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Complex magnetic orders in frustrated magnets may exhibit rich melting processes when the magnet is heated
toward the paramagnetic phase. We show that one may tune such melting processes by quantum fluctuations. We
consider a kagome lattice dipolar Ising model subject to transverse field and focus on the thermal transitions out
of its magnetic ground state, which features a

√
3 × √

3 magnetic unit cell. Our quantum Monte Carlo (QMC)
simulations suggest that, at weak transverse field, the

√
3 × √

3 phase melts by way of an intermediate magnetic
charge ordered phase where the lattice translation symmetry is restored while the time reversal symmetry remains
broken. By contrast, at stronger transverse field, QMC simulations suggest the

√
3 × √

3 order melts through a
floating Kosterlitz-Thouless phase. The two distinct melting processes are separated by either a multicritical
point or a short line of first order phase transition.

DOI: 10.1103/PhysRevB.101.134414

I. INTRODUCTION

The notion of symmetry is fundamental to our understand-
ing of magnetic orders. In a simple magnetic system such as
Ising ferromagnet, the low temperature ferromagnetic phase
spontaneously breaks the time reversal symmetry, which is
captured by a single order parameter, namely the uniform
magnetization. As the temperature increases, the ferromag-
netic phase melts through a single thermal phase transition,
whose universality is essentially fixed by the symmetry trans-
formation properties of the order parameter and the spatial
dimensionality.

The melting process of magnetic phases can be signifi-
cantly richer in geometrically frustrated magnets, where frus-
tration effects can result in complex magnetic ground states
that spontaneously break multiple symmetries, corresponding
to the development of several distinct but intertwined order
parameters. As the system is heated toward the paramagnetic
phase, the low temperature magnetic phase may melt in mul-
tiple steps through intermediate phases where the symmetries
are partially restored. Depending on the specific contexts, the
same low temperature magnetic phase may feature different
multistep melting processes through different intermediate
phases. The universality class of the melting transition then
depends on the specific melting pathway as opposed to being
fixed by the low temperature magnetic phase alone.

A prominent example where the multistep melting occurs
is the two-dimensional dipolar kagome spin ice. In its simplest
setting [1–4], Ising spins form a kagome lattice with their
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magnetic moments lying in the kagome plane. The spins inter-
act through the long range magnetic dipole-dipole interaction.
This system hosts at low temperature a magnetic ground state
with

√
3 × √

3 magnetic unit cell [Fig. 1(d)], corresponding to
a magnetic ordering wave vector Q = 2K, where K is at the
K point of the first Brillouin zone. The

√
3 × √

3 magnetic
ground state breaks both the lattice translation symmetry
and the time reversal symmetry. Upon heating, the

√
3 × √

3
phase melts through an intermediate magnetic charge ordered
phase where the lattice translation symmetry is restored but
the time reversal symmetry remains broken. There, the mag-
netic charges inside the triangles of the kagome lattice exhibit
an ordered pattern while the spins are fluctuating [Figs. 1(b)
and 1(c)]. In the example shown in Fig. 1(c), each up triangle
carries one unit of positive magnetic charge, while each down
triangle carries one unit of negative magnetic charge. This
pattern respects the lattice translation symmetry. Equivalently,
the static magnetic moments form a staggered, all-in-all-out
pattern, which respects the lattice translation symmetry as
well. The melting transition from the

√
3 × √

3 phase to the
magnetic charge ordered phase is of the three-state Potts uni-
versality. Further increasing the temperature finally brings the
system to the paramagnetic phase through an Ising transition
that restores the time-reversal symmetry.

The
√

3 × √
3 phase exhibits a very different melting

process in a closely related system. In the kagome Ising
antiferromagnet with both nearest and second neighbor in-
teractions [5–8], the intermediate magnetic charge ordered
phase is evaded. Instead, the

√
3 × √

3 phase melts through
a floating Kosterlitz-Thouless (KT) phase by two consecutive
KT transitions [4].

The rich melting processes of the
√

3 × √
3 phase in the

dipolar kagome spin ice and related systems make one wonder
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FIG. 1. (a) Kagome lattice. The green arrows are the primitive vectors a1,2 emanating from the origin O. The yellow arrow at each site
shows the direction of the local spin ẑi axis. (b) A snapshot of the spin configurations in the magnetic charge ordered phase. The arrows show
the direction of the spins. Spins with σ z

i = 1 and −1 are, respectively, colored in red and blue. Here, the magnetic charges exhibit an ordered
pattern—the up triangles carry positive magnetic charge (+), whereas the down triangles carry negative magnetic charge (−). The spins, on
the other hand, are fluctuating. (c) Magnetic moment in the magnetic charge ordered phase obtained by averaging over many snapshots similar
to (b). As the up triangles have two spins pointing inward and one outward, the spins on average point toward the center of the up triangle. The
size of magnetic moment is about 1/3 of the length of the spin. (d) One of the six degenerate domains of the

√
3 × √

3 phase. The spins are all
ordered. Its magnetic charge distribution shows the same ordered pattern as (b). The purple dashed rhombus demarcates the magnetic unit cell.
(e) The partially disordered phase. Open circles correspond to spins that fluctuate between σ z

i = 1 and −1, showing no net magnetic moment.
Note the partially disordered phase is not observed in our model Eq. (1).

if there are any realistic systems in which these processes are
manifest and can be tuned [9]. The dipolar kagome ice was
first realized in an artificial kagome array of nanomagnets with
the nanosized magnetic bars playing the role of Ising spins
[3]. Direct imagining reveals evidence for the magnetic charge
ordered phase and the

√
3 × √

3 phase in this system [10].
Meanwhile, it possesses out-of-equilibrium features unique to
nanomagnetic systems [11].

