constant
on the magnetic field. A derivation of ESR selection rules
is described in Appendix. B. Here I simply summarize the
result. Elementary excitations of the sine-Gordon theory are
a soliton, an antisoliton, and their bound states, breathers. Let
us represent these excitation gaps by M, where M can be the
soliton mass or the breather mass. ESR in the model (6.5) oc-
curs when the frequency ω of the applied microwave satisfies

ω = M (6.20)

or

ω =
√

tφ2 + M2. (6.21)

134425-9



SHUNSUKE C. FURUYA PHYSICAL REVIEW B 101, 134425 (2020)

These resonance frequencies are close to neither the Zeeman
energy nor the typical gap ω ∝ (h0/J )2/3 in quantum spin
chains with the twofold staggered field [6–8]. In particular,
the latter resonance frequency (6.21) approaches ω → γ Du

in the h0 → 0 limit [35,36].

E. (Ba/Sr)Co2V2O8

I can find other quantum spin chain compounds with the
fourfold screw symmetry such as BaCo2V2O8 [13,41] and
SrCo2V2O8 [42,43]. Unlike [Cu(pym)(H2O)4]SiF6 · H2O,
these compounds have Ising-like exchange interactions. As
I already showed, the SU(2) symmetry of the exchange in-
teraction is essential for the coexistence of the Néel and the
transverse dimer orders. The strong enough Ising anisotropy
ruins the coexistence and thus makes the fourfold screw field
insignificant. Thus far, most experimental results on these
compounds are well understood with models without the
fourfold screw field [13,41–43] though some ESR peaks can
be attributed to the presence of the fourfold screw field [41].

VII. SUMMARY

I discussed a type of field-induced gap phenomena, field-
induced dimer orders in quantum spin chains. The fourfold
screw field with the bond-centered inversion symmetry intro-
duces perturbatively the effective bond alternation to the spin
chain. In analogy with the twofold staggered field, the fourfold
screw field, which breaks the one-site translation symmetry,
gives rise to the excitation gap from the ground state to the
excited states.

In the first part of the paper I applied the fourfold screw
field h4 solely to quantum spin chains. The field-induced
excitation gap by h4 turned out to show a distinctive power
law from that by the twofold staggered field h2. The gap is
proportional to (h4/J )4/3 for the fourfold screw field instead of
(h2/J )2/3 for the twofold staggered field h2 [9,10]. The power
law was predicted from the quantum field theory and consis-
tent with the numerical results (Fig. 2). The field theory also
gave the explanation on the power law of the transverse dimer
order (2.7), though it failed for the longitudinal one (2.8)
somehow.

Next, I applied the uniform field, the twofold staggered
field, and the fourfold screw field simultaneously to HAFM
chains. The SU(2) symmetry of the exchange interaction
turned out to make the coexistence of the Néel and dimer
order possible in the ground state. The coexistence of these
orders are nontrivial and already interesting [30–32]. More
interestingly, the dimer order grows in association with the
uniform magnetic field (Figs. 6, 7, and 8). The coexistent
growth of the Néel and the dimer orders were numerically
found and supported by the effective field theory.

Last but not least, I discussed the relevance of my
model to experimental studies, in particular, Ref. [16] on
[Cu(pym)(H2O)4]SiF6 · H2O. There are three differences in
the model for [Cu(pym)(H2O)4]SiF6 · H2O and the model
Hamiltonian (2.1), or equivalently Eq. (5.2), that I dealt with
in this paper. They are field directions, the weak exchange
anisotropy, and the uniform DM interaction. In Sec. VI I dis-
cussed that all three differences do not interfere with the field-

induced growth of the Néel and the dimer orders. However,
the uniform DM interaction may cause nontrivial effects on
dynamics of the spin chain such as ESR. In the presence of the
uniform DM interaction, increase of the magnetic field rotates
chirally the spin chain. This chiral rotation affects selection
rules of the electron spin resonance. It will be interesting
to test experimentally the coexistence of the Néel and the
dimer orders in spin-chain compounds with the fourfold screw
symmetry.
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APPENDIX A: DERIVATION OF EFFECTIVE
HAMILTONIAN

This Appendix is devoted to derivation of the low-energy
effective Hamiltonian discussed in Sec. III B as generically as
possible.

