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A detailed derivation of the Rashba spin-orbit (SO) Hamiltonian for conduction electrons in wurtzite
heterostructures is lacking in the literature. Here we derive in a consistent and systematic way such an effective
Hamiltonian, valid for quantum wells, wires, and dots with arbitrary confining potentials and external magnetic
fields. We start from an 8 × 8 Kane model accounting for the s-pz orbital mixing important to wurtzite structures,
but absent in zincblende, and apply both quasidegenerate perturbation theory (Löwdin partitioning) and the
folding down approach to derive an effective 2 × 2 Hamiltonian for conduction electrons. For bulk systems, our
derivation consistently yields the well-known linear-in-momentum bulk inversion asymmetry (BIA) Rashba-like
term, with SO coupling αBIA

bulk, entirely following from the s-pz orbital mixing and in agreement with experiments.
We also obtain the correct form of the bulk Dresselhaus term, which is the same as that of the Rashba. However,
our calculated bulk Dresselhaus SO parameters γ and b are too small. Focusing on wurtzite quantum wells,
we perform a self-consistent Poisson-Schrödinger calculation in the Hartree approximation to determine all
the relevant SO couplings of the confined effective 2 × 2 electron Hamiltonian. Our total linear Rashba-type
SO Hamiltonian contains a structural inversion asymmetry (SIA) part, modulated by the Hartree, doping, and
external gate potentials of the wells, and, in contrast to zincblende structures, a confined Rashba-type contribution
induced by the BIA of the underlying wurtzite lattice. Our calculation shows this latter BIA term to be the
main contribution to the confined Rashba coupling in wurtzite wells. As a concrete example, we determine the
intrasubband (intersubband) Rashba αν (η) and linear Dresselhaus βν (�) SO coupling strengths for GaN/AlGaN
single and double wells with one and two occupied subbands (ν = 1, 2). Since the linear Rashba and the
Dresselhaus terms have the same functional form, we can define a total effective SO coupling αeff

ν = αν + βν .
For the GaN/Al0.3Ga0.7N single well with one occupied subband we find αeff

1 = 7.16 meV Å, in agreement with
weak antilocalization measurements. In the case of two occupied subbands, we observe that the intersubband
Rashba η is much weaker than the intrasubband coupling αν . For double wells even in the presence of strong
built-in electric fields (spontaneous and piezoelectric, crucial in GaN/AlGaN wells), we find a seemingly
symmetric potential configuration at which both the Rashba η and Dresselhaus � intersubband couplings exhibit
their highest strengths. On the other hand, we observe that the intrasubband Dresselhaus couplings β1 and β2

interchange their values as the gate voltage Vg varies across zero; a similar behavior, though less pronounced, is
seen for the Rashba couplings α1 and α2. We believe our general effective Hamiltonian for electrons in wurtzite
heterostructures put forward here, should stimulate additional theoretical works on wurtzite quantum wells,
wires, and dots with variously defined geometries and external magnetic fields.

DOI: 10.1103/PhysRevB.101.134416

I. INTRODUCTION

The spin-orbit interaction couples the electron spin and
its momentum. While in atomic systems this relativistic ef-
fect arises from the Coulomb potential within the atom, in
mesoscopic semiconductor heterostructures such as quantum
wells, wires, and dots, the SO interaction originates from the
interplay of the confining, doping, Hartree, and external gate
potentials. Unlike atomic systems, the SO coupling strength
in these systems can be electrically controlled, thus providing

a unique handle for the manipulation of the magnetic moment
of the electron. Spin manipulation via the SO interaction
is an important resource in spintronic devices and quantum
information processing with spin qubits [1,2].

Spin-orbit effects also underlie novel topological transport
phenomena in diverse fields of quantum condensed matter
such as topological insulators [3,4], Majorana fermions [5–7],
and Weyl semimetals [8]. Recent proposals for stretchable [9]
spin helix [10–13] and persistent skyrmion lattice excitations
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FIG. 1. (a) Schematic of the dispersion relation (CC′ basis set) of
an unstrained (solid curves) and a strained (dashed curves) wurtzite
semiconductor close to the � point (k = 0). The superscript s in the
band parameters indicates the strained case. (b) Potential profile of
a wurtzite single well of width Lw and barriers of width Lb. The
superscripts b and w stand for barrier and well, respectively. No s-pz

mixing is considered here since its effect is negligible on the band
edges at the � point.

[14] in ordinary GaAs wells also highlight the important role
of the SO in quantum wells.

So far, detailed theoretical and experimental studies on
the SO coupling in semiconductors have been performed
mostly in crystals with zincblende structure, including both
bulk and confined systems [15,16]. It is well established by
now that the structural inversion asymmetry (SIA) of wells
lead to a linear-in-momentum Rashba term [17] while the
bulk inversion asymmetry (BIA) of the underlying zincblende
crystal lattice gives rise to linear- and cubic-in-momentum
Dresselhaus terms [18] in quantum wells. Wells with two
subbands also have intersubband Rashba- and Dresselhaus-
like terms [14,15,19,20]. The interplay of the linear Rashba
and Dresselhaus terms in wells gives rise to some of the
interesting phenomena mentioned in the previous paragraph
on zincblende matrices.

In bulk wurtzite structures, on the other hand, the presence
of a hexagonal c axis along the z||(0001) direction allows
for a linear BIA Rashba term [21,22] (due to the s-pz or-
bital mixing) in addition to a cubic BIA Dresselhaus term
[23,24]. Besides terms arising from these BIA contributions,
in wurtzite quantum wells a usual SIA Rashba-like term [17]
is also present as we will see.

The SO coupling in wurtzite semiconductors has at-
tracted interest both experimentally [25–34] and theoretically
[23,24,35,36]. Experimentally, spin splitting energies from 0
up to 13 meV were reported in GaN-based heterostructures
[25,29–31,33]. Weak antilocalization measurements provide a
SO splitting parameter value ranging from 5.5 to 10.01 meV Å
[26–28,30,32,34]. Compared with these measurements, the
value extracted from the beating pattern of Shubnikov–de
Haas oscillations is very large, around 65 meV Å, which
is attributed to the structural inhomogeneity of the crystals
[37].

Theoretically, Lew Yan Voon et al. investigated the linear
Rashba-type term in bulk wurtzite semiconductors [35] and
found that the linear term is mainly determined by the mixing
of the s orbital of the conduction band and the pz orbital of the
valence band. This s-pz orbital mixing was first investigated
by Rashba in Ref. [38] (see also Ref. [39]). Chuang and Chang
[40] investigated strained bulk wurtzite semiconductors via
the k · p method and derived a Luttinger-Kohn 6 × 6 effective
mass Hamiltonian for these systems. These authors did not
include the relevant s-pz mixing terms of Ref. [35]. Wang
et al. studied the bulk cubic Dresselhaus SO interaction
and demonstrated the existence of a zero Dresselhaus spin
splitting surface in wurtzite semiconductors [23]. Fu and Wu
evaluated the bulk Dresselhaus coefficient in GaN, 0.32 eV Å3

[24], which has been experimentally verified via circular
photogalvanic measurements [41]. More recently, Faria Junior
et al. [42] investigated the bulk spin-orbit coupling effect in
InP and InAs (non-nitride materials) in the wurtzite phase
by combining the k · p method and ab initio band structure
calculations.

In addition to studies on the bulk wurtzite structure, the
SO coupling parameter in GaN/AlN heterostructures, around
8 meV Å, was determined by Majewski via first-principles
calculations [43]. Litvinov investigated the spin splitting of
GaN/AlGaAs heterostructures [36] and GaN/InGaN quan-
tum wells with one occupied electronic subband [44]. Fol-
lowing the basic framework of Litvinov’s formulation, Li
et al. determined the Rashba couplings associated with two
occupied electronic subbands in GaN/Al0.3Ga0.7N wells, with
similar Rashba couplings α1 ≈ α2 ∼ 0.5 meV Å [45].

Although several investigations have been conducted so
far, a comprehensive and consistent theory for the SO cou-
plings of conduction electrons in wurtzite crystals in confined
geometries is still lacking in the literature. Moreover, for the
available reports on the SO coupling, the s-pz orbital mixing,
which we find is crucial in obtaining certain SO terms, was
not taken into account in the Kane models used. In addition,
in an earlier derivation of the effective electron Hamiltonian,
the renormalization of the conduction band spinor component
was not considered [36], thus leading to an energy dependent
Schrödinger-type effective mass equation.

In this work we account for these missing ingredients by
building on the works of Lew Yan Voon et al. [35] and Chuang
and Chang [40] and establish a detailed systematic formula-
tion for the electron SO interaction in wurtzite heterostruc-
tures. We then consider GaN/AlGaN wells, both single and
double, involving the electron occupancy of either one or two
subbands, and self-consistently determine the intrasubband
(intersubband) Rashba αν (η), ν = 1, 2, and Dresselhaus βν

(�) terms. By using an external gate voltage Vg, we also dis-
cuss the electrical control of all relevant SO couplings. These
SO terms are helpful to investigate spin related properties in
semiconductors with wurtzite phase, especially in confined
wurtzite nanostructures (wells, wires, and dots).

More specifically, we use a modified basis set (“CC′ ba-
sis”), as compared to the basis defined by Chuang and Chang
[40] (“CC basis”), to construct an 8 × 8 Kane model, in
which we account for the s-pz orbital mixing of Lew Yan
Voon et al. [35] (see Appendix A). The CC′ basis (Table I)
is a solution of the bulk Hamiltonian at k = 0 (� point)
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with the k-independent SO coupling being partially included
[Eq. (4)]. Therefore, the Kane model contains nonzero off-
diagonal elements even at k = 0 [see Eq. (7)], implying that
the diagonal elements of the Kane matrix in general do not
describe the actual band edge energies, Fig. 1. We also derive
the bulk Kane Hamiltonian in the “diagonal basis,” in which
the Kane model is diagonal at k = 0 (Appendix B). This helps
us determine the diagonal elements (not actual band edge
energies) of the Kane model in the CC′ basis as well as the
corresponding “virtual” band offsets (see Table II). Having
the bulk Kane model at hand, we then construct its analog
for heterostructures.

We use quasidegenerate perturbation theory (Löwdin parti-
tioning) [46] and the folding down approach [19,20] to derive
an effective 2 × 2 electron Hamiltonian [Eq. (30)] from the
8 × 8 Kane model for wurtzite heterostructures. As opposed
to what has been reported in the literature [36,45,47], we
arrive at a genuine Schrödinger-type equation, i.e., an energy-
independent effective Hamiltonian, since we account for the
renormalization of the conduction band spinor component
(Appendix C).

Our approach yields the usual linear-in-momentum Rashba
term due to the SIA of the wells [Eq. (41)] and the con-
fined BIA-induced Rashba-type SO coupling [Eq. (38)], both
as functions of the s-pz orbital mixing. Within the eight
bands considered (s-conduction and p-valence bands), we
also obtain the Dresselhaus coupling [Eq. (44)]. This is in
contrast to systems with the zincblende structure, in which the
Dresselhaus term is only present if the k · p interaction with
remote bands, e.g., the p-conduction band, is included [48].
We also derive a general effective electron Hamiltonian con-
taining all relevant SO terms for wurtzite nanostructures in the
presence of a magnetic field and an arbitrary 3D confinement
[see Eqs. (45)–(48)].

Based on our results for the SO terms, we self-consistently
calculate the total spin splitting coefficient for a GaN/AlGaN
single well with one occupied subband αeff

1 = α1 + β1 ∼
7.16 meV Å (Figs. 2–4), in agreement with weak antilocal-
ization measurements [28,30,34]. We determine as well the
several distinct terms composing the Rashba SO coupling: the
“bulk” [49], the Hartree, and the structural well contributions,
and show that the strength of the SO coupling follows from
the interplay of all these components, Fig. 3. For a similar
calculation for zincblende quantum wells see Refs. [19,20].
Contrary to what has been predicted in an earlier work [50],
we note that the bulk Rashba term dominates over all the
other contributions [34,51,52]. Accordingly, the latter remains
essentially constant as a function of the gate voltage Vg [37],
Fig. 3(a). When the wells have two occupied subbands
(higher electron density), we find that the intersubband
Rashba strength η is much weaker than the intrasubband
coupling αν , Fig. 5.

On the other hand, for GaN/AlGaN double wells (Fig. 6),
interestingly, we find a seemingly symmetric configuration
depending on the relative ratio of the Al content between
the central and lateral barriers, even in the presence of the
strong built-in electric field (spontaneous and piezoelectric).
At this configuration, a maximal strength of the intersubband
Rashba η and Dresselhaus � couplings occurs. In addition, by
varying Vg we observe that the Dresselhaus couplings β1 and

β2 change dramatically and almost interchange their values.
Although less pronounced, a similar behavior also holds for
the Rashba couplings α1 and α2, see Fig. 7.

The paper is organized as follows. In Secs. II–IV we
present the model and method used. Specifically, in Sec. II
we review the k · p method and apply it to obtain an 8 × 8
Kane model for both unstrained and strained wurtzite wells.
In Sec. III we derive a 2 × 2 3D SO Hamiltonian for electrons
from the Kane model obtained in Sec. II. In this derivation
we use both the Löwdin partitioning method and the folding
down approach. By projecting the 3D Hamiltonian onto the
quantum well subbands (obtained in a self-consistent way),
we derive in Sec. IV an effective 2D electron Hamiltonian
containing all the relevant SO terms. For concreteness, we
present and discuss numerical results for GaN/AlGaN wells
in Sec. V. We summarize our main findings in Sec. VI.

II. 8 × 8 KANE MODEL: BULK → HETEROSTRUCTURES

Here we first introduce the k · p method and then use it
to derive a simple 8 × 8 Kane model (without contributions
from remote bands) for bulk and heterostructures. These Kane
models are used in Sec. III to derive 2 × 2 Hamiltonians for
conduction electrons, in which effective spin-orbit terms arise.

A. The k · p method: General formulation

For an electron on a microscopic periodic potential V (r),
the Schrödinger equation for the periodic part uν k(r) of the
Bloch function is given by [16,53,54][

p2

2m0
+ V (r) + Hso + h̄

m0
k · π

]
uν k(r)

=
(

Eν (k) − h̄2k2

2m0

)
uν k(r), (1)

where m0 is the bare electron mass, ν is a band index for each
wave vector k, p is the momentum operator, and

π = p + h̄

4m0c2
σ × ∇V (r), (2)

with σ = (σx, σy, σz ) being the Pauli matrices. The spin-orbit
coupling appears in Eq. (1) as the k = 0 term

Hso = h̄

4m2
0c2

∇V (r) × p · σ, (3)

and the k-linear term h̄
m0

k · π.
The Hamiltonian above considers an unstrained crystal.

For a finite strain, one must add the strain related couplings
Hstrain to Eq. (1) [55,56]. We will discuss the strain tensor and
its effects in Sec. II B 2.