On the material front, rare-earth-based tripod kagome mag-
nets Mg2R3Sb3O14 (R = Dy, Ho) are thought to be the mate-
rial incarnations of the dipolar kagome spin ice [12,13]. The
rare earth ions form ABC stacked kagome planes in this fam-
ily of materials. For compounds made from Kramers magnetic
ions such as Dy3+, the elementary degrees of freedom are
their lowest energy crystal field doublet, which map onto Ising
spins. The large magnetic moment carried by the Ising spins,
along with the relatively weak superexchange interactions,
implies that the spins interact predominantly through the
magnetic dipole-dipole interaction. The material thus can be
modeled as a dipolar kagome spin ice as a first approximation.
Thermodynamic measurements and neutron scattering have
provided experimental evidence for the magnetic charge order
in Mg2Dy3Sb3O14 [14], which is consistent with the dipolar
kagome spin ice picture.

Quantum effects set in when the rare earth ions are non-
Kramers ions such as Ho3+ [15]. As the time reversal sym-
metry no longer protects the degeneracy of the crystal field
doublet, the doublet in an isolated ion would split into two
quasidegenerate, nonmagnetic singlets due to the low crystal

field symmetry. Such crystal field effect can be viewed as an
effective transverse field acting on the aforementioned Ising
spins [16]. The quantum fluctuations brought in by the crystal
field effect competes with the magnetic dipole-dipole inter-
action, thereby offering another handle to tune the physics
of dipolar kagome spin ice, and, in particular, the melting
processes of the

√
3 × √

3 magnetic ground state.
These considerations motivate us to explore the following

minimal model that captures the competition between the long
range magnetic dipole-dipole interaction and the quantum
fluctuations,

H = D
∑
i> j

ẑi · ẑ j − 3(ẑi · r̂i j )(ẑ j · r̂i j )

(ri j/rnn)3
σ z

i σ z
j

− h
∑

i

σ x
i , (1)

where σ
x,y,z
i are Pauli matrices that describe the effective Ising

spin at site i. ri j is the spatial distance between the kagome site
i and j, and r̂i j is the unit vector that points from i to j. rnn is
the distance between nearest neighbors. D > 0 sets the energy
scale of the dipole interaction, while h is the strength of the
transverse field. We assume h > 0 without loss of generality.

Unit vector ẑi describes the direction of the local σ z
i axis.

For simplicity, we set ẑi to be in the kagome plane and pointing
toward the center of the up triangles [Fig. 1(a)] similar to
the previous studies [1,2,4]. This choice is natural from a
purely geometric point of view and simplifies the physics of
the model [17]. However, in tripod kagome materials, ẑi cants
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FIG. 2. Phase diagram of Eq. (1) as a function of temperature T
and transverse field h, deduced from QMC simulations. We identify
four phases: the paramagnetic phase (PM), the magnetic charge
ordered phase (MCO), the Kosterlitz-Thouless phase (KT), and
the

√
3 × √

3 phase (
√

3 × √
3). Different colors/symbols indicate

the different methods employed to determine the phase boundaries
(see the main text for detail). A possible multicritical point or a short
line of first order transition may exist in the area shaded in magenta.
We expect a quantum critical point at T = 0, h/D > 0.65, which is
not determined in this work. Dashed lines mark the three temperature
scans that shall be discussed in Sec. IV.

away from the kagome plane by about 26◦ [12–14], which has
significant impact on the magnetic dipole-dipole interactions.
We shall return to this point in Sec. V.

Equation (1) possesses all the lattice symmetries. Crucially,
it also possesses the time reversal symmetry despite the trans-
verse field term. This is due to the fact that the Pauli matrices
σ

x,y,z
i describe the two lowest crystal field levels of a rare earth

ion rather than a physical S = 1/2 spin. While σ z
i changes

sign under the time reversal, σ x
i remains invariant [18].

In this work, we investigate the thermodynamic phase dia-
gram of Eq. (1) by performing a quantum Monte Carlo (QMC)
simulation. The results are summarized in the phase diagram
(Fig. 2). At low temperature, the system hosts the

√
3 × √

3
phase over the entire parameter window of simulation, h/D ∈
[0, 0.65]. As the temperature increases, the

√
3 × √

3 phase
melts through the two aforementioned pathways. For weak
transverse field h/D < 0.5, the

√
3 × √

3 order melts through
the intermediate magnetic charge ordered phase, which is
connected to the classical limit [1,2,4]. For stronger transverse
field 0.5 < h/D < 0.65, the

√
3 × √

3 phase melts through
the floating KT phase, similar to the kagome Ising model with
first and second neighbor interactions [6–8]. Our results thus
reveal the interesting prospect of tuning the multistep melting
of complex magnetic orders through quantum fluctuations.