1. Framework

I consider a Hamiltonian H0 whose eigenstates are exactly
known:

H0 |φn〉 = En |φn〉 (n = 0, 1, 2, . . . ). (A1)

I can assume En � Em for n � m without loss of generality.
Adding a perturbation λV , I modify the Hamiltonian to

H = H0 + λV, (A2)

where λ is a small parameter that controls the perturbation
expansion. At low energies, effects of the perturbation can be
taken into account as a form of the effective Hamiltonian Heff .
The effective Hamiltonian can be easily obtained up to the
second order.

To derive the low-energy effective Hamiltonian Heff , I
focus on the N low-energy eigenstates |φn〉 with n = n0, n0 +
1, n0 + 2, . . . , n0 + N − 1 for n0 � 0. One can take n0 = 0
or n0 > 0. The latter case is useful for later application to
the free spinless fermion chain. When applying to the free
spinless fermion chain, I assume |En − εF | < W for n =
n0, n0 + 1, . . . , n0 + N , where εF is the Fermi energy and
W > 0 is an energy cutoff.

Each eigenstate defines a projection operator Pn =
|φn〉 〈φn| into that eigenstate. Pn satisfies PnH0 = H0Pn =
EnPn. An operator P,

P =
n0+N−1∑

n=n0

Pn, (A3)

then projects an arbitrary state into the subspace spanned
by the N eigenstates. Q = 1 − P projects any state into the
supplementary space.

The key idea is to perform a canonical transformation of
the Schrieffer-Wolff type on the Hamiltonian [18,44],

H′ = eηHe−η, (A4)

where η is anti-Hermitian so that eη is unitary. The Schrieffer-
Wolff formulation is useful in quantum spin systems [19].
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Here I briefly review the derivation of the effective Hamil-
tonian based on the Schrieffer-Wolff formulation to make the
paper self-contained.

Two Hamiltonians H and H′ have one-to-one correspond-
ing lists of eigenstates with exactly the same eigenenergies.
An appropriate choice of η simplifies the transformed Hamil-
tonian H′. I expand eη and determine η:

H′ = H + [η,H] + 1
2 [η, [η,H]] + · · ·

= H0 + λ([η1,H0] + V )

+ λ2([η2,H0] + [η1,V ] + 1
2 [η1, [η1,H0]]

) + · · · .

(A5)

In the last line, I expanded η around λ = 0:

η =
∞∑

p=0

λp

p!
ηp. (A6)

ηp is determined so that [19]

[P,H′] = 0. (A7)

I solve Eq. (A7) at each order of λ. At the first order, Eq. (A7)
leads to

[P, [η1,H0]] = −[P,V ]. (A8)

The anti-Hermitian η1 that satisfies Eq. (A8) is given by [19]

η1 =
n0+N−1∑

n=n0

(
PnV

1

En − H0
Q − Q

1

En − H0
V Pn

)
. (A9)

The second order of Eq. (A7),

[η2,H0] = −X2, (A10)

with X2 being

X2 = [η1,V ] + 1
2 [η1, [η1,V ]], (A11)

is similar to the first-order equation (A8). The solution is
immediately obtained:

η2 =
n0+N−1∑

n=n0

(
PnX2

1

En − H0
Q − Q

1

En − H0
X2Pn

)
. (A12)

I am now ready to write down the low-energy effective
Hamiltonian,

Heff = PH′P =
∞∑

n=0

λnHeff
n , (A13)

up to the second order of λ. First three terms Heff
n for n =

0, 1, 2 are shown below:

Heff
0 = PH0P, (A14)

Heff
1 = P([η1,H0] + V )P

= PV P, (A15)

where P[ηn,H0]P = 0 holds true for n = 1, 2. The second-
order term Heff

2 is given by

Heff
2 = P([η2,H0] + X2)P

= PX2P

= P([η1,V ] + 1
2 [η1, [η1,H0]])P. (A16)

One can simplify the last line:

Heff
2 = 1

2

∑
n,m

Pn

(
V

1

En − H0
QV + V

1

Em − H0
QV

)
Pm.

(A17)

This leads to the following effective Hamiltonian of the sec-
ond order of λ:

Heff = P(H0 + λV )P + λ2

2

×
n0+N−1∑
n,m=0

Pn

(
V

1

En − H0
QV + V

1

Em − H0
QV

)
Pm.