To solve Eq. (1) in the vicinity of the � point (k ≈ 0)
within the k · p approach, one must define a basis set {uν 0(r)}
at k = 0 to expand uνk(r). This choice of basis set is in
principle not unique and leads to different representations of
the Kane model [16,54]. Ideally, one would prefer to work
on a basis set that diagonalizes Eq. (1) at k = 0, as it is
commonly done for zincblende structures. However, it is often
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more interesting to use a basis defined by the irreducible
representations (IRREPs) of the crystal’s group, which is not
always diagonal at k = 0. This is the case for the basis set
defined by Chuang and Chang [40].

B. 8 × 8 Kane model: Bulk

In this subsection we use the CC′ basis [35]—a modified
basis set that incorporates previously neglected effects of
the s-pz coupling [40] (see Appendix A for more details)—
defined in Table I, to construct our 8 × 8 Kane Hamiltonian.

1. CC′ basis: Unstrained case

Our basis set is defined by splitting the total Hamiltonian
in Eq. (1) as H = HCC′

0 + W CC′
(k), with

HCC′
0 = p2

2m0
+ V (r) + Hsoz, (4)

W CC′
(k) = h̄

m0
k · π + Hsox + Hsoy, (5)

Hso j = h̄

4m2
0c2

[∇V (r) × p] j σ j, (6)

where j = {x, y, z} labels the spin components of Hso. The
chosen CC′ basis is composed by the eigenstates that diag-
onalize HCC′

0 , which includes only the z component (Hsoz) of
the k = 0 spin-orbit interaction. Therefore, our Hamiltonian
will not be diagonal at k = 0, since the perturbation W CC′

(k)
contains the k-independent Hsox and Hsoy terms.

Wurtzite crystals comprise two interpenetrating hexagonal
lattices that transform according to the space group P63mc
(C4

6v), yielding the C6v point group at � (k = 0) [57]. Hence,

TABLE I. CC′ basis functions uCC′
ν′ 0 (r) ≡ uν′ 0(r) ≡ 〈r|ν ′〉, with

ν ′ = 1, 2, . . . , 8. The states |S′〉 and |Z ′〉 transform like scalars and
{|X 〉, |Y 〉} transform like vectors. The corresponding doubly degen-
erate band edges (at the � point) are denoted by Ee (conduction) and
EA, EB, EC (valence) bands, respectively. The s-pz mixed orbitals are
|S′〉 = qs|S〉 + qz|Z〉, and |Z ′〉 = qs|Z〉 − qz|S〉, with |qs|2 + |qz|2 = 1
and qz � 1 (Appendix A).

ν ′ |ν ′〉 C6v IRREP

e 1 |iS′↑〉 �1

e 2 |iS′↓〉 �1

A 3 − 1√
2
|X + iY ↑〉 �5

A 4 + 1√
2
|X − iY ↓〉 �5

B 5 + 1√
2
|X − iY ↑〉 �5

B 6 − 1√
2
|X + iY ↓〉 �5

C 7 |Z ′↑〉 �1

C 8 |Z ′↓〉 �1

the solutions of HCC′
0 are given by single-group states belong-

ing to the �1 (S and Z) [58] and �5 ({X,Y }) IRREPs of C6v ,
with well defined spin (↑ and ↓) along the z direction. Note
that differently from zincblende crystals, the z direction in the
wurtzite unit cell is nonequivalent to the x and y directions.
This allows for an s-pz mixing [35,38,39], thus leading to the
hybridized S′ and Z ′ orbitals shown in Table I.

Using the CC′ basis listed in Table I, we can now build
the bulk 8 × 8 Kane Hamiltonian HCC′

8×8. We find [62] (see
Appendix A 4)

HCC′
8×8 = p2

2m0
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 − 1√
2
P2k+ 0 1√

2
P2k− −i

√
2	sz P1kz 0

0 0 0 1√
2
P2k− −i

√
2	sz − 1√

2
P2k+ 0 P1kz

− 1√
2
P2k− 0 −ECC′

g 0 0 0 0 0

0 1√
2
P2k+ 0 −ECC′

g 0 0 0 0

1√
2
P2k+ i

√
2	sz 0 0 −ECC′

g − EAB 0 0
√

2	3

i
√

2	sz − 1√
2
P2k− 0 0 0 −ECC′

g − EAB

√
2	3 0

P1kz 0 0 0 0
√

2	3 −ECC′
g − EAC 0

0 P1kz 0 0
√

2	3 0 0 −ECC′
g − EAC

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(7)

The nonzero spin-orbit matrix element 	sz was neglected
in the original work by Chuang and Chang [40], see
Appendix A for details on the origin of this term. However,
this term is allowed by symmetry, i.e., by the mixing of the
orbitals “s” and “pz.” Namely, this spin-orbit coupling 	sz

reads

	sz = h̄2

4m2
0c2

〈Y |∂V

∂y

∂

∂z
− ∂V

∂z

∂

∂y
|S′〉. (8)

Even though this term has a negligible effect on the band
edges at k = 0, it is crucial in obtaining the relevant SO terms
at k �= 0.

The diagonal matrix elements in Eq. (7) are the eigenener-
gies of HCC′

0 [see Eq. (4)]; here we set Ee ≡ 0 (energy refer-
ence), EA = −ECC′

g , EB = −ECC′
g − EAB, and EC = −ECC′

g −
EAC , with the subscripts e denoting the lowest conduction
band and A, B, and C the topmost three valence bands,
respectively. The term ECC′

g ≈ Eg corresponds to the band gap
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(see discussion below). The energy differences between the
valence band edges are given by

EAB = 2	2, EAC = 	1 + 	2, (9)

where 	1 ≡ 	cr is the crystal-field splitting energy, and 	2

and 	3 are two SO split-off energy parameters, which read

	2 = − h̄2

4m2
0c2

〈Y |∂V

∂x

∂

∂y
− ∂V

∂y

∂

∂x
|X 〉, (10)

	3 = h̄2

4m2
0c2

〈Y |∂V

∂y

∂

∂z
− ∂V

∂z

∂

∂y
|Z ′〉. (11)

These are commonly assumed to be related by 	2 = 	3 ≡
	so/3 [63], following the quasicubic approximation [54].
The off-diagonal k-linear terms are defined by Kane parame-
ters P1 = −(ih̄/m0)〈S′|pz|Z ′〉 and P2 = −(ih̄/m0)〈S′|px|X 〉 =
−(ih̄/m0)〈S′|py|Y 〉, with k± = kx ± iky.

The Hamiltonian in Eq. (7) is well defined in terms of
the matrix elements shown above. Note, however, that the
diagonal matrix elements do not correspond to the real band
edges, since HCC′

8×8 is not diagonal at k = 0. Nevertheless, we
can safely use ECC′

g ≈ Eg (real band gap) since (i) Eq. (7)
shows that the topmost valence band A does not couple to
other bands at k = 0, and (ii) the 	sz coupling between the
conduction and valence bands leads to a negligible second-
order correction for the conduction band at k = 0, i.e., Eg =
ECC′

g − 2	2
sz/(ECC′

g + EAB) ≈ ECC′
g .

2. CC′ basis: Strained case

The application of an external stress on a bulk semicon-
ductor leads to a shift of the energy levels and/or a splitting
of the heavy-light holes degeneracy [55]. We discuss now how
strain effects change the band edges of the k · p Hamiltonian
in Eq. (7).

We restrict ourselves to the case of biaxial strain, i.e.,

εxx = εyy �= εzz,

εxy = εyz = εzx = 0, (12)

where εi j (i, j = x, y, z) is the strain tensor. Notice that strain
appearing in heterostructures is in general caused by a lat-
tice mismatch at the interfaces. For a strained-layer wurtzite
crystal pseudomorphically grown along the [0001] crystal-
lographic direction, the components of the strain tensor as-
sume the following values: εxx = εyy = (as − a)/a and εzz =
−2C13εxx/C33, where as is the lattice constant of the substrate
and a of the epitaxy layer. The parameters C13 and C33 are the
elastic stiffness constants [40,64–66].

The conduction band edge has a hydrostatic energy shift
given by 	Ee = ac1εzz + ac2 (εxx + εyy), with ac1(c2 ) the con-
duction band deformation potential. The topmost A valence
band edge shifts according to 	EA = S1 + S2, where S1

and S2 are written as S1 = D1εzz + D2(εxx + εyy) and S2 =
D3εzz + D4(εxx + εyy), with D1–4 the valence band deforma-
tion potentials [40,67]. Therefore, the band gap variation, i.e.,
	Eg = E s

g − Eg, is given by 	Ee − 	EA, with the superscript
“s” denoting parameters in the strained case. The energy

differences between valence bands read

E s
AB = EAB = 2	2, (13)

E s
AC = EAC + S2 = 	1 + 	2 + S2, (14)

where one can explicitly see the band edge corrections due to
the deformation potentials [cf. Eqs. (9), (13), and (14)].

In Fig. 1(a) we show the diagonal matrix elements for
both cases: unstrained (solid curves) and strained (dashed
curves). Here the only effect caused by strain is a shift in
the band edges; one can then straightforwardly write down
the corresponding Kane Hamiltonian by simply replacing Eg,
EAB, and EAC in Eq. (7) by E s

g , E s
AB, and E s

AC , respectively.

3. Some remarks

The Kane model in Eq. (7) was constructed including
only the lowest conduction [58] and top valence bands (see
Table I). This model only provides a good description of
the electronic states in the conduction band. In order to
properly describe holes, especially heavy and light holes, it is
necessary to include additional bands [54]. Nevertheless, here
we are just interested in the conduction band. From Eqs. (23)
and (24), for instance, we can calculate the longitudinal and
transversal electronic effective masses, respectively, which,
as we shall see in Sec. V, are in excellent agreement with
experimental results.

We also derive a Kane Hamiltonian using the “diagonal
basis,” in which the 8 × 8 matrix is diagonal at k = 0 (see
Appendix B). This helps us determine the diagonal elements
(not actual band edge energies) of the Kane model in the CC′
basis, as well as the corresponding “virtual” band offsets (see
Table II) to correctly describe heterostructures. Note, though,
that the diagonal basis has a direct dependence on the band
parameters.

C. 8 × 8 Kane model: Heterostructures

We shall focus now on the Kane model for wurtzite het-
erostructures, more specifically quantum wells grown along
the z||(0001) direction (c axis), for which experimental data
are available. Later on, we show a general formulation valid
for wells, as well as wires and dots (see Sec. III C).

Due to the different band edges at k = 0 for different
materials, a sharp jump of the bands (offsets) happens at
the interfaces, which introduces position-dependent potentials
representing the different layers. For simplicity, we refer here
to the unstrained case; the generalization to the strained case
is straightforward (see Sec. II B 2).

The Hamiltonian for wells looks exactly the same as that
in Eq. (7), except that now one has to replace kz → −i(∂/∂z),
and introduce in the diagonal z-dependent potentials to ac-
count for the band offsets. Note that the diagonal basis
functions depend on the band parameters (see Table IV in
Appendix B), and hence, have different values on the well and
on the barriers. This may lead to unnecessary complications
in practice [68]. For convenience, we only consider the 8 × 8
Kane model for wells written in the CC′ basis. We emphasize
that, strictly speaking, even in the CC′ basis set, the basis
functions are z dependent, as the periodic part of the Bloch
functions, i.e., S, X , Y , and Z , see Table I, can be different
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for the several layers. Here we neglect this difference, as it is
usually done for zincblende heterostructures [68,69].

1. Unstrained quantum wells

Let us first analyze the z-dependent structural potential
added to the diagonal part of Hamiltonian (7), for both the
conduction and valence bands. From Fig. 1(b), where we
schematically show the band offsets, we can straightforwardly
obtain

Vw−e(z) = δehw(z), Vw−i(z) = −δihw(z), i ∈ {A, B,C},
(15)

where hw(z) = 
(z − Lw

2 ) + 
(−z − Lw

2 ) describes a dimen-
sionless square well profile, with 
(z) the Heaviside function.
In this expression, the center of the well has been taken as the
origin in the z direction (z = 0).

Once again, in addition to the z-dependent potentials in
Eq. (15), the off-diagonal elements 	3, 	sz, and the Kane
parameters P1 and P2 should be z dependent, since in principle
they may have distinct values in different layers. In most
wurtzite materials, though, they have very similar values [66],
and from now on, we use them as z-independent parameters.

The discussion above on the Kane Hamiltonian for a
quantum well is based on the single-electron picture, in which
the electrons experience only the structural potential of the
well. Below we focus on modulation doped quantum wells in
the Hartree approximation. In this case, besides the structural
well potential, the doping (from dopants) potential, the pure
electron Hartree (from electrons) potential, as well as the
external gate potential also contribute to the total electron
potential.

2. Strained quantum wells

For strained wurtzite heterostructures, an internal potential
(built-in electric field), due to the strain-induced piezoelectric
polarization and/or spontaneous polarization, usually plays a
significant role as well [70]. To calculate the built-in fields,
two types of boundary conditions are usually used: (i) peri-
odic boundary conditions, i.e., the potentials of the external
surfaces are equal, and (ii) neutral external surfaces [71,72].
The corresponding expressions for the electric fields Ew (well)
and Eb (barriers) in both cases are given by

(i) periodic boundary conditions

Ew = 2Lb(Pb − Pw )

ε0εr (Lw + 2Lb)
, Eb = Ew + Pw − Pb

ε0εr
, (16)

(ii) neutral external surfaces

Ew = Pb − Pw

ε0εr
, Eb = 0, (17)

where ε0 is the vacuum permittivity and Pw and Pb are the
polarization fields (spontaneous and piezoelectric) appearing
in the well and barriers, respectively. Here we have assumed
a uniform dielectric constant εr throughout the system. Note
that, as the width of the barriers Lb goes to infinity, the two
types of boundary conditions become equivalent.

The direction and magnitude of the spontaneous polariza-
tion along the c axis of a wurtzite crystal can be determined

experimentally [70,73,74]. On the other hand, the magnitude
of the piezoelectric polarization reads

P = 2
as − a

a

(
e31 − e33

C13

C33

)
, (18)

where e31 and e33 are piezoelectric coefficients. Both polariza-
tions are calculated for the well and also for the barrier.

3. Total potential

The total self-consistent conduction and valence band po-
tentials Ve(z) and Vi(z), i ∈ {A, B,C}, respectively, in strained
wurtzite quantum wells are given by

Ve(z) = VH (z) + Vw−e(z), Vi(z) = VH (z) + Vw−i(z), (19)

with VH the Hartree potential, which also has several contri-
butions, namely,

VH (z) = Velect (z) + Vd(z) + Vint (z) + Vg(z), (20)

where Velect is the pure electron Hartree potential, Vd is the
doping potential, Vint is the internal potential (due to the
built-in electric field), and Vg is the external gate potential
(see Appendix E for details).

III. EFFECTIVE 2 × 2 CONDUCTION HAMILTONIAN (3D)

Based on the 8 × 8 Kane model for wurzite structures
discussed in the last section, we now derive an effective 2 × 2
Hamiltonain for the conduction band electrons in bulk and
heterostructures. To this end we can either use the Löwdin
partitioning method, discussed in detail in Refs. [16,46], or
the folding down approach, shown in Appendix C. We use
both approaches and obtain the same result. In particular,
we present a very general effective Hamiltonian for electrons
valid, in quantum wells, wires, and dots with arbitrary poten-
tials and magnetic fields.