The rest of this work is organized as follows. In Sec. II,
we perform a Landau theory analysis of the melting processes
of the

√
3 × √

3 phase, which provides a natural framework
for organizing the QMC data. In Sec. III, we explain the
QMC algorithms and the Monte Carlo observables employed
in this work. In Sec. IV, we present a detailed analysis of the

QMC data, which forms the basis of the phase diagram Fig. 2.
Finally, in Sec. V, we point out a few open problems that are
worth exploring in the future.

II. LANDAU THEORY

Before embarking on the QMC simulation of Eq. (1),
we set the stage by performing a Landau theory analysis
[9,19,20]. As we shall see, the Landau theory provides a nat-
ural framework to understand and organize the QMC results.

To this end, we construct the relevant order parameters.
The order parameter for the magnetic charge order is defined
as the magnetic charge imbalance between the up and down
triangles,

m = 1

2N

⎛
⎝∑

α∈�
Qα −

∑
α∈�

Qα

⎞
⎠, (2a)

where α labels the triangles of the kagome lattice. Qα is the
magnetic charge enclosed by the triangle α. The first and
second summation runs over all the up and down triangles,
respectively. N is the number of lattice sites. We may express
Qα in terms of σ z

i :

m = 1

2N

⎛
⎝∑

α∈�

∑
i∈α

ẑi · mi −
∑
α∈�

∑
i∈α

(−ẑi · mi )

⎞
⎠

= 1

2N

⎛
⎝∑

α∈�

∑
i∈α

σ z
i +

∑
α∈�

∑
i∈α

σ z
i

⎞
⎠ = 1

N

∑
i

σ z
i . (2b)

In the first line, we have inserted the definition of magnetic
charge, i.e., the total magnetization flux flowing into the
enclosed area. mi is the magnetic moment at site i. In the
second line, we have used mi = σ z

i ẑi. We see that the order pa-
rameter m is essentially the uniform magnetization measured
in the local spin σ z

i axis. This can be understood as follows.
In the magnetic charge ordered phase, the static magnetic
moments form a staggered, all-in-all-out pattern [Fig. 1(c)].
As the local σ z

i axis forms the same staggered, all-in-all-out
pattern [Fig. 1(a)], projecting the magnetic moment to the
local σ z

i axis yields a uniform value of σ z
i . From Eq. (2b),

it is easy to see m → −m under time reversal and transforms
trivially under lattice translations. Both properties agree with
the symmetry properties of the magnetic charge order.

The
√

3 × √
3 phase breaks both time reversal symmetry

and the lattice translation symmetry. It inherits the same mag-
netic charge order from the magnetic charge ordered phase,
which is captured by the order parameter m [see Fig. 1(d) for
the magnetic charge distribution in the

√
3 × √

3 phase]. The
spontaneous breaking of the translation symmetry is captured
by another order parameter,

ψ = 1

N

∑
i

σ z
i eiQ·ri . (3)

Q = 2K is the characteristic wave vector associated with the√
3 × √

3 magnetic unit cell, where K = (2π/(3rnn), 0) is the
lattice wave vector corresponding to the K point of the first
Brillouin zone. rnn is the distance between nearest neighbor
kagome sites. ri is the position vector of the kagome site i.
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FIG. 3. (a) Landau mean field theory phase diagram as a function of the parameters αm,ψ . Arrows show the two generic pathways (I and
II) that the

√
3 × √

3 phase can melt. (b) The sequence of thermal phases corresponding to the pathway I and II. Note the pathway II shows a
floating Kosterlitz-Thouless phase that is beyond the mean field theory but expected to exist.

Note the value of ri depends on the origin of the coordinate
system. Our choice is shown in Fig. 1(a). ψ → −ψ under
the time reversal, ψ → ψ∗ under the site inversion, and ψ →
exp(iQ · R)ψ under the translation by lattice vector R. These
transformation properties are consistent with the symmetry
properties of the

√
3 × √

3 phase.
Provided that no other order parameters are present, the

Landau free energy F is a polynomial of m and ψ . F contains
terms such as mp|ψ |q, mp|ψ |q cos(qθ ), and mp|ψ |q sin(qθ ),
where p, q are integers and θ is the complex phase angle
of ψ . First of all, the lattice inversion symmetry forbids
mp|ψ |q sin(qθ ). Secondly, the translation symmetry requires
q to be multiples of 3 in mp|ψ |q cos(qθ ). Thirdly, the time
reversal symmetry requires p + q to be an even number.
Combining all of these symmetry requirements yields,

F = Fm + Fψ + Fm,ψ . (4a)

Fm is the Landau free energy for m:

Fm = αmm2 + βmm4. (4b)

Fψ is the Landau free energy for ψ :

Fψ = αψ |ψ |2 + βψ |ψ |4 + γψ |ψ |6 − δψ |ψ |6 cos(6θ ), (4c)

Fm,ψ describes the coupling between the two order parameters
[9]:

Fm,ψ = −gm|ψ |3 cos(3θ ) + g′m2|ψ |2. (4d)

We have omitted in Eq. (4) higher order terms that are
inessential to the present discussion.