(A18)

2. Application to spinless fermion chains

Here I apply the generic formalism of the effective Hamil-
tonian to the spinless fermion chain (3.4). The low-energy
region is defined as Eq. (3.6). The operator P is redefined as a
projection operator onto the subspace (3.6) of the reciprocal
space [Eq. (3.6)]. P acts on ck as follows. PckP = ck for
k ∈ R and PckP = 0 otherwise. P acts on c†k in the same
manner. Q = 1 − P acts on ck and c†k as PckQ = QckP =
Pc†k Q = Qc†k P = 0. In applying the generic Schrieffer-Wolff
formulation to the XY chain (3.4), I regard H0 and V of
Eq. (A2) as

H0 =
∑

k

ε(k)c†k ck, (A19)

λV = − h4√
2

∑
k

(
e−π i/4c†k ck+ π

2
+ eπ i/4c†k+ π

2
ck

)
. (A20)

The effective Hamiltonian (A18) is then given by

Heff =
∑
k∈R

ε(k)c†k ck + V ′, (A21)

where V ′ = h2
4Heff

2 is the second-order term. Note that the
first-order term Heff

1 vanishes trivially because Pc†k+ π
2
ckP = 0

for any k ∈ R or k �∈ R thanks to the assumption 
 � 1. The
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second-order correction V ′ is calculated as follows:

V ′ = h2
4

4

∑
k,k′

[
e−π i/2Pc†k+ π

2
ckQc†k′+ π

2
ck′P

(
1

ε(k′) − ε(k′ + π
2 )

+ 1

ε(k + π
2 ) − ε(k)

)

+ Pc†k+ π
2
ckQc†k′ck′+ π

2
P

(
1

ε(k′ + π
2 ) − ε(k′)

+ 1

ε(k + π
2 ) − ε(k)

)

+ Pc†k ck+ π
2
Qc†k′+ π

2
ck′P

(
1

ε(k′) − ε(k′ + π
2 )

+ 1

ε(k) − ε(k + π
2 )

)

+ eπ i/2Pc†k ck+ π
2
Qc†k′ck′+ π

2
P

(
1

ε(k′ + π
2 ) − ε(k′)

+ 1

ε(k) − ε(k + π
2 )

)]
. (A22)

One can simplify these projections. Since the Fermi surface is located at k = ±π/2 mod π , the projection Pc†k′+π
ck′P gives

back c†k′+π
ck′ itself for k′ ∈ R and zero otherwise. In the end I obtain

V ′ = −i
h2

4

4

∑
k∈R

(c†k+π
ck − c†k ck+π )

(
1

ε(k) − ε(k + π
2 )

+ 1

ε(k + π ) − ε(k + π
2 )

)

+ h2
4

2

∑
k∈R

c†k ck

(
1

ε(k) − ε(k − π
2 )

+ 1

ε(k) − ε(k + π
2 )

)
. (A23)

The first line of Eq. (A23) is the the bond alternation for k ≈ ±kF [4] and the second line is a small correction to the Zeeman
energy.

APPENDIX B: ELECTRON SPIN RESONANCE

Here I describe how the uniform DM interaction affects the
ESR spectrum. In this Appendix I start with the spin chain
model (6.5) with λ = 1. Namely, I consider the spin chain
with the following Hamiltonian:

H̃expt = J
∑

j

S j · S j+1 + h0

∑
j

Sz
j

+ h2

∑
j

(−1) jSx
j + 2Jδ⊥

3

∑
j

(−1) jS j · S j+1

+ Du

∑
j

(
Sz

jS
x
j+1 − Sx

j S
z
j+1

)
. (B1)

The ESR spectrum is obtained from the q = 0 part of the
dynamical correlation function 〈SaSb〉 (q, ω) for a, b = x, y, z.
I can obtain selection rules of the ESR spectrum by relating
the q = 0 part of the spin, Sa

q=0, where

Sa
q :=

∑
j

eiq jSa
j , (B2)

to the boson fields of the effective field theory.
Let us bosonize the spin chain by using the non-Abelian

bosonization formula [2,33],

S j = JR + JL − ib0

2
(−1) j tr(gσ), (B3)

where JR, JL, and g are defined as

Jz
R = − i√

2π
∂̄ϕR, (B4)

Jz
L = i√

2π
∂ϕL, (B5)

J±
R = 1

2π
e±i

√
8πϕR , (B6)

J±
L = 1

2π
e∓i

√
8πϕL , (B7)

g =
(

ei
√

2πφ ie−i
√

2πθ

iei
√

2πθ e−i
√

2πφ

)
. (B8)

Here ϕ and ϕ at a position x and a time t are related to ϕR and
ϕL through

φ(x, t ) = ϕR(x − vt ) + ϕL(x + vt ), (B9)