A. Bulk: The appearance of the BIA Rashba and the BIA
Dresselhaus terms

From the 8 × 8 Kane model in Eq. (7), we obtain (up to
third order in the energy denominator) the effective 2 × 2 bulk
Hamiltonian for the conduction-band electrons

Hbulk = H0 +HR
bulk +HD

bulk, (21)

where

H0 = h̄2k2
z

2m2
⊥

+ h̄2k2
‖

2m2
‖

(22)

is the kinetic Hamiltonian, with k2
‖ = k2

x + k2
y and effective

masses given by

1

m⊥
= 1

m0
+ 2P2

1

h̄2

1

Eg + 	1 + 	2
, (23)

1

m‖
= 1

m0
+ P2

2

h̄2

(
1

Eg
+ 1

Eg + 2	2

)
. (24)
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The last two contributions in Eq. (21) correspond, respec-
tively, to the k-linear BIA Rashba Hamiltonian

HR
bulk = αBIA

bulk (σxky − σykx ), (25)

and the k-cubic BIA Dresselhaus Hamiltonian [23], which in
wurtzite crystals has the same functional form as the Rashba
term, i.e.,

HD
bulk = γ

(
bk2

z − k2
‖
)
(σxky − σykx ). (26)

See Appendix A 2 b for a derivation of Eq. (26) using the
theory of invariants. Within our model, the SO parameters
αBIA

bulk, γ , and b are determined by the bulk quantities of the
material and read

αBIA
bulk = 2P2	sz

(Eg + 2	2)
+ 4P2	

2
3	sz

(Eg + 2	2)2(Eg + 	1 + 	2)

− 8P2	
3
sz

(Eg + 2	2)3
, (27)

γ = − P3
2 	sz

Eg + EAB

[
1

E2
g

+ 2

(Eg + EAB)2
+ 1

Eg(Eg + EAB)

]
,

(28)

b = − 2P2
1 P2	sz

γ1(Eg + EAB)(Eg + EAC )

(
1

Eg + EAC
+ 1

Eg + EAB

)
.

(29)

Note indeed that the couplings above are proportional to
the spin-orbit parameter 	sz, which is finite only due to the
broken cubic symmetry of the wurtzite crystal that allows for
the s-pz orbital mixing. It is important to emphasize that the
cubic form of our HD

bulk as derived within our 8 × 8 Kane
model is correct [23]; note, however, that the bulk Dresselhaus
parameters γ and b, in Eqs. (28) and (29) respectively, are too
small and are treated phenomenologically in our simulations
later on. Interestingly, the expression for αBIA

bulk in Eq. (27),
derived within our model, gives values in agreement with
experiments [34].

B. Quantum well: SIA Rashba, BIA Rashba, and BIA
Dresselhaus terms

Using Eq. (7), with kz → −i∂/∂z, and the conduction and
valence-band potentials of Eq. (19) added to its diagonal, we
derive the following effective 2 × 2 Hamiltonian for wurtzite
quantum wells

H3D = Hqw +HR
so +HD

so, (30)

where the first contribution is spin independent and the last
two terms correspond to the Rashba and Dresselhaus SO in-
teractions, respectively. The spin independent part of Eq. (30)
is given by

Hqw(z) = − h̄2

2

d

dz

1

m⊥(z)

d

dz
+ h̄2k2

‖
2m‖(z)

+ Veff (z) + Ve(z),

(31)

with m⊥ and m‖ the longitudinal and transversal effective
masses, respectively,

1

m⊥(z)
= 1

m0
+ 2P2

1

h̄2

[
1

Eg + 	1 + 	2
− Ve(z) − VC (z)

(Eg + 	1 + 	2)2

]
,

(32)

1

m‖(z)
= 1

m0
+ P2

2

h̄2

[
1

Eg
+ 1

Eg + 2	2

− Ve(z) −VA(z)

E2
g

− Ve(z) −VB(z)

(Eg + 2	2)2

]
. (33)

The extra effective potential Veff = VD + Vs includes the Dar-
win term VD and an s-pz mixing-induced contribution Vs. The
corresponding expressions read

VD(z) = P2
1

2(Eg + 	1 + 	2)2

d2Ve(z)

dz2
, (34)

Vs(z) = 2	2
sz

Eg + 2	2
− 2	2

sz[Ve(z) − VB(z)]

(Eg + 2	2)2
. (35)

The spin-dependent Rashba SO Hamiltonian reads

HR
so = η(z)(σxky − σykx ), (36)

where the coupling parameter η(z) has contributions from
both the bulk and structural inversion asymmetries

η(z) = ηBIA(z) + ηSIA(z). (37)

The bulk Rashba contribution is given by

ηBIA(z) = 2P2	sz

Eg + 2	2

[
1 + 4	2

3

(Eg + 2	2)(Eg + 	1 + 	2)

− 8	2
sz

(Eg + 2	2)2
− Ve(z) − VB(z)

Eg + 2	2

]
. (38)

Note that ηBIA(z) takes different values in each layer (well and
barrier), i.e., for |z| < Lw/2,

ηBIA(z) ≡ ηBIA(well) = αBIA
bulk, (39)

see Eq. (27), and for |z| > Lw/2,

ηBIA(z) ≡ ηBIA(barrier) = αBIA
bulk − (δe + δB)

2P2	sz

(Eg + 2	2)2
,

(40)

see [75]. We should emphasize that there is no analog of such
a contribution to the SO interaction in zincblende systems, in
which the s-pz mixing is not allowed by symmetry.

The SIA term, on the other hand, has contributions from
the Hartree and structural potentials

ηSIA(z) = ηH
dVH (z)

dz
+ ηw

dVw−e(z)

dz
, (41)

where

ηH = P1P2	3

(Eg + 2	2)(Eg + 	1 + 	2)

×
(

1

Eg + 2	2
+ 1

Eg + 	1 + 	2

)
(42)
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and

ηw = − P1P2	3

(Eg + 2	2)(Eg + 	1 + 	2)

×
(

δC/δe

Eg + 2	2
+ δB/δe

Eg + 	1 + 	2

)
. (43)

In Sec. IV we show that ηSIA(z) in Eq. (41) corresponds to the
usual Rashba coupling in 2DEGs.

The expressions shown above for the Rashba coupling
do not account for possible k · p terms within the valence
band subspace. In wurtzite structures these terms are allowed
by point-group symmetry arguments [76,77]. In zincblende
systems, they are also allowed by symmetry, but were shown
to be zero by Cardona et al. [48]. In Appendix D we obtain
the corresponding expression of Hv (valence band subspace)
for wurtzite quantum wells including the k · p interaction
within the valence bands, characterized by the parameter
Q = −(ih̄/m0)〈Z ′|px|X 〉 = (ih̄/m0)〈Z ′|py|Y 〉. The additional
terms in the 2 × 2 electron Hamiltonian are also derived. We
show that their contributions are negligible to the Rashba SO
coupling.

The Dresselhaus SO Hamiltonian for the wurtzite quantum
well in Eq. (30) reads

HD
so = γ

(
−b

d2

dz2
− k2

‖

)
(σxky − σykx ), (44)

in which γ and b are given in Eqs. (28) and (29), respectively.
For more details, see Appendix A 2 a, in which we derive
Eq. (44) using the theory of invariants. For completeness,
in Appendix D we derive the Dresselhaus Hamiltonian ac-
counting for the k · p coupling within the valence bands. As
it turns out, these new terms also contribute negligibly to the
Dresselhaus SO coupling; the calculated γ and b of Eqs. (D5)
and (D10) are too small as compared to an earlier semiem-
pirical calculation [24] and experiment [41]. Later on in our
simulations, we use γ and b in Eq. (44) as semiempirical
constants taken from Refs. [23,24].

C. General expression

For completeness we present below the general effective
Schrödinger equation for electrons in wurtzite heterostruc-
tures with an arbitrary confining potential and external mag-
netic field. More specifically, our general result is valid for
quantum wells, wires, and dots (cf. Eq. (6.26) in Ref. [16] for
zincblende heterostructures).

The total 2 × 2 Hamiltonian reads

Heff = H0 + HB + Hso, (45)

in which H0 is spin independent, HB corresponds to the
Zeeman term, and Hso is the SO coupling. The expression for
H0 is given by

H0 = h̄2

2

[
k‖

1

m‖(r)
k‖ + kz

1

m⊥(r)
kz

]
+ Ve(r) + 2	2

sz

Eg + 2	2

[
1 − Ve(r) − VB(r)

Eg + 2	2

]

+ P2
1

(Eg + 	1 + 	2)2

∂2Ve(r)

∂z2
+
[

P2
2

E2
g

+ P2
2

(Eg + 2	2)2

]
∇2

‖Ve(r), (46)

where the out-of-plane and in-plane effective masses, which now that depend on r, are given by Eqs. (32) and (33), respectively.
The last two terms in Eq. (46) are equivalent to the Darwin term in the Pauli equation [78]. The Zeeman term can be written as

HB = − e

h̄

P1P2	3

(Eg + 2	2)(Eg + 	1 + 	2)

(
1 − Ve(r) − VB(r)

Eg + 2	2
+ Ve(r) − VC (r)

Eg + 	1 + 	2

)
(σxBx + σyBy)

+ e

h̄

P2
2

2

(
−VA(r)

E2
g

+ VB(r)

(Eg + 2	2)2

)
σzBz, (47)

where B =∑i=x,y,z Bi î is the applied magnetic field. The SO Hamiltonian, up to first order in k‖, reads

Hso =
(

2P2	sz

Eg + 2	2
+ 4P2	

2
3	sz

(Eg + 2	2)2(Eg + 	1 + 	2)
− 8P2	

3
sz

(Eg + 2	2)3

)
(σxky − σykx ) − P2	sz

(Eg + 2	2)2
{σxky − σykx,Ve(r) − VB(r)}

+ P2
2

2E2
g

[k × ∇VA(r)]zσz− P2
2

2(Eg + 2	2)2
[k × ∇VB(r)]zσz + P1P2	3

(Eg + 2	2)2(Eg + 	1 + 	2)
σ‖ · [k × ∇VB(r)]‖

+ P1P2	3

(Eg + 2	2)(Eg + 	1 + 	2)2
σ‖ · [k × ∇VC (r)]‖ + P2	sz

(Eg + 2	2)3

{
σxky − σykx,V 2

e (r) + V 2
B (r)

}

− P2	sz

(Eg + 2	2)3
[{Ve(r), (σxky − σykx )VB(r)} + {VB(r), (σxky − σykx )Ve(r)}], (48)

with k the kinetic momentum, i.e., h̄k = −ih̄∇ + eA, B = ∇ × A (real external field), which should be distinguished from the
canonical momentum h̄k = −ih̄∇. The bracket {·, ·} stands for the anticommutator.
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The general Hamiltonian in Eq. (45) is one of the main
results of the present paper. We must point out a major differ-
ence between the latter and the effective model for zincblende
structures [16]: the nonequivalence between the z direction
with respect to x and y allows for the s-pz hybridization,
which then leads to the emergence of additional terms when
spin orbit is considered [see coefficients ∝	sz in Eqs. (46)
and (48)].

From the expressions above, it is quite simple to see this
nonequivalence between z and x, y. For the sake of simplicity,
let us focus on the bulk case. In addition to having different
effective masses in the longitudinal and transversal directions
[see Eqs. (23) and (24), respectively], Eq. (47) reveals an
anisotropy in the effective g factor, there is no z component.
This feature, as well as the analysis of the extra terms men-
tioned above, will be addressed elsewhere.

Our general Hamiltonian can be used to study a variety of
heterostructures. Note that, apart from the Dresselhaus term
(not included in the derivation above), Eqs. (21) and (30)
are particular cases of Eq. (45). Next we focus on one- and
two-subband quantum wells, for which we can write down an

effective Hamiltonian and self-consistently determine all the
relevant SO couplings.

IV. EFFECTIVE 4 × 4 HAMILTONIAN

From the 3D Hamiltonian of Sec. III B, we can derive an
effective low-energy quasi-2D model. More specifically, here
we obtain a model Hamiltonian for quantum wells with one
and two subbands.

Our approach consists first in self-consistently determining
the spin-degenerate eigenvalues Ek‖ν = Eν + h̄2k2

‖/2m‖ and
corresponding eigenspinors |k‖νσ 〉 = |k‖ν〉 ⊗ |σ 〉, 〈r|k‖ν〉 =
eik‖·r‖ψν (z) of Hqw (31). Eν (ψν) is the νth confined energy
level (wave function) of the well and σ = ↑,↓ is the electron
spin component along the z direction. Note that here we
neglect the z dependence of the longitudinal and transverse
effective masses. We then project the total 3D Hamiltonian
(30) onto the basis set {|k‖νσ 〉}.

Explicitly, the effective model with two subbands
{|k‖1↑〉, |k‖1↓〉, |k‖2↑〉, |k‖2↓〉}, in the coordinate system
x||(100), y||(010), can be written as

H2D =

⎛
⎜⎜⎜⎝

Ek‖1 i(α1 + β1)k− 0 i(η + �)k−
−i(α1 + β1)k+ Ek‖1 −i(η + �)k+ 0

0 i(η + �)k− Ek‖2 i(α2 + β2)k−
−i(η + �)k+ 0 −i(α2 + β2)k+ Ek‖2

⎞
⎟⎟⎟⎠. (49)

The two 2 × 2 blocks [upper left (α1, β1) and lower
right (α2, β2)] of Eq. (49) correspond to the usual Rashba-
Dresselhaus Hamiltonian coupled by the “off-diagonal” inter-
subband block (η, �). Note, however, that differently from
zincblende case (see Refs. [20] and [14]), the Rashba and
Dresselhaus terms have the same functional form.

The intrasubband (intersubband) Rashba αν (η) and Dres-
selhaus βν (�) SO couplings in Eq. (49) can be conveniently
expressed in terms of the quantities

ηνν ′ = 〈ψν |ηBIA(z) + ηH∂zVH (z) + ηw∂zVw−e(z)|ψν ′ 〉 (50)

and

�νν ′ = γ
(
b〈ψν |k2

z |ψν ′ 〉 − k2
‖δνν ′

)
. (51)

The Rashba couplings are αν ≡ ηνν , within each subband,
and η ≡ η12, between subbands. Similarly, the Dresselhaus
intraband couplings are βν ≡ �νν and the intersubband Dres-
selhaus coupling is � ≡ �12. To calculate βν , we assume
parabolic bands (in the absence of SO) and replace k‖ in
Eq. (51) by the Fermi wave vector kF,ν = √

2πnν , with nν the
occupation of the νth subband. We obtain

βν = γ
(
b〈ψν |k2

z |ψν〉 − 2πnν

)
. (52)

This is a very good approximation as the Fermi contours are
almost circles because the SO interaction strength is small
as compared to the Fermi energy of the system. Similarly to
zincblende structures the renormalized Dresselhaus coupling
can, in principle, be tuned by a gate electrode controlling

the electron density nν [9]. Note, however, that in contrast
to zincblende structures, the entire in-plane part of the Dres-
selhaus term [−γ k2

‖ , Eq. (51)] in wurtzite quantum wells
contributes to renormalize the usual “bare” linearized Dressel-
haus term γ b〈ψν |k2

z |ψν〉. As we will see below, this is a very
important point as one can, in principle, tune the Rashba and
Dresselhaus couplings to equal and opposite strengths—by
changing the electron density [Eq. (52)] in single subband
well systems for simplicity—and hence completely suppress
spin-orbit interaction in wurtzite systems. In zincblende wells
there is always a nonzero cubic anisotropic Dresselhaus term
that becomes detrimental at high enough densities [9].