We are interested in the phase transitions driven by αm, αψ .
To this end, we need to fix the sign of all the other coefficients.
We set βm, βψ, γψ > 0. We also assume |δψ |, |g|, |g′| are
sufficiently small to ensure F is bounded from below. Since
the sign of g can be absorbed into the order parameter m, we
set g > 0 without loss of generality. g′ describes the mutual
enhancement (g′ < 0) or suppression (g′ > 0) of the order

parameters. Since it doesn’t change the qualitative features
of the mean field phase diagram, we shall omit it for now
and return to it later. To fix the sign of δψ , we observe that,
with our coordinate system [Fig. 1(a)], the complex phase of
the order parameter θ = nπ/3, where n = 0, 1, 2, . . . 5, in the√

3 × √
3 magnetic ground state [Fig. 1(d)]. This suggests

δψ > 0. By contrast, δψ < 0 would favor θ = nπ/3 + π/6,
which corresponds to the partially disordered states [7,8] that
are not observed in this work [Fig. 1(e)].

Figure 3(a) presents the mean field phase diagram as a
function of αm, αψ , which contains three phases: the param-
agnetic phase (m = 0, ψ = 0), the magnetic charge ordered
phase (m �= 0, ψ = 0), and the

√
3 × √

3 phase (m �= 0, ψ �=
0). Note phase with m = 0 but ψ �= 0 does not appear in
that ψ �= 0 breaks time reversal symmetry, which necessarily
induces a finite m.

The mean field theory predicts two generic melting path-
ways that connect the paramagnetic phase and the

√
3 × √

3
phase: either through an intermediate magnetic charge ordered
phase or through a direct, continuous phase transition. While
the former pathway is consistent with the behavior of the
classical kagome spin ice [1,2,4], the latter pathway cannot
occur generically. To see this, we note that the latter pathway
is driven by Fψ [Eq. (4)], which resembles the Landau free
energy of the six-state clock model. The two-dimensional
six-state clock model exhibits the floating KT phase between
the fully ordered phase and the paramagnetic phase [21,22].
Therefore, the pathway II must feature the floating KT phase,
where ψ shows algebraic long range correlation. Figure 3(b)
presents the “corrected” sequence of phases for pathways I
and II.

We may also deduce the aforementioned melting pathways
by an analogy to a generalized six-state clock model that
contains three independent, symmetry allowed interactions
[4,23,24]. The

√
3 × √

3 phase has six symmetry-related do-
mains, which can be thought of as the six states of a clock spin.
The symmetry of the Landau theory Eq. (4) is the symmetry
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group of a hexagon, D6 = S3 × Z2, where S3 permutes the
three domains that share the same value of order parameter m
and Z2 is the time reversal symmetry. This symmetry group
coincides with the symmetry group of the generalized six-
state clock model. On one hand, the D6 symmetry of the
six-state clock model may spontaneously break through the
floating KT phase. On the other hand, one may expect the D6

group can be first broken down to its subgroup S3 (magnetic
charge ordered phase) and then become fully broken (

√
3 ×√

3 phase), namely the symmetry sequence D6 → S3 → I .
Note the generalized six-state clock model also admits the

symmetry sequence D6 → Z2 → I [4,23,24]. In the present
context, this sequence would require an intermediate phase
that preserves the time reversal symmetry but breaks the
lattice symmetry. Such an intermediate phase does not occur
in the Landau theory analysis Eq. (4) and is not observed in
the QMC simulations of Eq. (1). It is also important to bear
in mind that the effective theory Eq. (4) is not exactly mapped
to a generalized six-state clock model [9]. We shall comment
more on this point in Sec. IV C.

To summarize, we expect Eq. (1) to exhibit two distinct
sequences of thermal phase transitions as the

√
3 × √

3 phase
melts: either through an intermediate magnetic charge ordered
phase or through a floating KT phase. The QMC-constructed
phase diagram of Eq. (1) (Fig. 2) shows that the former
sequence occurs near the classical limit, while the latter
sequence occurs for larger quantum fluctuations. We shall
present a detailed analysis of our QMC data in Sec. IV.

III. METHOD

A. Algorithm

We perform QMC simulations of Eq. (1) based on the
standard second order Trotter decomposition. We set the
discretization time hδτ = 0.02, with the number of imaginary
time slices Nτ = β/δτ . Our choice of hδτ is sufficiently small
so that the systematic discretization error on all observables is
smaller than the statistical one. Comparing to QMC schemes
free of discretization errors, such as stochastic series expan-
sion [25], the present scheme allows for a straightforward
extension of classical nonlocal updates to the quantum realm
[26], which are essential for an effective sampling at small
transverse field. We shall return to this point momentarily.

We use a cluster of L × L primitive unit cells subject to the
periodic boundary condition and treat the long range magnetic
dipole-dipole interaction with the Ewald summation [27]. We
set L to be multiples of 3 so that the cluster accommodates the√

3 × √
3 magnetic unit cell. The long range magnetic dipole-

dipole interaction introduces significant geometric frustration
to the model. Furthermore, it renders the QMC simulation
computationally more expensive comparing to similar models
with short range interactions. Both factors limit the accessible
system size L to 24 or smaller, and the accessible temperature
kBT/D to 10−2.

The Trotter decomposition maps Eq. (1) to an effective
three-dimensional classical Ising model. On one hand, the
interactions along the imaginary time direction are nearest
neighbor and ferromagnetic, which implies that we may use
a conventional cluster update along the world line direction.