θ (x, t ) = ϕR(x − vt ) − ϕL(x + vt ). (B10)

The derivatives ∂ and ∂̄ are abbreviations of the following
derivatives:

∂ = −i

2
(∂x + v−1∂t ), (B11)

∂̄ = i

2
(∂x − v−1∂t ). (B12)

Boson fields φ and θ are subject to equal-time commutation
relations,

[φ(x), θ (y)] = iY (y − x), (B13)

with a step function,

Y (y − x) =
⎧⎨
⎩

1 (y > x),
0 (y < x),

1/2 (y = x).
(B14)
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Sa
j for a = x, y, z are thus bosonized as [45]

Sx
j = b0 cos(

√
2πθ ) + ib1 sin(

√
2πθ ) sin(

√
2πφ), (B15)

Sy
j = b0 sin(

√
2πθ ) + ib1 cos(

√
2πθ ) sin(

√
2πφ), (B16)

Sz
j = 1√

2π
∂xφ + b0 sin(

√
2πφ). (B17)

In the non-Abelian bosonization language, the Hamilto-
nian (B1) is expressed as

H̃expt = 2πv

3

∫
dx (JR · JR + JL · JL )

+ h0

∫
dx

(
Jz

R + Jz
L

) + γ Du

∫
dx

(
Jy

R − Jy
L

)
− ib0h2

2

∫
dx tr(gσ x ) + dxyJδ⊥

3

∫
dx tr(g). (B18)

In order to combine terms on the second line, I perform the
chiral rotation (6.8). The chiral rotation turns the Hamiltonian
into

H̃expt = 2πv

3

∫
dx (MR · MR + ML · ML )

+ tφ

∫
dx

(
Mz

R + Mz
L

)
− ib0h2

2

∫
dx [tr(g′σ x ) cos θR + itr(g′) sin θR]

+ dxyJδ⊥
3

∫
dx [tr(g′) cos θR + itr(g′σ x ) sin θR].

(B19)

MR, ML, and g′ are related to U(1) bosons � = ϕ′
R + ϕ′

L and
� = ϕ′

R − ϕ′
L in analogy with JR, JL, and g. I can eliminate

the Zeeman energy tφ (Mz
R + Mz

R) by shifting

ϕ′
R → ϕ′

R − tφ

v
√

8π
x, (B20)

ϕ′
L → ϕ′

L − tφ

v
√

8π
x. (B21)

This shift affects MR, ML, and g′ as follows:

Mz
R = − tφ

4πv
− i√

2π
∂̄ϕ′

R, (B22)

Mz
L = − tφ

4πv
+ i√

2π
∂ϕ′

L, (B23)

M±
R = e∓itφx/ve±i

√
8πϕ′

R , (B24)

M±
L = e±itφx/ve∓i

√
8πϕ′

L , (B25)

g′ =
(

e−itφx/vei
√

2π� ie−i
√

2π�

iei
√

2π� eitφx/ve−i
√

2π�

)
. (B26)

The shift introduces incommensurate oscillations to the
Hamiltonian (B19). Here I assume an inequality,

v

�
� v

tφ
. (B27)

This condition guarantees that the incommensurate oscillation
is negligible (cf. Secs. V A and V B). At low fields h0/J � 1,

this inequality reads

(h0/J )2/3 � tφ/J. (B28)

Under this condition (B28), I can safely discard the in-
commensurate oscillation with the wave number tφ/v in the
Hamiltonian. Note that tφ must be kept in the relations be-
tween operators and quantum fields. The Hamiltonian is thus
given by

H̃expt ≈ 2πv

3

∫
dx (MR · MR + ML · ML )

− ib0h2

2

∫
dx [tr(g′σ x ) cos θR + itr(g′) sin θR]

+ dxyJδ⊥
3

∫
dx [tr(g′) cos θR + itr(g′σ x ) sin θR].