The Rashba coupling αν (η) can be written in terms of
several contributions, i.e.,

αν = αBIA
ν + αH

ν + αw
ν , (53)

with

αBIA
ν = 〈ψν |ηBIA(z)|ψν〉, (54)

αH
ν = ηH〈ψν |∂zVH(z)|ψν〉, (55)

αw
ν = ηw〈ψν |∂zVw−e(z)|ψν〉, (56)

the bulk coefficient [49], the Hartree term, and the contribu-
tion due to the structural potential, respectively. The Hartree
coefficient can also be split into different contributions [see
Eq. (20)],

αH
ν = αelect

ν + αd
ν + αint

ν + αg
ν , (57)
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where

αelect
ν = ηH〈ψν |∂zVelect (z)|ψν〉, (58)

αd
ν = ηH〈ψν |∂zVd(z)|ψν〉, (59)

αint
ν = ηH〈ψν |∂zVint (z)|ψν〉, (60)

αg
ν = ηH〈ψν |∂zVg(z)|ψν〉 (61)

are due to, respectively, the purely electron Hartree potential,
the doping potential, the internal potential (built-in electric
fields), and the external gate potential. Note that all these SO
coupling coefficients depend on the self-consistent potential
and the subband wave functions.

Interestingly, as mentioned above, the Rashba and Dressel-
haus terms induce the same electron spin configuration in a
c axis oriented wurtzite structure [79–82], in contrast to the
(001)-grown zincblende heterostructures. This allows us to
define an effective SO coupling parameter for each subband

αeff
ν = αν + βν, (62)

and similarly an effective intersubband SO coupling

ηeff = η + �. (63)

Experimental measurements of the SO splittings [Shubnikov–
de Haas oscillations or weak (anti) localization experiments]
would probe, e.g., the effective coupling coefficient αeff

ν . More
importantly, one can possibly tune αeff

ν to zero by varying the
electron density, i.e.,

αeff
ν = αν + γ

(
b〈ψν |k2

z |ψν〉 − 2πnν

) = 0. (64)

For a single subband system (ν = 1) and similarly to
Refs. [80,81], we find that at the areal electron density

n1 = α1

2πγ
+ b

2π
〈ψ1|k2

z |ψ1〉, (65)

the SO term vanishes altogether up to cubic order, thus
enhancing spin lifetimes in these systems [80,81]. Note that
Eq. (65) has to be solved self-consistently as both sides
depend on the density (i.e., the wave function ψ1 also depends
on the density n1). It should be interesting to look for wurtzite
materials in which Eq. (65) is obeyed.

In the following we evaluate all the relevant SO couplings
defined above by self-consistently solving Schrödinger and
Poisson coupled equations.

V. RESULTS AND DISCUSSIONS

Here we first introduce the structure of the quantum wells
studied. Then we discuss our calculated SO couplings based
on the model presented in the previous sections. Our discus-
sions cover both the single and double well cases with either
one or two occupied subbands.

A. Heterostructures

We consider GaN/AlxGa1−xN heterostructures grown
along the z||[0001] direction. For the single well, our het-
erostructure is defined by a well of width Lw = 10 nm and two
symmetric barrier regions of width Lb = 7 nm [see Fig. 1(b)].
Unless otherwise stated, the electron density is fixed at ne =

TABLE II. Band parameters (in eV) for GaN/AlxGa1−xN het-
erostructures, see the single well shown in Fig. 1(b).

x δe(δbe) δ9(δbA) δB(δbB ) δC (δbC )

0.30 0.5252 0.2950 0.1546 0.2784
0.40 0.7051 0.4044 0.2098 0.3877
0.50 0.8876 0.5157 0.2059 0.4990
0.60 1.0728 0.6288 0.3228 0.6120
0.70 1.2608 0.7438 0.3805 0.7270
0.80 1.4515 0.8606 0.4391 0.8438

1.0 × 1012 cm−2, arising from two symmetrically doped lay-
ers sitting 6 nm away from the center of the well. Our double
well has a similar geometry, except for an additional barrier
of width Lcb = 2 nm embedded in the center of the structure.

Wurtzite GaN-based heterostructures are usually grown
on a GaN substrate by molecular beam epitaxy, i.e., the
AlxGa1−xN barriers are deformed and the corresponding lat-
tice constant is adjusted to the GaN substrate and quantum
wells [72,83,84], which is the case we consider here. In the
AlxGa1−xN layers [66], we choose the SO and the crystal
field splitting parameters 	so = 0.014 eV, 	cr = 0.019 −
0.183x eV, respectively, the lattice constant Al = 3.189 −
0.077x Å, the deformation potentials D1 = −3.0 eV, D2 =
3.6 eV, D3 = 8.82 + 0.78x eV, D4 = −4.41 + 0.39x eV (va-
lence band), ac1 = −9.5 − 2.5x eV, ac2 = −8.2 + 2.8x eV
(conduction band) [67], and the elastic constants C13 = 106 +
2x GPa, C33 = 398 − 25x GPa [85]. The unstrained band gap
is Eg = 3.507 + 2.723x eV and the strained one is calculated
by taking into account the strain-induced band edge shifts
(see Sec. II B 2). The spontaneous polarization is given by
−0.029 − 0.051x C m−2 and the piezoelectric coefficients by
e13 = −0.35 − 0.15x C m−2, e33 = 1.27 + 0.25x C m−2 [66].

The fraction of the s-pz mixing we consider here is of
∼1%. This is the same value used for ZnO, which has a
very similar band gap. We then obtain 	sz ∼ 0.467 meV
[35,86]. The interband Kane parameters are taken as E1 =
E2 = 14.0 eV [65,66,87,88], with E1,2 = 2m0P2

1,2/h̄2, and
are assumed the same in the well and barriers. We choose
a uniform dielectric constant εr = 10.0 [89] and consider
the temperature T = 2 K. The relevant band parameters for
GaN/AlxGa1−xN heterostructures are shown in Table II for
typical Al contents on the barriers [see Fig. 1(b)].

By inserting the relevant parameters listed above
into Eqs. (32) and (33), we determine the out-of-plane
m⊥(GaN) = 0.2014m0 and in-plane m‖(GaN) = 0.2005m0

effective masses, in excellent agreement with the experimental
values 0.2m0 and 0.2m0 [66,90], respectively. We also calcu-
late the Rashba SO parameters ηBIA(GaN) = 1.938 meV Å,
ηH = 0.01138 meV Å2, and ηw = 2.462 meV Å2, see
Eqs. (38)–(43). For the Dresselhaus parameters γ and b [see
Eq. (44)], we use γ = 0.32 eV Å3 and b = 3.855 [23,24].

B. Single well

Next we show our calculated SO coupling coeffi-
cients for a GaN/Al0.3Ga0.6N single well with one occu-
pied subband. The dependence of these SO couplings on
the Al content x on the AlxGa1−xN layers is discussed as well.
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FIG. 2. (a) Self-consistent potential Ve (solid curves) and wave
function profile ψ1 of the first subband (dotted curves) for three dif-
ferent conditions of the built-in fields, for a GaN/Al0.3Ga0.7N single
well at Vg = 0. (i) Green curves: zero built-in field (flat-band model);
(ii) red curves: built-in field with periodic boundary conditions; and
(iii) blue curves: built-in field with neutral surface charge boundary
conditions. The energy levels (not shown) of the first subband
for these three conditions are E1 = 44.9, −551.2, −2634.2 meV,
respectively. (b) Blowup of the potential Ve in the flat-band model.
(c) Rashba α1, Dresselhaus β1, and effective SO αeff

1 = α1 + β1

couplings as functions of Vg. The areal electron density is kept fixed
at 1.0 × 1012 cm−2, so that only the first subband is occupied. The
temperature is T = 2 K.

We also determine the SO couplings of a GaN/Al0.3Ga0.6N
well with two occupied subbands.

1. One occupied subband

Before discussing the SO couplings in detail, let us first
have a look at our self-consistent solutions. Figure 2(a) shows
the profiles of the conduction band potential Ve and of the
first subband wave function of a GaN/Al0.3Ga0.7N single well
with only one occupied subband. We consider three cases:
(i) the flat-band model (no built-in field) (green curves), (ii)
periodic boundary conditions (red curves), and (iii) neutral
surface charge boundary conditions (blue curves).

We observe that the flat-band model produces the usual
profile of a confining square well potential [see Fig. 2(b)]
and its corresponding envelope wave function. In contrast,
in the presence of the strong built-in field (spontaneous and
piezoelectric, ∼MV/cm [70,87]), both the periodic and the
neutral surface charge boundary conditions transform the

FIG. 3. (a) Rashba α1 and its several contributions: the bulk αBIA
1 ,

the structural αw
1 , and the Hartree αH

1 contributions as functions of
Vg in a GaN/Al0.3Ga0.7N single well with one occupied subband.
(b) Contributions to αH

1 : the pure electron Hartree αelect
1 , the internal

field αint
1 , the doping αd

1 , and the external gate α
g
1 coefficients as

functions of Vg. The areal electron density is held fixed at 1.0 ×
1012 cm−2. The temperature is T = 2 K.

rectangular-type well into a triangularlike one. Accordingly,
electrons are mainly confined near one of the well/barrier
interfaces. We find that the SO couplings calculated in GaN
wells in both cases are comparable, the discrepancy being of
just ∼0.2 meV Å. Thus in the following, we focus on the
widely adopted periodic boundary conditions [91,92].

Figure 2(c) shows the Rashba α1, Dresselhaus β1, and
effective SO αeff

1 = α1 + β1 couplings as functions of the
gate voltage Vg. One can see that the Rashba term is relatively
weaker than the Dresselhaus coupling, but their magnitudes
are comparable. At zero bias Vg = 0, we obtain the total SO
coupling intensity αeff

1 = 7.16 meV Å, in agreement with
results from weak antilocalization measurements, in which
the spin splitting parameter was reported ranging from 5.5
to 10.01 meV Å [26–28,30,37]. In addition, we find that the
Rashba coupling, which in general strongly depends on Vg in
usual zincblende quantum wells, remains essentially constant
as Vg varies. The weak dependence of α1 on Vg follows from
the interplay of its several different contributions, as we
discuss next.

In Fig. 3(a) we show each contribution of α1 as a function
of Vg. Figure 3(b) further shows the several terms of
αH

1 [see Eqs. (58)–(61)]. For the GaN and Al0.3Ga0.7N
layers, we obtain αBIA

1 (GaN) = 1.938 meV Å and
αBIA

1 (AlGaN) = 1.570 meV Å, respectively. Since the
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FIG. 4. Rashba α1, Dresselhaus β1, and the effective SO αeff
1 =

α1 + β1 strengths in GaN/AlxGa1−xN single wells with one occupied
subband as functions of the Al content x at Vg = 0. The areal electron
density ne is held fixed at 1.0 × 1012 cm−2. The temperature is
T = 2 K.

wave function is mostly confined in the well (GaN layer),
the intrinsic bulk contribution αBIA

1 (GaN) ≈ αBIA
bulk remains

essentially constant as Vg varies.
The combined contributions of the Hartree αH

1 and struc-
tural αw

1 terms refer to the usual Rashba coupling induced by
the structural inversion asymmetry of the system. As can be
seen in Figs. 3(a) and 3(b), the usual Rashba term is approx-
imately one tenth of the bulk Rashba contribution. Therefore,
the total Rashba coupling has a similar behavior with Vg as
the bulk Rashba term, i.e., it is weakly gate dependent. In
available reports on the SO coupling in wurtzite heterostruc-
tures concerning k · p interactions, however, the bulk Rashba
term was missed [36,40,47]. On the other hand, we must
emphasize that, even though the usual Rashba term is much
weaker than the bulk Rashba coupling in GaN-based wurtzite
wells, its contribution in relatively narrow gap semiconductors
(e.g., GaAs in the wurtzite phase) can become important, thus
possibly leading to a sensitive electrical control of it.

Let us now consider the effects on the SO couplings of
the Al content on the AlxGa1−xN layers. The Al x content
modifies the strength of the built-in field and the band offsets
of the well, consequently changing the SO couplings. Figure 4
shows α1, β1, and αeff

1 as functions of x at Vg = 0. We find that
the Dresselhaus coupling β1 increases almost linearly with x.
This is due to an increase of the piezoelectric polarization
in the barriers as x varies, which makes the electrons more
confined in the well. On the other hand, we observe that the
Rashba term α1 is not sensitive to x, again because of the
dominant bulk contribution.

2. Two occupied subbands

Here we change the doping conditions so we can effec-
tively occupy the second subband. In contrast to the case
of one occupied subband, in which we have two symmet-
rically doped layers, we have now only a one-side doping
layer (asymmetric doping), so that the doping field can par-
tially compensate the built-in field, thus making the well
confinement profile less steep. In addition, we increase the

FIG. 5. (a) Self-consistent potential profile Ve and wave func-
tion profile of the first ψ1 and second ψ2 occupied subbands of a
GaN/Al0.3Ga0.7N one-side doped single well at Vg = 0. The hori-
zontal blue, red, and green lines inside the well indicate the subband
energy levels E1 = 155.1 meV, E2 = 302.8 meV, and the Fermi
level EF = 318.5 meV, respectively. (b) Intrasubband (intersubband)
Rashba αν (η) and Dresselhaus βν (�) SO couplings as functions of
Vg. The areal electron density is held fixed at ne = 1.5 × 1013 cm−2.
The temperature is T = 2 K.

areal electron density to ne = 1.5 × 1013 cm−2. This corre-
sponds to a higher doping density nd in the doping layer.
Since we assume nd = ne, we ensure charge neutrality in our
system.

Figure 5(a) shows the self-consistent confining potential
Ve and the wave function profile of the first ψ1 and second
ψ2 occupied subbands of the well at Vg = 0. Because of the
change in the doping conditions, we observe that the well
becomes flatter [cf. Figs. 2(a) and 5(a)]. In Fig. 5(b) we show
the intrasubband Rashba αν and Dresselhaus βν , as well as the
intersubband Rashba η and Dresselhaus � SO couplings as
functions of Vg. The coupling αν depends very weakly on Vg,
similarly to the case of one occupied subband [cf. Figs. 2 and
5], because of the dominant contribution of the bulk Rashba
term. The various constituents of αν are not shown since they
all have the same behavior as in the one occupied subband
case.