On the other hand, the interactions in the spatial directions are
long range and frustrated. In particular, in the classical limit
(h/D = 0), the loop updates are necessary for an effective
sampling [1,2,4,28]. These observations motivate us to adopt
two complementary update schemes, namely the “line” update
[29] and the “membrane” update [26].

In a line update [29], we choose a spin at random and then
perform the Swendsen-Wang or Wolff cluster update along the
world line of the chosen spin. The line update eliminates the
dynamical freezing due to strong ferromagnetic couplings in
the imaginary time direction, which would otherwise render
the single spin flip update inefficient.

The membrane update [26] may be viewed as an extension
of the loop update [28] to quantum models. The membrane
update proceeds as follows. We first choose a time slice at
random and construct a closed loop of spins with staggered
values of σ z

i in the said time slice. To this end, we use both
long loops, in which the loop head closes on the starting
point, and short loops, in which the loop head hits on an
already constructed loop segment, whereupon the dangling
tail is discarded. In the next step, we grow the loop to the
adjacent time slices akin to a Wolff cluster. This forms the spin
membrane. Finally, we flip the spins in the said membrane
according to the Metropolis rule. As the membrane update is
not irreducible by itself, it must be complemented with the
line update.

In this work, we employ both update schemes for weak
transverse field h/D < 0.5, and only the line update for
stronger transverse field h/D � 0.5 in that the membrane up-
date becomes less effective as h/D increases. For h/D < 0.5,
each Monte Carlo step (MCS) consists of five lattice sweeps
of line updates followed by two to five membrane updates. In
each membrane update, we carry out O(L) attempts to build
a long loop and O(L2) attempts to build a short loop. For
h/D > 0.5, each MCS consists of one lattice sweep of line
updates. We parallelize the Markov chain using at least 8 ×
103 thermalization MCS followed by O(104) measurement
MCS for each independent Markov chain, which resulted in a
total of O(106) thermalization and O(106) measurement steps
per parameter set.

B. Observables

We employ the following Monte Carlo observables to de-
tect the phases and phase transitions. We estimate the specific
heat per site Cv using the approximant [30]:

Cv ≈ 1

N
β2 ∂2

∂β2
ln ZTrotter

(
β

Nτ

)∣∣∣∣
Nτ =const.

, (5)

where ZTrotter (β/Nτ ) is the approximate partition function of
Eq. (1) for the Trotter discretization time δτ = β/Nτ and the
number of time slices Nτ . This specific heat approximant
is known to show a spurious peak at the temperature scale
kBTspurious ∼ h/Nτ due to the Trotter discretization error [31].
This spurious peak makes the specific heat estimate unreliable
at very low temperature.

134414-5



YAO WANG, STEPHAN HUMENIUK, AND YUAN WAN PHYSICAL REVIEW B 101, 134414 (2020)

FIG. 4. Specific heat Cv (a), magnitude of the order parameter for the
√

3 × √
3 order 〈|ψ |2〉 (b), magnitude of the order parameter for

the magnetic charge order 〈m2〉 (c), their respective Binder ratios (d),(e), and sixfold anisotropy measure of ψ (f) as functions of temperature
T at h/D = 0.25. Data for different system sizes L are in different colors and symbols. Insets in (a), (d), and (e) present enlarged views of
the respective temperature windows. Arrows in (e) and (f) mark the estimated locations of the high temperature (Tc1) and the low temperature
phase transition (Tc2).

We characterize the magnitude of the order parameters m
and ψ through

〈m2〉 = Om
def= 1

Nτ

∑
τ

(
1

N

∑
i

si,τ

)2

,

〈|ψ |2〉 = Oψ
def= 1

Nτ

∑
τ

∣∣∣∣∣ 1

N

∑
i

si,τ eiQ·ri

∣∣∣∣∣
2

, (6)

where si,τ = ±1 is the Ising variable of the effective three-
dimensional Ising model in the QMC simulation. i, τ label the
site and the time slices, respectively. O stands for the Monte
Carlo average of the observable O.

We define the Binder ratios as follows [32,33],

〈m4〉
〈m2〉2

def= O2
m

(Om)2
,

〈|ψ |4〉
〈|ψ |2〉2

def= O2
ψ

(Oψ )2
. (7)

The above definition uses the moments of distribution of the
Monte Carlo observables Om and Oψ in the effective classical
system. Alternatively, one could construct Binder ratio using
the quantum average of the high order moments of the order
parameters. These definitions have similar asymptotic system
size dependence. In particular, the crossing point analysis
would asymptotically yield the same critical temperature al-
though the value at the critical point may differ.

θ , the complex phase angle of ψ , contains important in-
formation about the magnetic order. Specifically, θ = nπ/3,
n = 0, 1, 2, · · · 5, in the

√
3 × √

3 magnetic ground state
[Fig. 1(d)], whereas θ = nπ/3 + π/6 in the partially disor-
dered state [Fig. 1(e)]. We distinguish these two possibilities

by using the anisotropy measure:

〈|ψ |6 cos(6θ )〉
〈|ψ |6〉 = Re

(
1
N

∑
i si,τ=0eiQ·ri

)6

∣∣ 1
N

∑
i si,τ=0eiQ·ri

∣∣6
. (8)

In particular, the anisotropy measure approaches 1 and −1 in
the

√
3 × √

3 state and partially disordered state, respectively.
Finally, we have also measured the spin structure factor

to detect any potential magnetic ordering with magnetic unit
cells other than

√
3 × √

3. We have only found signatures of
magnetic ordering with characteristic wave vector Q = 2K,
rendering such possibilities unlikely.