(B29)

Here, as I did in Sec. V B, I rotate the system by π around
the y axis: (σ x, σ y, σ z ) → (σ z, σ y, −σ x ). The π -rotated
Hamiltonian finally becomes simple:

H̃expt = v

2

∫
dx [v−2(∂tφ)2 + (∂xφ)2]

+ G
∫

dx cos(
√

2π� + θR − α′), (B30)

with

G =
√

(b0h2)2 + (2dxyJδ⊥/3)2, (B31)

α′ = tan−1

(
3b0h2

2dxyJδ⊥

)
. (B32)

Let us relate the spin S j in the original coordinate frame to
the � and � fields in Eq. (B30), recalling all the chiral and
nonchiral rotations performed:

Sx
j = Mx

R + Mx
L − ib0

2
[tr(g′σ x ) cos θR + itr(g′) sin θR]

= 1√
2π

(∂x�) cos(tφx/v) + ib1 cos(
√

2π�) sin(
√

2π�)

× sin(tφx/v) + b0(−1) j sin(
√

2π� + θR), (B33)

Sy
j = (

My
R + My

L

)
cos θR − (

Mz
R − Mz

L

)
sin θR

− ib0

2
(−1) j tr(g′σ y)

=
(

ib1 cos(
√

2π�) sin(
√

2π�) cos(tφx/v)

− 1√
2π

(∂x�) sin(tφx/v)

)
cos θR

− ib1 cos(
√

2π�) cos(
√

2π�)

× sin θR + b0(−1) j sin(
√

2π�), (B34)

Sz
j = (

My
R − My

L

)
sin θR + (

Mz
R + Mz

L

)
cos θR

− ib0

2
(−1) j tr(g′σ z )
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=− tφ
2πv

cos θR+
(

ib1 sin(
√

2π�) cos(
√

2π�) cos(tφx/v)

+ 1√
2π

(∂x�) cos(tφx/v)

)
sin θR

− ib1 sin(
√

2π�) sin(
√

2π�) + b0(−1) j

× sin(
√

2π� − tφx/v). (B35)

Note that the π rotation was performed on the rightmost sides
of Eqs. (B33), (B34), and (B35). The transverse dimer order
is expressed as

(−1) j
(
Sx

j S
x
j+1+Sy

j S
z
j+1

) = dxy

2
[tr(g′) cos θR+itr(gσ x ) sin θR]

= dxy cos(
√

2π�+θR). (B36)

I can confirm that the spin chain model (B1) has the Néel
and dimer orders:

Nx ∝ (G/J )2/3 sin α′, (B37)

D⊥ ∝ (G/J )2/3 cos α′, (B38)

in analogy with Eqs. (5.14) and (5.15).
A list of low-energy excitations created by operators on

the rightmost sides of Eqs (B33), (B34), and (B35) is avail-
able [46–48]. Vertex operator operators eiqxe±i

√
2π� create

solitons and antisolitons with an excitation energy,

Es(q) =
√

(vq)2 + �s
2, (B39)

�s = 2v√
π

�(1/6)

�(2/3)

(
π

2v

�(3/4)

�(1/4)
G

)2/3

. (B40)

Other vertex operators eiqxe±i
√

2π� create breathers, bound
states of a soliton and an antisoliton, with an excitation energy,

En(q) =
√

(vq)2 + �2
n, (B41)

�n = 2�s sin

(
nπξ

2

)
. (B42)

Here ξ = 1/(8K − 1) = 3. The index n takes values of n =
1, 2, 3.

I can now predict the ESR frequency caused by Sa
q=0

for a = x, y, z. For example, cos(
√

2π�) cos(
√

2π�) in Sy
q=0

yields the resonance peak at

ω = �s ∝ G2/3. (B43)

Though in the h0/J → 0 limit, this resonance frequency fol-
lows a simple power law ω ∝ (h0/J )2/3, it will be a compli-
cated function of h0 in general. Another interesting term is
sin(

√
2π�) cos(

√
2π�) cos(tφx/v) in Sz

q=0. This term yields
resonance peaks at

ω =
√

tφ2 + M2, (B44)

where M can be �s or �n for n = 1, 2, 3.
The selection rule is also affected by the canonical trans-

formation (A4). Precisely speaking, the left-hand sides of
Eqs. (B33), (B34), and (B35) should be denoted as S̃a

j for
a = x, y, z. Here S̃a

j is defined as

S̃a
j = eηSa

j e
−η

= Sa
j + [

η1, Sa
j

] + [
η2, Sa

j

] + 1
2

[
η1,

[
η1, Sa

j

]] + · · · .

(B45)

η1 and η2 create particle-hole excitations with q = ±π/2
and π , respectively, when applied to the TL-liquid ground
state. Such a mixing of different wave numbers will allow
ESR to detect q = ±π/2 and q = π excitations. Excita-
tions with q = π can be read from the staggered terms of
Eqs. (B33), (B34), and (B35), which are similar to those
with q = 0.
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