As for the coupling βν , as the confining potential becomes
flatter, we find that the first subband term β1 is around four
times weaker than that in the well with only one subband
occupied. In addition, β1 remains almost constant as Vg varies.
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On the other hand, for the second subband, β2 is relatively
sensitive to Vg. We attribute the different behaviors of β1 and
β2 with Vg, to the distinct distributions of electrons occupying
the first and second subbands. Electrons occupying the first
subband are mostly confined to the right well/barrier interface
(i.e., a narrow triangular confinement) [see ψ1 in Fig. 5(a)],
and cannot “feel” an overall modification of the potential
due to Vg. However, electrons occupying the second band
spread almost all over the whole well region [see ψ2 in
Fig. 5(a)]. Thus, the second subband wave function profile
ψ2 is more strongly dependent on Vg, further leading β2 =
γ (b〈ψ2|k2

z |ψ2〉 − k2
F,2) to be more sensitive to Vg as compared

to β1 [see Fig. 5(b)]. Here kF,ν = √
2πnν is the Fermi wave

vector of the νth subband and nν its occupation.
The intersubband Rashba coupling strength η is much

weaker than the intrasubband coupling αν . We attribute
this to the fact that the bulk intersubband Rashba contribu-
tion ηBIA = 〈ψ1|ηBIA(z)|ψ2〉 to η is negligible, as electrons
are mostly confined inside the well. More specifically, we
have ηBIA = 〈ψ1|ηBIA(z)|ψ2〉 ≈ 〈ψ1|ηBIA(well)|ψ2〉 ∼ 0 [see
Eq. (39)]. Note that for αν , the bulk term αBIA

nu dominates over
the usual Rashba contributions. On the other hand, for the
intersubband Dresselhaus term � = 〈ψ1|k2

z |ψ2〉, we find that
it is comparable to βν . We should emphasize that � vanishes
in the symmetric configuration because of parity. Here � is
nonzero at Vg = 0, due to the presence of both the built-in
field and the asymmetric one-side doping field.

C. Double well

In this section we focus on obtaining the SO couplings
for the double quantum well GaN/Al0.3Ga0.7N with an
AlxGa1−xN central barrier (see Sec. V A).

Before discussing the SO couplings in detail, let us first
have a look at how the Al content in the central barrier affects
the double well configuration. At low Al concentration, we
find that the electrons are mostly confined to one side [right
side of our wells, see Fig. 6(a)] of the system, due to the
presence of the strong built-in field, which makes the double
well essentially an effective single well. Figure 6(a) shows
the electron confining potential Ve and the wave function
profiles ψν (ν = 1, 2) of the lowest two subbands in a double
well with x = 0.3 in the central barrier. Although only one
subband is occupied in this configuration, for comparison, we
also show ψ2 for the empty second level of the well. As can
be easily seen, this double well configuration is essentially
similar to the ones of the single wells discussed in previous
sections.

If we further increase the Al content in the central barrier,
we find that the left and right sides of the double well compete
to confine the electrons. Interestingly, when x ∼ 0.69, a seem-
ingly symmetric configuration occurs. In Fig. 6(b) we show
the corresponding confining potential and the wave function
profiles at this configuration with two occupied subbands.
We can see that the electrons occupying the two subbands
are almost equally distributed on the left and right sides
of the well, in contrast to the case of smaller values of x
[cf. Figs. 6(a) and 6(b)]. However, we emphasize that this
seemingly symmetric configuration (at x = 0.69) is actually
structurally asymmetric, since the gradient of the potential

FIG. 6. Self-consistent potential Ve and wave function profiles ψν

(ν = 1, 2) of a GaN/Al0.3Ga0.7N double well with an AlxGa1−xN
central barrier at Vg = 0. (a) One occupied subband with x = 0.3
in the central barrier; (b) two occupied subbands with x = 0.69 in
the central barrier. For comparison, in (a) it is shown the second
subband wave function ψ2 for the empty second level. The horizontal
blue, red, and green lines inside the well indicate the subband
energy levels E1, E2, and the Fermi level EF, respectively. In (a),
E1 = −352.3 meV, E2 = −336.6 meV, and EF = −340.4 meV; in
(b), E1 = −78.2 meV, E2 = −78.2 meV, and EF = −72.2 meV. The
areal electron density ne is held fixed at 1.0 × 1012 cm−2.

(i.e., the electric field) has the same sign (negative) on the
left and right wells, see Fig. 6(b). Next we determine the SO
coupling coefficients for this configuration and discuss how
these change with Vg.

Figure 7(a) shows αν = αBIA
ν + αH

ν + αw+b
ν and their sev-

eral different contributions: αBIA
ν , αH

ν , and αw+b
ν , with αw+b

ν ≡
αw

ν + αb
ν , for each subband ν = 1, 2. Note that the structural

term in a double well has an additional contribution αb
ν =

ηb〈ν| dVb(z)
dz |ν〉 due to the presence of the central barrier [19].

The potential Vb(z) describes the structural potential between
the well and the central barrier. Straightforwardly, ηb has the
same expression as ηw [see Eq. (37)] with the well offsets δi

being replaced by the central barrier offsets δbi. Similarly to
the case of single wells, we find that αν remains essentially
constant as a function of Vg, since the bulk contribution (not
sensitive to Vg) dominates over all the other contributions.
Interestingly, we find that α1 and α2 almost interchange their
respective values, across the seemingly symmetric configura-
tion (at Vg = 0), because electrons occupying the first and sec-
ond subbands interchange their distributions for Vg > 0 and
Vg < 0. This feature of interchanging values across Vg = 0
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FIG. 7. (a) Intrasubband Rashba couplings αν (ν = 1, 2) for a
GaN/Al0.3Ga0.7N double well with an Al0.69Ga0.31N central barrier
as functions of Vg. Several distinct constituents of αν : the bulk αc

ν ,
the structural αw

ν , and the total Hartree αH
ν contributions. (b) Intrasub-

band βν and intersubband � Dresselhaus SO strengths as functions
of Vg. (c) Intersubband η and its various contributions versus Vg. The
areal electron density is held fixed at 1.0 × 1012 cm−2.

also holds for the Dresselhaus terms β1 and β2, with
even more pronounced behavior (cf. αν’s), as shown in
Fig. 7(b).

In Figs. 7(b) and 7(c) we show the intersubband Dressel-
haus � and the Rashba η couplings, respectively, as functions
of Vg. We find that both η and � achieve their maximal
strength at Vg = 0, in contrast to the intrasubband αν and βν .
This arises from the intersubband SO couplings depending on
the overlap of the wave functions ψ1 and ψ2 of the two sub-
bands, see Eqs. (50) and (51). At Vg = 0 (seemingly symmet-
ric configuration), ψ1 and ψ2 have a perfect overlap. However,
away from Vg = 0, ψ1 and ψ2 are largely separated, i.e., one is
mostly confined in the left well and the other in the right well.

On the other hand, for large Al concentration in the central
barrier (x ∼ 0.84), we find that the one subband electron
occupation is restored (for the same areal electron density),
similarly to the case of low x mentioned previously, except
that we have an almost reversed configuration of the left and
right wells constituting the double well structure.

VI. CONCLUDING REMARKS

We have derived a very general SO Hamiltonian for con-
duction electrons in wurtzite heterostructures valid for arbi-
trary confining potentials (quantum wells, wires, and dots) and
external magnetic fields. Our starting point is the 8 × 8 Kane
model including the s-pz orbital mixing relevant to wurtzite
systems. We then obtain a 2 × 2 effective SO Hamiltonian by
applying both the Löwdin perturbation theory and the folding
down approach. For concreteness, we focus on GaN/AlGaN
wells and investigate in detail the electron SO couplings.

In addition to the s-pz orbital mixing (absent in zincblende
structures), we have taken into account the renormalization
of the conduction band spinor component when deriving
the effective 2 × 2 electron Hamiltonian for heterostructures;
these two elements were not included in previous works.
Most importantly, we find that these are crucial ingredients
in obtaining the BIA Rashba and BIA Dresselhaus terms in
quantum wells, and in deriving an effective electron Hamil-
tonian energy independent (i.e., an effective Schrödinger-
type equation).

Through a self-consistent Schrödinger-Poisson calculation
on GaN/AlGaN both single and double wells, involving ei-
ther one or two occupied subbands, we have determined all
the relevant SO strengths, i.e., the intrasubband Rashba αν

(ν = 1, 2) and Dresselhaus βν couplings, as well as the in-
tersubband Rashba η and Dresselhaus � couplings. We have
also determined the several distinct constituents of the SO
couplings due to the bulk, the Hartree, and the structural
contributions, and find that the SO couplings follow from the
interplay of all these terms. Particularly, we find that the bulk
Rashba term αBIA

ν dominates over all other remaining contri-
butions to the intrasubband Rashba couplings. Our calculated
spin-orbit coupling is in agreement with experimental data for
single wells. For our double wells, we find a seemingly sym-
metric configuration, at which both the intersubband Rashba
and Dresselhaus couplings assume their largest values, due to
a perfect overlap of the wave functions of the two subbands.
On the other hand, across this configuration when we vary
Vg, the intrasubband Dresselhaus couplings β1 and β2 almost
interchange their values, a similar behavior also occurring for
the Rashba couplings α1 and α2. In addition, we have derived
an effective spin-orbit Hamiltonian for electrons with arbitrary
confining potentials and external magnetic fields, valid for
quantum wells, wires, and dots.

As a final remark, although the SO couplings in our
GaN wells are not sensitive (except for the double well
around the seemingly symmetric configuration) to Vg, we
emphasize that a sensitive electrical control of the Rashba
couplings could be possible in narrow-gap wurtzite wells
(e.g., GaAs with wurtzite structure), where the usual Rashba
contributions (sensitive to Vg) could be comparable or even
larger than the bulk contribution. Accordingly, since the
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Rashba and Dresselhaus SO fields have the same functional
form, it should be easy to attain both the weak and strong
SO regimes, via a sensitive electrical control of the Rashba
couplings (both magnitude and sign). More interesting, it
may be possible to tune α = −β in some parameter range,
which would lead to a complete cancellation of the Rashba
and Dresselhaus terms [see Eq. (65)], thus rendering the
spin a conserved quantity in wurtzite wells. This could
possibly extend the SO-induced spin-flip times [80,81] as
compared to zincblende structures. Additional work is needed
to investigate this exciting possibility.

We hope that our general effective SO Hamiltonian stim-
ulate further theoretical studies involving quantum wires and
dots in wurtzite systems; these may be relevant, for instance,
to wurtzite dot qubits and Majorana nanowires.
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APPENDIX A: EFFECTIVE MODELS VIA GROUP
THEORY AND k · p

As discussed in the main text, there are many different
approaches in the literature to describe the band structure
of a wurtzite crystal. Indeed, its bulk Hamiltonian has been
written in many different basis sets [54], which might lead to
inconsistencies among the models. In the main text, we have
shown a comprehensive and detailed derivation of effective
models for bulk wurtzite, as well as heterostructures (quantum
wells, wires, and dots). In this Appendix we complement
our discussion with a full and systematic derivation of the
2 × 2 electronic model and the 8 × 8 Kane Hamiltonian using
group theory methods combined with the k · p approach.
This provides a deeper understanding of the s-pz mixing and
justifies the choice of basis shown in Table I.

First, we present an alternative derivation of the effective
electron Hamiltonian H(kx, ky) for the conduction band of
wurtzite quantum wells near the � point. Next, we derive the
8 × 8 Kane model for bulk wurtzite. More specifically, we
start with the CC basis [40], listed in the second column of
Table III, and then discuss the transformation to the primed
basis CC′, third column of Table III, which is the basis set
we use throughout the main text (Sec. II B). As we will
see below, the S′ and Z ′ orbitals arise from the s-pz mixing
discussed in Ref. [35]. It is important to track the effects
of this hybridization to establish all matrix elements allowed
by symmetry and identify systematically the approximations
used to obtain the final Kane model for wurtzite crystals.

The last column in Table III shows the irreducible
representations (IRREPs) of the orbital part of the basis
functions. Notice that, while zincblende crystals belong to
the cubic Td group, the wurtzite lattice belongs to the C4

6v .
For Td , the directions x, y, and z are all equivalent. However,

TABLE III. CC basis without |ν〉 and with |ν ′〉 the s-pz hy-
bridization. Normalization requires |qs|2 + |qz|2 = 1. The qs and qz

coefficients here match those of Ref. [35]. The orbitals S and Z
belong to the IRREP �1 (transform as scalars), while X and Y
combine to form �5 [transform as a (x, y) vector].

ν |ν〉 |ν ′〉 C6v IRREP

1 |iS↑〉 |iS′↑〉 = qs|iS↑〉 + iqz|Z↑〉 �1

2 |iS↓〉 |iS′↓〉 = qs|iS↓〉 + iqz|Z↓〉 �1

3 − 1√
2
|X + iY ↑〉 − 1√

2
|X + iY ↑〉 �5

4 + 1√
2
|X − iY ↓〉 + 1√

2
|X − iY ↓〉 �5

5 + 1√
2
|X − iY ↑〉 + 1√

2
|X − iY ↑〉 �5

6 − 1√
2
|X + iY ↓〉 − 1√

2
|X + iY ↓〉 �5

7 |Z↑〉 |Z ′↑〉 = qs|Z↑〉 + iqz|iS↑〉 �1

8 |Z↓〉 |Z ′↓〉 = qs|Z↓〉 + iqz|iS↓〉 �1

on C6v there is no symmetry constraint in the z direction,
which makes the S and Z orbitals equivalent in terms of
their symmetries (both belong to �1). This reduced symmetry
leads to the appearance of extra finite terms on wurtzite
crystals. Nonetheless, this broken symmetry along the z
axis can be considered “small” (quasicubic approximation
[54]). Therefore, all new terms are expected to be small or
negligible. Here, however, we present all these new terms
allowed by symmetry and show their k · p expressions.

1. Theory of invariants

The theory of invariants [16,35,55] allows us to search for
the most general form of the Hamiltonian H(k) allowed by
the symmetries of the crystal. Namely, we can write

H(k) =
∑
i, j,l

Hi, j,l ki
x k j

y kl
z, (A1)

where Hi, j,l are arbitrary matrices to be found. For 2D systems
one can simply drop kz and the sum over l .

The group of the Schrödinger equation is composed by
the set of symmetry operations {Oi} that keeps the crystal
invariant. Consequently, these operations must commute with
the Hamiltonian operator, yielding

H(k) = Dψ (Oi )H
(
D−1

k (Oi )k
)

D−1
ψ (Oi ), (A2)

in which Dψ (Oi ) and Dk (Oi ) are the matrix representations of
Oi in the Hilbert and k spaces, respectively. For each Oi, this
imposes constraints on H(k), which can be then written as a
system of coupled equations solved to find the allowed terms
in each Hi, j,l .

The matrix representations of Dψ (Oi ) and Dk (Oi ) can be
found on the Bilbao Crystallographic Server [93–95]. These
can be applied to the QSYMM [96] python package that
solves the constraints imposed by Eq. (A2) and returns the
most general expressions allowed by symmetry for Hi, j,l .