IV. RESULTS

In this section, we present a detailed analysis of our QMC
data. In Sec. IV A, we focus on the thermal phase transitions
at h/D = 0.25, which is representative for the weak transverse
field regime (h/D < 0.5). Next, in Sec. IV B, we turn to
the strong transverse field regime (h/D > 0.5) and focus on
the representative case with h/D = 0.6. Finally, in Sec. IV C,
we discuss the intermediate case h/D = 0.5, which separates
the distinct behaviors at weak and strong transverse fields.

A. Weak transverse field h/D < 0.5

Figure 4 shows a temperature scan of the phase diagram at
constant transverse field h/D = 0.25, which is representative
for the weak transverse field regime. The specific heat Cv

shows a sharp peak at kBT/D ≈ 0.26 [Fig. 4(a)]. Meanwhile,
〈m2〉 increases rapidly at about the same temperature scale,
and the onset of 〈m2〉 is more abrupt for larger system size
L [Fig. 4(c)]. Both behaviors point to a second order phase
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FIG. 5. (a) Data collapse for the specific heat for the high temperature transition at Tc1 using the critical exponents from the Ising
universality class. t = (T − Tc1)/Tc1. (b) Data collapse for 〈m2〉 using the exponents from the Ising universality class. (c) Log-log plot of
〈|ψ |2〉 as a function of system size L at different temperatures. Data fall into the magnetic charge ordered phase and the

√
3 × √

3 phase are
shaded in red and purple, respectively. Dashed line shows the expected L−4/9 scaling at Tc2 deduced from the effective dimer model assuming
no charge defects are present in the system.

transition from the paramagnetic phase to the magnetic charge
ordered phase. We estimate the transition temperature Tc1 by
plotting the Binder ratio of m for various system sizes. In-
specting the crossing point of the Binder ratio for L = 21 and
L = 24 yields the estimate kBTc1/D ≈ 0.256(2) [Fig. 4(e)]
where the number in the brackets indicates the uncertainty in
the last digit.

Given the symmetry of the order parameter m, the magnetic
charge ordering transition is expected to be in the Ising
universality class [1,2]. We are able to collapse the data for
Cv and 〈m2〉 by using exponents from the two-dimensional
Ising transition [Figs. 5(a) and 5(b)]. In particular, the Tc1

determined from the data collapse agrees reasonably well with
the one estimated based on the Binder ratio.

Having established the transition from the paramagnetic
phase to the magnetic charge ordered phase, we turn to the
order parameter ψ . 〈|ψ |2〉 shows rich behavior as a func-
tion of temperature [Fig. 4(b)]. It starts developing at about
the same temperature scale as Tc1 and shows a kink at a
lower temperature scale kBT/D ≈ 0.16. Accompanying this
kink, the specific heat Cv starts developing a bump below
this temperature. The height of the bump does not increase

significantly as L increases [Fig. 4(a), inset]. Meanwhile,
the Binder ratio of ψ for different L crosses near Tc1 and
converges again at a lower temperature near kBT/D ≈ 0.15
[Fig. 4(e)].

We interpret these results as follows. The onset of 〈|ψ |2〉
near Tc1 reflects the pseudocritical fluctuations of ψ induced
by the magnetic charge order. Moreover, the converging of
the Binder ratio, along with the specific heat bump at the
lower temperature scale, reflect a pseudo-KT transition from
the magnetic charge ordered phase to

√
3 × √

3 phase at Tc2 <

Tc1. The physics behind pseudocritical fluctuations of ψ and
the pseudo-KT transition is already understood in the context
of classical limit; here, we briefly reproduce the argument for
the sake of completeness [1,2].

Consider a perfect magnetic charge order in which the up
(down) triangles carry +1 (−1) magnetic charge [Figs. 1(b)
and 1(c)]. This effectively establishes an ice rule on the
spin configurations similar to the classical spin ice [34]—an
up triangle must have two spins pointing inward and one
spin outward; likewise, a down triangle must have one spin
pointing outward and two spins inward. The system fluctuates
in this restricted manifold of spin configurations, giving rise to

134414-7



YAO WANG, STEPHAN HUMENIUK, AND YUAN WAN PHYSICAL REVIEW B 101, 134414 (2020)

FIG. 6. Similar to Fig. 4 but for transverse field h/D = 0.6. Arrows mark the critical temperatures estimated from data collapse.

an algebraic spin correlation [1,2]. Furthermore, the transition
from the magnetic charge ordered phase to the

√
3 × √

3
phase is of the KT universality if the ice rules are strictly
enforced [1,2,35,36].

In reality, defect triangles that violate the ice rules always
appear with finite density. Therefore, the aforementioned al-
gebraic spin correlation is cut off by a crossover length scale
set by the average distance between defect triangles. The spins
are short range correlated above the crossover length scale. In
addition, the

√
3 × √

3 ordering transition crosses over from
the KT universality to the three-state Potts universality above
the said length scale [2].