2. 2 × 2 electronic effective model

Let us now apply the theory of invariants to find the
effective 2 × 2 model for the conduction bands of our 2DEG
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H(kx, ky) [for comparison, see upper left block of Eq. (49),
i.e., the one-subband case] and of our 3D bulk Hamiltonian
H(kx, ky, kz ) [cf., Eq. (21)]. The theory of invariants provides
the general form allowed by symmetry for these models. In
the main text, we complement this analysis by using the k · p
approach to find expressions for the effective parameters in
terms of the bulk matrix elements of the 8 × 8 Kane model.

a. Model for single-subband 2DEGs

Some materials, e.g., GaN and AlGaN, crystallize into
the wurtzite structure, which belongs to the C4

6v (or P63mc)
nonsymmorphic space group [55,57]. For quantum wells
grown along the [0001] (c axis) crystallographic direction,
this space group symmetry is maintained. At the � point,
the first conduction subbands are spin degenerate. Their or-
bital components transform as scalars (trivial representation
�1), while the spinors transform as the D1/2 double group
IRREP, which is given by the generators of the SU(2). These
are equivalent to the D1/2 IRREP of the symmorphic group
C6v . For simplicity, we use the point group notation for the
operations {Oi} = {E , 2C6, 2C3,C2, 3σd , 3σv}. In practice, it
is sufficient to consider the generators {C6, σd}, which cor-
respond, respectively, to the sixfold rotations around the z
axis and the x → −x mirror operations. Additionally, we also
consider time-reversal symmetry T. In the Hilbert space, these
read

Dψ (C6) = ± exp

(
i
π

6
σz

)
, (A3)

Dψ (σd ) = ± exp

(
i
π

2
σx

)
, (A4)

Dψ (T) = iσyK, (A5)

whereK is the complex conjugate, and the ± signs refer to the
2π and 4π SU(2) rotations. On the other hand, for the k-space
representation, with k = (kx ky)T , we have

Dk (C6) =
[

cos
(

2π
6

)
sin
(

2π
6

)
− sin

(
2π
6

)
cos
(

2π
6

)
]
, (A6)

Dk (σd ) = − σz, (A7)

Dk (T) = − 12×2. (A8)

Substituting these representations into Eq. (A2), we find

H0,0 = h012×2, (A9)

H1,0 = h1σy, (A10)

H0,1 = −h1σx, (A11)

H1,1 = 02×2, (A12)

H2,0 = H0,2 = h212×2, (A13)

H3,0 = h3σy (A14)

H0,3 = −h3σx (A15)

H2,1 = −h3σx (A16)

H1,2 = h3σy (A17)

with h0, h1, h2, and h3 arbitrary parameters. We can choose
h0 = 0, as it just results in an overall rigid shift. Moreover, we
can identify h1 = ᾱ, h2 = h̄2/2m∗, and h3 = β̄, yielding

H(kx, ky) = h̄2

2m∗
(
k2

x + k2
y

)+ ᾱ(kxσy − kyσx )

+ β̄
(
k2

x + k2
y

)
(kxσy − kyσx ). (A18)

The effective mass m∗ and the spin-orbit coupling ᾱ and β̄

here remain as unknown parameters. These can be obtained
by fitting ab initio or experimental data. A more insightful
approach, however, is to start from the 8 × 8 Kane model—
derived in Sec. A 3—and project its solutions onto the electron
subspace as developed in the main text.

b. Model for 3D bulk

As already mentioned above, the wurtzite bulk crystal be-
longs to the C4

6v space group. Considering that the conduction
band transforms as D1/2, it follows that the basis functions for
the Hilbert space transform as the representations given for
Dψ (C6), Dψ (σd ), and Dψ (T ) in Eqs. (A3)–(A5), respectively.
However, we are now dealing with a 3D space with k =
(kx, ky, kz ), and the k-space representations become

Dk (C6) =

⎡
⎢⎣

cos
(

2π
6

)
sin
(

2π
6

)
0

− sin
(

2π
6

)
cos
(

2π
6

)
0

0 0 1

⎤
⎥⎦, (A19)

Dk (σd ) = diag[−1, 1, 1], (A20)

Dk (T ) = −13×3. (A21)

Using these representations in Eq. (A2), we obtain

H(kx, ky, kz ) = h̄2

2m‖
k2
‖ + h̄2

2m⊥
k2

z + (σxky − σykx )

× [αBIA
bulk + γ

(
bk2

z − k2
‖
)]

, (A22)

where the unknown coeffcients m⊥, m‖, αBIA
bulk, γ , and b were

chosen so that the notation is the same as that used in
Eqs. (22), (25), and (26). As previously noted, the expressions
for these coeffcients were obtained in the main text through
the k · p approach, see Eqs. (23), (24), (27)–(29).

3. 8 × 8 Kane model: Method of invariants

We apply the method of invariants to obtain the most
general 8 × 8 Kane model considering the basis states shown
in Table III. Differently from the previous section, here we fol-
low a single group formulation, which matches the CC basis,
and maintain the spins along z as good quantum numbers for
the basis set. The representations for the generators {C6, σd}
and the time-reversal operator T follow from the IRREPs �1

and �5 of the C6v point group. Applying the constraints of the
theory of invariants, we obtain the following 8 × 8 model in
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the CC basis |ν〉

H8×8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0 0 0 0 0 ic5 ic6 0

0 c0 0 0 ic5 0 0 ic6

0 0 c1 0 0 0 0 0

0 0 0 c1 0 0 0 0

0 −ic5 0 0 c2 0 0 c3

−ic5 0 0 0 0 c2 c3 0

−ic6 0 0 0 0 c3 c4 0

0 −ic6 0 0 c3 0 0 c4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ic−
7 c+

13 0 −c−
14 0 0 −c−

15

−ic+
7 0 0 −c−

13 0 c+
14 c+

15 0

c−
13 0 0 0 0 ic−

8 ic−
9 0

0 −c+
13 0 0 −ic−

8 0 0 ic−
9

−c+
14 0 0 +ic+

8 0 −ic−
10 −ic−

11 0

0 c−
14 −ic+

8 0 +ic+
10 0 0 ic−

11

0 c−
15 −ic+

9 0 +ic+
11 0 0 ic−

12

−c+
15 0 0 −ic+

9 0 −ic+
11 −ic+

12 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

k±

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 c16 c17 0
0 0 0 0 c16 0 0 c17

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 c16 0 0 0 0 0 ic18

c16 0 0 0 0 0 ic18 0
c17 0 0 0 0 −ic18 0 0
0 c17 0 0 −ic18 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

kz, (A23)

where cn, n = 0, . . . , 18, are unknown coefficients allowed
by symmetry, which later on will be defined in terms of the
k · p parameters. The first matrix above corresponds to the
k-independent terms, the second matrix gives the terms c±

n
linear in k± = kx ± iky, and the third matrix represents the
kz-linear terms. For simplicity, we do not show the k2

x , k2
y , and

k2
z terms.

The model in Eq. (A23) is built solely based on the
symmetries of the basis set. However, the IRREPs that define
the |ν〉 and |ν ′〉 basis sets are the same, as shown in Table III.
Hence, up to this point, the model above does not distinguish
between different basis sets with equivalent symmetries. To
proceed we must specify the basis and identify the matrix
elements cn in terms of the k · p theory.

4. 8 × 8 Kane model: k · p approach

Here we consider H = HCC
0 + W CC(k), with

HCC
0 = p2

2m0
+ V (r) + Hsoz, (A24)

W CC(k) = h̄

m0
k · π + Hsox + Hsoy, (A25)

Hso j = C [∇V (r) × p] j σ j, (A26)

π = p + C[σ × ∇V (r)], (A27)

where C = h̄/4m2
0c2 defines the SO coupling intensity.

Below we first show how a commutator trick [35] can be
used to simplify some matrix elements and later we identify
the matrix elements using the k · p model above.

a. Selection rules and commutator trick

As shown in Eq. (A24), we choose to keep only the z
component of Hso in HCC

0 , such that the spin remains a good
quantum number. In addition, this choice allows us to use a
commutator trick introduced in Ref. [35] to eliminate a few

matrix elements. Namely, the matrix elements of CσxVz ≡
Cσx∂zV , which can be written as

C〈ν1↑|σxVz|ν2↓〉 =C〈ν1↑|Vz|ν2↑〉 (A28)

or

C〈ν1↑|σxVz|ν2↓〉 = − i

h̄
C〈ν1↑|[V, pz]|ν2↑〉

= − i

h̄
C〈ν1↑|[HCC

0 − Hsoz, pz
]|ν2↑〉

= − i

h̄
C
[(

εν1↑ − εν2↑
)〈ν1↑|pz|ν2↑〉

− 〈ν1↑|[Hsoz, pz]|ν2↑〉]
= i

h̄
C〈ν1↑|[Hsoz, pz]|ν2↑〉. (A29)

Here |νσ 〉 are the eigenstates of HCC
0 with eigenenergies ενσ .

Similar expressions hold for the matrix elements of CσyVz.
In Eq. (A28) we have simply acted σx on the ket, while in
Eq. (A29), we have used the identity ∂zV ≡ −i[V, pz]/h̄ ≡
−i[HCC

0 − Hsoz, pz]. The last line in Eq. (A29) is only valid
if the eigenstates are degenerate, i.e., εν1↑ = εν2↑. Below we
show that this type of matrix element, either in the form (A28)
or (A29), is identically zero or negligible.

Let us first consider the matrix element in the form (A28).
The operator Vz transforms as �1, while the eigenstates trans-
form either as �1 or �5 (see Table III). Therefore, the selection
rules already dictate that the matrix element is zero if |ν1σ1〉
and |ν2σ2〉 belong to different IRREPs.

On the other hand, if they belong to the same IRREP
�ν1 = �ν2 = � j ( j = 1 or 5), we have to argue differently,
since �1 ⊗ �1 = �1, and �5 ⊗ �5 ⊃ �1. Consider then the
form (A29) for degenerate states (εν1↑ = εν2↑). Notice that
the operator [Hsoz, pz] transforms as �2. The matrix element
transforms as � j ⊗ �2 ⊗ � j and two cases are possible:
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(a) �ν1 = �ν2 = �1: �1 ⊗ �2 ⊗ �1 = �2, which yields
〈ν1↑|[Hsoz, pz]|ν2↓〉 = 0;

(b) �ν1 = �ν2 = �5: �5 ⊗ �2 ⊗ �5 ⊃ �1, which allows
for 〈ν1↑|[Hsoz, pz]|ν2↓〉 �= 0.

It is easy to see, though, that the nonzero matrix element
in (b) results in a negligible higher order correction, since
i
h̄C〈ν1↑|[Hsoz, pz]|ν2↓〉 ∝ C2. We shall point out that this
leads to the term α2 obtained in Ref. [42].

In summary, the matrix elements of 〈ν1↑|σμVz|ν2↓〉, with
μ = {x, y}, are

(1) identically zero
(i) if |ν1↑〉 and |ν2↓〉 belong to different IRREPs;
(ii) if εν1↑ = εν2↑ and |ν1↑〉 and |ν2↓〉 belong to the �1

IRREP.
(2) negligible (∝C2)

(i) if εν1↑ = εν2↑ and |ν1↑〉 and |ν2↓〉 belong to the �5

IRREP.
Notice that, due to the spin-flip induced by the σμ operator

acting on the matrix element, the states |ν1↑〉 and |ν2↑〉 must
have the same energies, instead of |ν1↑〉 and |ν2↓〉.

The selection rules above rely on the form of our Hamil-
tonian given in Eqs. (A24) and (A25). This is a partially
relativistic model, accounting only for the SO correction.
Additionally, one could consider the scalar relativistic correc-
tions, namely the mass-velocity Hmv = p4

8m3
0c2 and the Darwin

HD = h̄2

8m2c2 ∇2V (r) terms. Both transform as �1 and might
contribute to the k = 0 diagonal matrix elements (band edges)
and to the s-pz hybridization [c6 term in Eq. (A23)]. More im-
portantly, these would also appear added to Hsoz in Eq. (A29),
possibly affecting the selection rule (1-ii). The mass-velocity
term vanishes as [Hmv, pz] = 0. However, the Darwin term
breaks the selection rule [HD, pz] �= 0. Nonetheless, since the
latter arises from the fine structure, it scales with HD ∝ C,
yielding again a negligible contribution C〈ν1↑|σxVz|ν2↓〉 =
i
h̄C〈ν1↑|[HD, pz]|ν2↑〉 ∝ C2. This correction allows for the γ1

and α3 terms in Ref. [42].

b. Matrix elements

Next, let us follow the k · p approach and identify the
leading order contributions for each k = 0 term in H8×8 from
Eq. (A23). After simplifications, these are

c0 = 〈iS↑| p2

2m0
+ V (r)|iS↑〉, (A30)

c4 = 〈Z↑| p2

2m0
+ V (r)|Z↑〉, (A31)

ic6 = 〈iS↑| p2

2m0
+ V (r)|Z↑〉, (A32)

c3 = +
√

2C〈X − iY ↑|Vy pz − Vz py|Z↑〉, (A33)

−ic5 = +
√

2C〈X − iY ↑|Vy pz − Vz py|iS↑〉. (A34)

Both c6 and c5 are nonzero due to the broken wurtzite symme-
try along z (in zincblende c6 = c5 = 0). It remains to define

c1 = cX + δcX and c2 = cX − δcX , in which

cX = 1

2
〈X + iY ↑| p2

2m0
+ V (r)|X + iY ↑〉, (A35)

δcX = 1

2
C〈X + iY ↑|Vx py − Vy px|X + iY ↑〉. (A36)

To properly use the commutator trick introduced in Eq. (A29),
it is important to keep track of the matrix form of HCC

0 , which
includes only the z component of the SO coupling. Within this
nonprimed basis, we get

HCC
0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0 0 0 0 0 0 ic6 0
0 c0 0 0 0 0 0 ic6

0 0 c1 0 0 0 0 0
0 0 0 c1 0 0 0 0
0 0 0 0 c2 0 0 0
0 0 0 0 0 c2 0 0

−ic6 0 0 0 0 0 c4 0
0 −ic6 0 0 0 0 0 c4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A37)

The term c6 is the one responsible for the s-pz mixing [35], as
it couples the states |S〉 and |Z〉.

The finite terms on the kz block of H8×8 are

c16 = h̄

m0

C√
2
〈X − iY ↑|Vy + iVx|iS↑〉, (A38)

ic18 = h̄

m0

C√
2
〈X − iY ↑|Vy + iVx|Z↑〉, (A39)

c17 = h̄

m0
〈iS↑|pz|Z↑〉 = P1. (A40)

The term c16 is allowed in both zincblende and wurtzite,
while c18 only in wurtzite. However, one typically ne-
glects these k-dependent SO terms. The term c17 gives us
the Kane parameter P1, also present in the CC original
paper [40].