Now, given the limited system size L, we expect that L
is smaller than the crossover length scale. The algebraiclike
spin correlation produces the pseudocritical fluctuations in
ψ , which in turn are responsible for the enhancement of
〈|ψ |2〉 below Tc1 in finite-size systems. Phenomenologically,
the enhancement in the fluctuations of ψ due to m is captured
by the coupling g′m2|ψ |2 in the Landau free energy Eq. (4)
with g′ < 0. The crossing of Binder ratio 〈|ψ |4〉/〈|ψ |2〉2 at
Tc1 is also attributed to this coupling.

The small system size implies the transition from the mag-
netic charge ordered phase to the

√
3 × √

3 phase is controlled
by the KT universality. The severe finite size effect makes it
difficult to determine its critical temperature Tc2 even for the
classical model [1,2,4]. In this work, we use the anisotropy
measure of ψ [37] [Fig. 4(f)]. It is positive throughout and
approaches 1 as temperature decreases. This shows that the
system enters the

√
3 × √

3 phase as opposed to the partially
disordered state. The anisotropy measure data for different L
cross at approximately kBTc2/D ≈ 0.17(1), which we take to
be the critical temperature.

We further test the picture of pseudo-KT transition by
examining the correlation of ψ in the magnetic charge ordered
phase. We expect ψ exhibit algebraiclike correlation in a large
temperature window of the magnetic charge ordered phase.
This would imply the finite-size scaling 〈|ψ |2〉 ∼ L−η, where
η is the anomalous dimension of ψ . The log-log plot of

〈|ψ |2〉 as a function of L seems to be consistent with this idea
[Fig. 5(c)]: In a broad temperature window between Tc1 and
Tc2, the log-log plot resembles a straight line in the limited
range of L. In particular, had there been no defect triangles,
we expect 〈|ψ |2〉 ∼ L−4/9 at Tc2 [35,36]. The observed slope
near Tc2 is fairly close to this scaling.

To recapitulate, at h/D = 0.25, the system enters first
the magnetic charge ordered phase and then the

√
3 × √

3
phase as temperature decreases, i.e., the pathway I shown in
Fig. 3(b). The magnetic charge ordering transition is of Ising
universality. The

√
3 × √

3 magnetic ordering transition is
expected to be of three-state Potts universality in the thermo-
dynamic limit. Here, it exhibits pseudo-KT universality due to
the finite size effect.

The thermal transitions at other values of h/D < 0.5
shows similar behaviors. Employing the Binder ratio of m
and the anisotropy measure for ψ , we estimate the phase
boundaries between the paramagnetic phase, the magnetically
charge ordered phase, and the

√
3 × √

3 phase for h/D < 0.5.
These are shown as purple closed circles and blue triangles in
Fig. 2.

B. Stronger transverse field 0.5 < h/D < 0.65

Figure 6 presents a temperature scan of the phase diagram
at constant transverse field h/D = 0.6. Both 〈m2〉 and 〈|ψ |2〉
steadily increases as T decreases [Figs. 6(b) and 6(c)]. The
anisotropy measure remains positive and approaches 1 as
T → 0 [Fig. 6(f)]. These suggest that the system settles into
the

√
3 × √

3 phase at low temperature, which is similar to the
case with h/D = 0.25. However, different from the previous
case, the onset temperature of 〈|ψ |2〉 is clearly higher than that
of 〈m2〉.

The specific heat Cv and the Binder ratio show further
differences in comparison with the h/D = 0.25 data. Cv does
not show any sharp peaks except for a bump at the tempera-
ture scale kBT/D ≈ 0.11 [Fig. 6(a)]. The bump at the lower
temperature scale kBT/D ≈ 0.05 is most likely spurious due
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FIG. 7. (a) Data collapse for the effective susceptibility (see the main text for definition) χ above the high temperature phase transition Tc1

assuming the KT universality. Reduced temperature t = (T − Tc1)/Tc1. (b) Data collapse for 〈|ψ |2〉 below the low temperature phase transition
Tc2 assuming the KT universality. Reduced temperature t = (Tc2 − T )/Tc2. (c) Log-log plot of 〈|ψ |2〉 as a function of system size at various
temperatures. Data points fall into the paramagnetic phase, the floating KT phase, and the

√
3 × √

3 phase are shaded in red, green, and purple,
respectively. Dashed lines show the expected scaling at Tc1 (L−1/4) and Tc2 (L−1/9).

to our choice of the specific heat approximant Eq. (5). The
Binder ratio of ψ for various system sizes L does not show a
crossing behavior typical for second order phase transitions;
instead, their values approximately converge at a temperature
scale kBT/D ≈ 0.1 [Fig. 6(d)]. By contrast, the Binder ratio of
m for different system sizes L shows a clear crossing behavior
at slightly lower temperature [Fig. 6(e)]. The anisotropy mea-
sure data cross at about the same temperature as the Binder
ratio of m although the limited data quality and the finite size
effect make it difficult to pinpoint the crossing temperature
[Fig. 6(f)].