The k±-dependent terms of H8×8 are given by

ic8 = h̄

m0

C
2

〈X + iY ↑|σyVz|X + iY ↓〉, (A41)

ic7 = −i
h̄C
m0

〈iS↑|Vz|iS↑〉, (A42)

ic10 = −i
h̄C
2m0

〈X − iY ↑|Vz|X + iY ↑〉, (A43)

ic12 = −i
h̄C
m0

〈Z↑|Vz|Z↑〉, (A44)

c15 = −i
h̄C
m0

〈Z↑|Vz|iS↑〉, (A45)

ic9 = h̄√
2m0

[〈X − iY ↓|px + CVy|Z↓〉], (A46)

ic11 = −h̄√
2m0

[〈X + iY ↓|px + CVy|Z↓〉], (A47)
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c13 = −h̄√
2m0

[〈X − iY ↓|px + CVy|iS↓〉], (A48)

c14 = −h̄√
2m0

[〈X + iY ↓|px + CVy|iS↓〉]. (A49)

The k-dependent SO components in c13 and c14 are usually
neglected, which leads to c13 = c14 for both zincblende and
wurtzite. Under the same approximation, c7, c10, c12, and c15

can be neglected. Terms c9 ≈ −c11 can be neglected under
the quasicubic assumption. As mentioned above, we cannot
use the commutator trick to eliminate c7 and c12, since |iS↑〉
and |Z↑〉 are not eigenstates of HCC

0 due to the possible s-pz

mixing introduced by c6. This is a strong motivation to change
to the primed basis |ν ′〉 from Table III, which will not only
eliminate c6 through a rotation, but will also allow us to use
the selection rules and the commutator trick to simplify the
final model.

c. Changing basis: s-pz mixing

To eliminate the term c6, the |ν ′〉 basis is defined by the
coefficients qs and qz given by the eigenstates of the submatrix

( c0 ic6
−ic6 c4

), which read

qs ≈ 1 − 1

2

(
c6

c0 − c4

)2

, qz ≈ −
(

c6

c0 − c4

)
. (A50)

As expected, qs is defined by the ratio between the coupling
c6 and the gap c0 − c4 = ε1↑ − ε8↑, hence |qz| � |qs|. The
resulting primed basis |ν ′〉 diagonalizes HCC

0 ,

HCC′
0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c′
0 0 0 0 0 0 0 0

0 c′
0 0 0 0 0 0 0

0 0 c1 0 0 0 0 0

0 0 0 c1 0 0 0 0

0 0 0 0 c2 0 0 0

0 0 0 0 0 c2 0 0

0 0 0 0 0 0 c′
4 0

0 0 0 0 0 0 0 c′
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A51)

Let us now show the general Hamiltonian H ′
8×8 within

the |ν ′〉 basis, with all symmetry allowed terms. In the next
section we will select only the relevant matrix elements to
build our final model. As previously done, we break the new
Hamiltonian as H ′

8×8 = H ′
0 + H ′

zkz + H ′
±k±.

The Hamiltonian H ′
0 reads

H ′
0 = HCC′

0 +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 ic′
5 0 0

0 0 0 0 ic′
5 0 0 0

0 0 +δcX 0 0 0 0 0
0 0 0 +δcX 0 0 0 0
0 −ic′

5 0 0 −δcX 0 0 c′
3−ic′

5 0 0 0 0 −δcX c′
3 0

0 0 0 0 0 c′
3 0 0

0 0 0 0 c′
3 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A52)

with

c′
0 = q2

s c0 + q2
z c4 − 2qsqzc6 = 〈iS′↑| p2

2m0
+ V (r)|iS′↑〉, (A53)

c′
4 = q2

s c4 + q2
z c0 + 2qsqzc6 = 〈Z ′↑| p2

2m0
+ V (r)|Z ′↑〉, (A54)

c′
3 = qsc3 + qzc5 = +

√
2C〈X − iY ↑|Vy pz − Vz py|Z ′↑〉, (A55)

c′
5 = qsc5 − qzc3 = i

√
2C〈X − iY ↑|Vy pz − Vz py|iS′↑〉. (A56)

All c′
j matrix elements are similar to their nonprimed c j counterparts, except for the the replacements S → S′ and Z → Z ′. The

same is valid for the finite kz and k± terms below. Indeed, for the kz-linear terms, H ′
z keeps the same form as its nonprimed

counterpart in H8×8, with the coefficients replaced by its primed versions as

c′
17 = c17 = h̄

m0
〈iS′↑|pz|Z ′↑〉, (A57)

c′
16 = qsc16 − qzc18 = h̄

m0

C√
2
〈X − iY ↑|Vy + iVx|iS′↑〉, (A58)

c′
18 = qsc18 + qzc16 = −i

h̄

m0

C√
2
〈X − iY ↑|Vy + iVx|Z ′↑〉. (A59)

As mentioned above, c′
16 and c′

18 are k-dependent SO terms that are usually neglected, while c′
17 = P1 is one of the usual Kane

parameters.
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The change of basis truly pays off due to the simplifications on H ′
±. We can now use the commutator trick to further eliminate

ic′
7 = −i

h̄C
m0

〈iS′↑|Vz|iS′↑〉 = 0,

ic′
12 = −i

h̄C
m0

〈Z ′↑|Vz|Z ′↑〉 = 0. (A60)

Therefore we get

H ′
± =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 c′+
13 0 −c′−

14 0 0 −c′−
15

0 0 0 −c′−
13 0 c′+

14 c′+
15 0

c′−
13 0 0 0 0 0 ic′−

9 0

0 −c′+
13 0 0 0 0 0 ic′−

9

−c′+
14 0 0 0 0 −ic′−

10 −ic′−
11 0

0 c′−
14 0 0 +ic′+

10 0 0 ic′−
11

0 c′−
15 −ic′+

9 0 +ic′+
11 0 0 0

−c′+
15 0 0 −ic′+

9 0 −ic′+
11 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A61)

with c′
10 = c10, and

ic′
9 = h̄√

2m0

[〈X − iY ↓|px|Z ′↓〉 + C〈X − iY ↓|Vy|Z ′↓〉], (A62)

ic′
11 = −h̄√

2m0

[〈X + iY ↓|px|Z ′↓〉 + C〈X + Y ↓|Vy|Z ′↓〉], (A63)

c′
13 = −h̄√

2m0

[〈X − iY ↓|px|iS′↓〉 + C〈X − iY ↓|Vy|iS′↓〉],

(A64)

c′
14 = −h̄√

2m0

[〈X + iY ↓|px|iS′↓〉 + C〈X + iY ↓|Vy|iS′↓〉],
(A65)

c′
15 = −i

h̄C
m0

〈Z ′↑|Vz|iS′↑〉. (A66)

d. Approximations and final model

Up to this point, the results above are exactly derived
from the symmetry constraints and selection rules from
Appendix A 4 a. In the following we introduce the approxi-
mations that lead to the final model HCC′

8×8 shown in Eq. (7) of
the main text.

If one is interested in the electron bands, it is usual to
neglect the k-dependent SO terms, which only contribute in
high orders to the Löwdin partitioning. This approximation
eliminates c′

10 ≈ c′
15 ≈ c′

16 ≈ c′
18 ≈ 0. Moreover, it allow us

to neglect the SO contribution in c′
9, c′

11, c′
13, c′

14, which
yields c′

13 ≈ c′
14 ≡ −P2/

√
2 as a Kane parameter, while c′

9 ≈
−c′

11 ≈ 0 within the quasicubic approximation. We have al-
ready defined c′

17 = P1. For the k = 0 terms, it follows that
c′

0 = Ec, cX = Ev + 	1, δcX = 	2, c′
4 = Ev , c′

3 = √
2	3, and

c′
5 = −√

2	sz. By setting Ec = 0 (energy reference) and Ev +
	1 + 	2 = −Eg, we have c′

0 = 0, c′
1 = −Eg, c′

2 = −Eg −
2	2, and c′

4 = −Eg − 	1 − 	2. Under these assumptions, the
H ′

8×8 from the previous section yields our model HCC′
8×8 shown

in Eq. (7).

e. Remarks on �3 and �sz

For most of the terms above, the difference between the
primed c′

j and nonprimed c j matrix elements is nearly irrele-
vant. However, it is worth noting that this is not the case for
the terms c′

3 and c′
5.

We have shown that c′
3 = qsc3 + qzc5. Let us assume that

the s-pz hybridization is small, it follows that qz � qs and we
can take qs ≈ 1. The dominant contribution is c′

3 ≈ c3, which
gives us

	3 = c′
3√
2

= C〈X − iY ↑|Vy pz − Vz py|Z ′↑〉

≈ c3√
2

= C〈X − iY ↑|Vy pz − Vz py|Z↑〉. (A67)

The case for the term c′
5 = −√

2	sz is more delicate. The
s-pz hybridization leads to c′

5 = qsc5 − qzc3, which may be
written as

	sz = −qsc5 − qzc3√
2

= −qs
c5√

2
+ qz	3

= C[−iqs〈X − iY ↑|Vy pz − Vz py|iS↑〉
+ qz〈X − iY ↑|Vy pz − Vz py|Z↑〉]. (A68)

Notice that both matrix elements above arise from the k-
independent SO term and are nearly identical, except for the
change |iS↑〉 ↔ |Z↑〉. Therefore, we may wonder which con-
tribution prevails. One can argue that the first matrix element
(arising from c5, with |iS↑〉) is small under the quasicubic
approximation. However, it multiplies qs ≈ 1. On the other
hand, the second term (arising from 	3, with |Z↑〉) is finite
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TABLE IV. Real band edges λi (Ei) with i = e, A, B,C and corresponding eigenfunctions ui ≡ ui0(r) of Hdiag
0 at k = 0. The relevant

constants Aλi , c1, c2, EAB, and EAC are defined in Eqs. (B3) and (B4). The eigenergy λi (Ei) corresponds to the band edge energy with (without)
the s-pz mixing contribution. The difference between λi and Ei is less than 10−3 meV.

Ei ui

λe � Ee |u1〉 = Aλe

[|iS′↑〉 − ( c2
1

Eg+EAB+λe
+ c2

2
Eg+EAC+λe

)
i	sz(|X↓〉 + i|Y ↓〉) + i

√
2c1c2	sz

(
1

Eg+EAB+λe
− 1

Eg+EAC+λe

)|Z ′↑〉]
λe � Ee |u2〉 = Aλe

[|iS′↓〉 + ( c2
1

Eg+EAB+λe
+ c2

2
Eg+EAC+λe

)
i	sz(|X↑〉 − i|Y ↑〉) + i

√
2c1c2	sz

(
1

Eg+EAB+λe
− 1

Eg+EAC+λe

)|Z ′↓〉]
λA � EA |u3〉 = − 1√

2
(|X↑〉 + i|Y ↑〉)

λA � EA |u4〉 = 1√
2
(|X↓〉 − i|Y ↓〉)

λB � EB |u5〉 = AλB

[|iS′↑〉 − ( c2
1

Eg+EAB+λB
+ c2

2
Eg+EAC+λB

)
i	sz(|X↓〉 + i|Y ↓〉) + i

√
2c1c2	sz

(
1

Eg+EAB+λB
− 1

Eg+EAC+λB

)|Z ′↑〉]
λB � EB |u6〉 = AλB

[|iS′↓〉 + ( c2
1

Eg+EAB+λB
+ c2

2
Eg+EAC+λB

)
i	sz(|X↑〉 − i|Y ↑〉) + i

√
2c1c2	sz

(
1

Eg+EAB+λB
− 1

Eg+EAC+λB

)|Z ′↓〉]
λC � EC |u7〉 = AλC

[|iS′↑〉 − ( c2
1

Eg+EAB+λC
+ c2

2
Eg+EAC+λC

)
i	sz(|X↓〉 + i|Y ↓〉) + i

√
2c1c2	sz

(
1

Eg+EAB+λC
− 1

Eg+EAC+λC

)|Z ′↑〉]
λC � EC |u8〉 = AλC

[|iS′↓〉 + ( c2
1

Eg+EAB+λC
+ c2

2
Eg+EAC+λC

)
i	sz(|X↑〉 − i|Y ↑〉) + i

√
2c1c2	sz

(
1

Eg+EAB+λC
− 1

Eg+EAC+λC

)|Z ′↓〉]

even in zincblende, but multiplies |qz| � |qs|. Thus, it is not
possible to define the dominant term a priori.

Typically, one argues in favor of the quasicubic approxi-
mation to parametrize 	sz ≈ qz	3 in terms of 	3, using qz

as a free fitting parameter. However, the analysis above shows
that this is not a good and systematic approach. Instead, we
consider that it is better to keep 	sz itself as an independent
parameter for wurtzite crystals. Notice that 	sz naturally
vanishes in zincblende, for which c5 = qz = 0.

APPENDIX B: KANE MODEL: DIAGONAL BASIS

Here we obtain the real band edges and the corresponding
basis set uio(r) that diagonalizes the Hamiltonian Hdiag

0 =
HCC′

0 + Hsox + Hsoy at k = 0.

1. Unstrained case

The actual band edges and corresponding basis functions
ui0(r) without strain can be obtained by diagonalizing the
corresponding CC′-basis Kane model [Eqs. (7)] at k = 0. The
energy differences between the band edges, shown in Fig. 1(a)
(neglecting 	sz), are given by

EAB = 1
2 (	cr + 3	2) − 1

2

√
(	cr − 	2)2 + 8	2

3, (B1)

EAC = 1
2 (	cr + 3	2) + 1

2

√
(	cr − 	2)2 + 8	2

3, (B2)

EBC = EAC − EAB =
√

(	cr − 	2)2 + 8	2
3. (B3)

The diagonal basis ui0(r) shown in Table IV has the fol-
lowing normalization constants

Aλi = 1

/√
1 + 2c2

1	
2
sz

(Eg + EAB + λi )2
+ 2c2

2	
2
sz

(Eg + EAC + λi )2
,

(B4)

where Aλi (i = e, A, B, and C) and

c1 = EAC − 2	2√
(EAC − 2	2)2 + 2	2

3

,

c2 =
√

2	3√
(EAC − 2	2)2 + 2	2

3

, (B5)

with c2
1 + c2

2 = 1. The eigenvalue of Hdiag
0 λi corresponds to

the energy of the real band edges. If we focus only on the
band structure, a good approximation is to neglect the s-pz

mixing, which yields a correction to the band edges of less
than 10−3 meV compared to the real ones. By taking the
conduction band as the energy origin, namely λe = 0, we have

λA � EA = −Eg, (B6)

λB � EB = −Eg − EAB, (B7)

λC � EC = −Eg − EAC, (B8)

which directly maps to the band description in Fig. 1(a) (solid
curves). Note that, to obtain the basis functions shown in
Table IV, we need to perform an exact numerical calculation
of the band edge energies.
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The 8 × 8 matrix Hamiltonian in the diagonal basis is given by

Hdiag
0 = p2

2m0
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λe iαbulkk− −Aλe
P2√

2
k+ 0 i fλeλB k− i

2

{
gλeλB , kz

}
i fλeλC k− i

2

{
gλeλC , kz

}
−iαbulkk+ λe 0 Aλe

P2√
2
k− i

2

{
gλeλB , kz

} −i fλeλB k+ i
2

{
gλeλC , kz

} −i fλeλC k+

−Aλe
P2√

2
k− 0 λA 0 0 0 0 0

0 Aλe
P2√

2
k+ 0 λA 0 0 0 0

−i fλeλB k+ − i
2

{
gλeλB , kz

}
0 0 λB 0 0 0

− i
2

{
gλeλB , kz

}
i fλeλB k− 0 0 0 λB 0 0

−i fλeλC k+ − i
2

{
gλeλC , kz

}
0 0 0 0 λC 0

− i
2

{
gλeλC , kz

}
i fλeλC k− 0 0 0 0 0 λC

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(B9)

with {:, :} denoting the anticommutator. Here we neglected containing second-order terms in 	sz and the matrix elements within
the valence band. These would give rise to negligible higher order contributions proportional to 	sz. The coefficient αbulk is the
bulk Rashba parameter,

αbulk = 2A2
λe

P2	sz

(
c2

1

Eg + EAB + λe
+ c2

2

Eg + EAC + λe

)
. (B10)

If we properly expand the expression above, we can recover the result in Eq. (27).
The parameters fλeλi=B,C and gλeλi=B,C in Eq. (B9) are defined as

fλeλi = Aλe Aλi P2	sz

[
c2

1

(
1

Eg + EAB + λe
+ 1

Eg + EAB + λi

)
+ c2

2

(
1

Eg + EAC + λe
+ 1

Eg + EAC + λi

)]
(B11)

and

gλeλi =
√

2Aλe Aλi c1c2P1	sz

[(
1

Eg + EAB + λi
− 1

Eg + EAB + λe

)
−
(

1

Eg + EAC + λi
− 1

Eg + EAC + λe

)]
. (B12)

Note that for calculating the parameters above, we should
use the eigenvalues of (B9) obtained numerically.

In Table V we show the relation between the band edges
and quantum well offsets of the CC′ and the diagonal basis
sets. For simplicity, here we use the superscript CC′ to refer to
the quantities in Sec. II.

2. Strained case

In the presence of strain, ui0 is obtained by diagonalizing
the strained CC′-basis Kane Hamiltonian (see Sec. II B 2).
Therefore, the diagonal basis set is strain dependent.

To construct the Kane model using the diagonal basis in
the presence of strain, we need to know how the band edges
change compared to the unstrained case. One can obtain these
by numerically diagonalizing the Hamiltonian. Here, how-
ever, we show the analytical expressions within the approx-
imation of neglecting the s-pz mixing, since its energy correc-
tion is negligibly small. The band edge shift due to strain at the
� point is schematically shown in Fig. 1(a) (dashed curves),
where we have E s

e = Ee + ac1εzz+ ac2 (εxx + εyy), E s
A = EA +

S1 + S2, E s
B = E s

A − E s
AB, and E s

C = E s
A − E s

AC . The energy

differences between the valence bands in the presence of strain
E s

AB, E s
AC , and E s

BC read

E s
AB = 1

2 (	cr + 3	2 + S2) − 1
2

√
(	cr − 	2 + S2)2 + 8	2

3,

(B13)

E s
AC = 1

2 (	cr + 3	2 + S2) + 1
2

√
(	cr − 	2 + S2)2 + 8	2

3,

(B14)

E s
BC = E s

AC − E s
BC =

√
(	cr − 	2 + S2)2 + 8	2

3. (B15)

We can directly compare the expressions above with the
unstrained case [Eqs. (B1)–(B3)] and see the corrections due
to strain.

The Kane Hamiltonian in the presence of strain is again
similar to that of the unstrained case, with the band parameters
in Eq. (B9) being replaced by the strained parameters given
above.

APPENDIX C: FOLDING DOWN APPROACH

For an arbitrary n × n matrix Hamiltonian, one can always
write the corresponding Schrödinger equation in the compact

134416-22



SPIN-ORBIT COUPLING IN WURTZITE HETEROSTRUCTURES PHYSICAL REVIEW B 101, 134416 (2020)

TABLE V. Relation between the bulk band edges Ei [Fig. 1(a)] and quantum well offsets δi [Fig. 1(b)], of the CC′ and diagonal basis sets.
The notation refers to the unstrained case; the strained case can be straightforwardly obtained. The superscripts “w” and “b” stand for well and
barrier, respectively. For the expressions of energy separations EAB and EAC in each basis set, see Eqs. (9) and (B1)–(B3).

ECC′
e = Ee ECC′

A = EA ECC′
g = Eg

ECC′
B = EB + EAB − ECC′

AB ECC′
C = EC + EAC − ECC′

AC

δCC′
e = δe δCC′

B = δB + (ECC′
AB − EAB

)b − (ECC′
AB − EAB

)w
δCC′

A = δA δCC′
C = δC + (ECC′

AC − EAC

)b − (ECC′
AC − EAC

)w

form (
HP HPQ

H†
PQ HQ

)(
�P

�Q

)
= E

(
�P

�Q

)
, (C1)

where HP and HQ are two subsets of the original matrix, HPQ

describes the coupling between these subspaces, and �P and
�Q are the corresponding eigenspinors. Here, as shown below,
we are interested in the subspace P.

We can use the so-called folding down approach to rewrite
Eq. (C1) as

HP(E )�P = E�P, (C2)

with

HP(E ) = [HP + HPQ(E − HQ)−1H†
PQ]. (C3)

Note that HP(E ) is energy dependent, which makes Eq. (C2)
not a real Schrödinger-type equation.

To ensure norm conservation, we build a new spinor �′
P,

�′
P = ��P, � =

√
1 + HPQ

1

(E − HQ)2
H†

PQ. (C4)

By inserting �′
P into Eq. (C2) and multiplying the resulting

equation from the left by �−1, we arrive at

�−1HP(E )�−1�′
P = E�−2�′

P. (C5)

From Eq. (C5) we obtain

H′
P(E )�′

P = E�′
P, (C6)

with

H′
P(E ) = [�−1HP(E )�−1 + E (I − �−2)], (C7)

where I is the identity matrix, which has the same dimension
of the subspace P. From Eq. (C6), it is possible to arrive at a
real Schrödinger-type equation, i.e.,H′

P(E ) → H′
P energy in-

dependent, by performing a power expansion of (E − HQ)−1

up to the second order in the energy E .
By using the procedure described above, we obtain exactly

the same result as in Eqs. (30)–(36).

APPENDIX D: k · p INTERACTION WITHIN
THE VALENCE BAND SUBSPACE

In Sec. III B we have derived an expression for the Rashba
coupling, Eq. (37), taking into account only k · p terms be-
tween conduction and valence bands. Here we extend our
analysis to include the k · p interaction within the valence
bands. We then use the Löwdin perturbation theory (or equiv-
alently the folding down approach) to obtain a 2 × 2 Hamil-
tonian for the conduction electrons that includes additional
terms to the Rashba and Dresselhaus SO couplings. As we
shall see below, these additional Rashba terms are small
compared to those in the main text. As for the Dresselhaus
terms, they also give a negligible contribution.

The 6 × 6 Hamiltonian (CC′ basis) for the p valence band including the k · p interaction within its subspace is given by

Hv = p2

2m0
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−Eg+VA(z) 0 0 0 iQ√
2
k− 0

0 −Eg+VA(z) 0 0 0 − iQ√
2
k+

0 0 −Eg−EAB+VB(z) 0 − iQ√
2
k+

√
2	3

0 0 0 −Eg−EAB+VB(z)
√

2	3
iQ√

2
k−

− iQ√
2
k+ 0 iQ√

2
k−

√
2	3 −Eg−EAC+VC (z) 0

0 iQ√
2
k−

√
2	3 − iQ√

2
k+ 0 −Eg−EAC+VC (z)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(D1)

with Q being defined as Q = −(ih̄/m0)〈Z ′|px|X 〉 = −(ih̄/m0)〈Z ′|py|Y 〉. The additional Rashba terms arising from the k · p
coupling inside the valence band subspace read

HQ
R = ηQ(z)(σxky − σykx ), (D2)
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with

ηQ(z) = P1Q	sz

(Eg + 2	2)2(Eg + 	1 + 	2)

dVB(z)

dz
+ P1Q	sz

(Eg + 2	2)(Eg + 	1 + 	2)2

dVC (z)

dz
+ 4	2

sz	3Q

(Eg + 2	2)2(Eg + 	1 + 	2)
,

(D3)

where one can see that these terms also depend on the s-
pz mixing, i.e., 	sz. The first two terms in the equation
above describe SIA Rashba terms. By assuming that the Kane
parameters P2 and Q are comparable, we find that the strength
of these contributions (after taking an expectation value using
a proper self-consistent wave function) is around one tenth of
that obtained from ηSIA(z) [Eq. (41)] in the main text. The last
term in (D3) is an additional BIA Rashba contribution and has
also an negligible expectation value as compared to the αBIA

bulk
in Eq. (27).

We also obtain extra BIA Dresselhaus terms (arising
from the k · p coupling inside the valence sector) propor-
tional to the parameter Q. The BIA Dresselhaus Hamiltonian
reads

HD = γ

(
−b

d2

dz2
− k2

‖

)
(σxky − σykx ), (D4)

with the coefficients

γ = γ1 + γ2 (D5)

and

b = b1 + b2 (D6)

defined in terms of

γ1 = − P3
2 	sz

Eg + EAB

[
1

E2
g

+ 2

(Eg + EAB)2
+ 1

Eg(Eg + EAB)

]
,

(D7)

γ2 = P2Q(Q	sz + P2	3)

(Eg + EAB)(Eg + EAC )

(
1

Eg
+ 1

Eg + EAB

)
, (D8)

b1 = − 2P2
1 P2	sz

γ (Eg + EAB)(Eg + EAC )

(
1

Eg + EAC
+ 1

Eg + EAB

)
,

(D9)

and

b2 = 2P2
1 Q	3

γ (Eg + EAB)(Eg + EAC )2
. (D10)

The constants γ1 and γ2 describe the bulk Dresselhaus co-
efficients. As mentioned in the main text, the former arises
entirely from the s-pz mixing and does not depend on Q and
the latter is determined by Q. It is worth mentioning that the
s-pz mixing also partially contributes to γ2 [see Eq. (D8)]. The
parameter b implies the nonequivalence between the c axis
orientated z direction and the x-y plane.

We must emphasize that the Dresselhaus term here was
obtained within the eight-band model (s-conduction and p-
valence bands). This is in contrast to the zincblende struc-
ture, in which the Dresselhaus term is associated with the
coupling between the p-valence and p-conduction bands.

On the other hand, from Eqs. (D5)–(D10) we evaluate γ ∼
0.08 meV Å3 and b ∼ 0.01, whose values are much smaller
than the semiempirical values γ ∼ 0.32 meV Å3 and b ∼ 4.0
[24] and the experimental results in Ref. [41]. The work by
Fu and Wu indicates that remote bands may generate the main
contribution to the Dresselhaus SO coupling. Further studies
to obtain a full expression in terms of the parameters of the
remote bands are needed. As mentioned in the main text, in
our self-consistent simulations we treat the coefficients γ and
b in Eq. (D4) as semiempirical parameters.

APPENDIX E: TOTAL HARTREE POTENTIAL

The total Hartree potential, given in Eq. (20) of the main
text, has several contributions (these arise from different
charge densities): Velect, Vint, Vd, and Vg. Here we explicitly
show how to determine each one of these terms from the
Poisson equation.

1. Pure Hartree potential: Velect

The pure Hartree potential Velect is obtained by solving

d2

dz2
Velect (z) = e

ε0εr
ρe(z), (E1)

together with the Dirichlet boundary conditions Velect (±L) =
0, where ±L are the end points of our system (see
Fig. 8) and e > 0 is the elementary charge. The parame-
ter ρe(z) corresponds to the electronic charge density and
reads

ρe(z) = −2e

A

∑
ν,k‖

|eik‖·rψν (z)|2 f (Ek‖ν ), (E2)

FIG. 8. Schematic of a GaN/AlxGa1−xN quantum well grown
along the z||[0001] direction. The well region and the two symmetric
barriers have widths Lw = 10 nm and Lb = 7 nm, respectively.
Regions II and IV correspond to two doping layers of densities ρ1

and ρ2 and width w, symmetrically located at Ld = 6 nm from the
center of the well. The total width of the system is 2L.
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with A the area of the electron gas in the xy plane (normalizing
constant) and f (Ek‖ν ) the Fermi-Dirac distribution. More
explicitly,

ρe(z) = − em∗

π h̄2 kBT
∑

ν

|ψν (z)|2 ln [1 + e(μ−εν )/kBT ], (E3)

in which kB is the Boltzmann constant, T is the temperature,
and μ is the chemical potential.

We shall point that ρe(z) in Eq. (E1) depends on the wave
functions ψν (z) [see Eq. (E3)], which were obtained by solv-
ing the Schrödinger equation for the quantum well (31). This
equation depends on the total potential Ve(z), which in turn
has Velect (z) as one of its contributions. Hence, to determine
ψν (z) and ρe(z), we self-consistently solve Schrödinger and
Poisson’s equations for the total charge density (see next
sections for the other charge density contributions).

2. Internal potential: Vint

The internal potential Vint due to the built-in electric field
is written as

Vint (z) = e
∫ z

−L
Eint (z

′)dz′, (E4)

where Eint (z′) can be either Ew or Eb given in Eq. (16) (pe-
riodic boundary conditions) or (17) (neutral surface charges).
The solutions in terms of the fields read

Vint (z) =

⎧⎪⎪⎨
⎪⎪⎩

eEb(z+L), −L�z�−Lw/2,

eEb
(
L− Lw

2

)+eEw

(
z+ Lw

2

)
, −Lw/2�z�Lw/2,

eEb(z + L − Lw ) + eEwLw, Lw/2�z�L.

(E5)

3. Doping + external gate potentials: Vd + Vg

These two contributions can be obtained by solving the
Poisson equation + boundary conditions in each region (I–V)
of our system (Fig. 8) [20].

For the doping potential Vd we have

d2

dz2
Vd(z) = e2

ε0εr

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, −L � z � −Ld , (I)

ρ1, −Ld � z � −Ld + w, (II)

0, −Ld + w � z � Ld − w, (III)

ρ2, Ld − w � z � Ld , (IV)

0, Ld � z � L. (V)
(E6)

where ρ1,2 are the doping densities. The solutions to the
equations above are given by

Vd(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a1z + a2, (I)
e2ρ1

2ε0εr
z + a3z + a4, (II)

a5z + a6, (III)
e2ρ2

2ε0εr
z + a7z + a8, (IV)

a9z + a10. (V)

(E7)

The coefficients ai, i = 1, . . . , 10, are obtained by imposing
the continuity of Vd and its derivative. In addition, we consider
the Dirichlet boundary conditions Vd(±L) = 0. The explicit
expressions for these constants can be found in Appendix B
of Ref. [20].

For the external gate potential Vg, we solve

d2

dz2
Vg(z) = 0, −L � z � L, (E8)

with the Dirichlet boundary conditions Vg(−L) = V1 and
Vg(L) = V2, where V1,2 are the external gates at the end points
±L. We then obtain

Vg(z) = − (V1 − V2)

2L
z + (V1 + V2)

2
. (E9)
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