Taken together, the data point to the alternative melting
pathway II shown in Fig. 3(b), i.e., the

√
3 × √

3 magnetic
order melts through a floating KT phase in close analogy with
the six-state clock model [21,22]: First of all, the specific
heat bump is reminiscent of the specific heat of the six-state
clock model. Secondly, in the floating KT phase, the critical
fluctuations in ψ result in the “converging” behavior of its
Binder ratios near the transition from the paramagnetic phase
to the floating KT phase. Thirdly, the transition from the
floating KT phase to the

√
3 × √

3 phase is associated with
the long range ordering of θ . The crossing of the anisotropy

measure of ψ reflects the ordering of θ . Finally, since the
order parameter m is coupled to θ [Eq. (4)], the ordering in
θ induces the ordering of m. The crossing of the Binder ratio
of m therefore mirrors the crossing of the anisotropy measure.

We test the validity of the above picture by performing
data collapse for relevant observables. The transition from the
paramagnetic phase to the floating KT phase, and from the
floating KT phase to the

√
3 × √

3 phase, are both expected
to be in the KT universality class. We first consider the transi-
tion from the paramagnetic phase to the floating KT phase.

The relevant observable is the effective susceptibility χ
def=

N〈|ψ |2〉/(kBT ) in the paramagnetic phase [22]. Figure 7(a)
shows our best attempt at the data collapse of χ assuming
the KT universality. We find the transition temperature Tc1 ≈
0.0922. The anomalous dimension η ≈ 0.228, which is close
to the expected value of 1/4 [21].

For the lower temperature transition from the floating
KT phase to the

√
3 × √

3 phase, the relevant observable
is the magnitude of order parameter 〈|ψ |2〉 in the

√
3 ×√

3 phase [22]. Figure 7(b) shows our best attempt at
the data collapse of 〈|ψ |2〉 assuming the KT universality.
The transition temperature Tc2 ≈ 0.0749. The anomalous
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FIG. 8. Similar to Fig. 4 but for transverse field h/D = 0.5. Arrows mark the critical temperatures estimated from the crossing points of
the Binder ratio.

dimension η ≈ 0.12, which is close to the expected value
of 1/9 [21].

Having shown that both transitions are consistent with
the KT universality, we examine the correlation of ψ in the
floating KT phase. The log-log plot of 〈|ψ |2〉 suggests that
〈|ψ |2〉 seems to decay algebraically as a function of L in
the floating KT phase within the limited range of L [22]. In
particular, the slope is close to 1/4 near Tc1 and 1/9 near Tc2,
both in agreement with the expected anomalous dimension
of ψ at these transitions. To recapitulate, at the transverse
field h/D = 0.6, our data suggest the system first enters the
floating KT phase and then the

√
3 × √

3 phase through two
consecutive KT transitions, which is in agreement with the
melting pathway II shown in Fig. 3(b).

At other values of h/D > 0.5, we find similar behaviors as
h/D = 0.6. We estimate the phase boundaries of the floating
KT phase by performing data collapse assuming the KT uni-
versality class. The limited system size and quality of statistics
do not allow us to put a stringent bound on η in the data
collapse. The low temperature transition at Tc2 proves to be
particularly challenging due to the narrow temperature range
between 0 and Tc2. The two KT transitions being close to each
other poses further problems. We note similar issues arise in
the QMC study of antiferromagnetic quantum Ising model
on a triangular lattice [37], where the authors resort to other
means when estimating critical temperatures. Here, we use the
theoretical value of η = 1/4 and η = 1/9, respectively, for
the higher and lower temperature KT transitions in the data
collapse. The estimated Tc1 and Tc2 are shown as cyan lines in
Fig. 2.

C. Intermediate transverse field h/D = 0.5

In the previous subsections, we have shown that the
√

3 ×√
3 phase melts through the intermediate magnetic charge

ordered phase for small h/D and through the floating KT
phase for larger values of h/D. Crucially, the phase transi-
tions are of different universalities. For small h/D, the high
temperature transition is of the Ising universality, whereas the
low temperature transition is believed to be in the three-state
Potts universality class. For large h/D, both phase transitions
are of KT universality.

It is then natural to ask how the two distinct sequences of
phase transitions are connected as we tune h/D. There are two
possibilities. As we increase h/D from 0, the Ising transition
and the Potts transition move closer in temperature, and they
eventually merge into a single first order phase transition.
Upon further increasing h/D, the first order transition splits
off into two KT transitions similar to a generalized six-state
clock model [23,24]. Alternatively, the Ising transition, the
Potts transition, and the two KT transitions could all meet at
a single multicritical point as suggested in Ref. [9]—the said
multicritical point results from the interplay between the two
intertwined order parameters m and ψ and is believed to be
absent in the generalized six-state clock model.

We explore these aspects by scanning the phase diagram at
h/D = 0.5 (Fig. 8). The specific heat Cv shows a single peak
that grows with the system size [Fig. 8(a)], which is typical
for a second order phase transition. The onset of 〈m2〉 and
〈|ψ |2〉 seem to occur at about the same temperature [Figs. 8(b)
and 8(c)]. We estimate the critical temperature associated
with the ordering of ψ and m by using the crossing point of
their respective Binder ratio. We find kBTc1/D ≈ 0.133(5) and
kBTc2/D ≈ 0.136(5), which are identical within error bars.

Our data suggest that the temperature scan at h/D = 0.5
must pass closely by the multicritical point or the first order
transition. If there is indeed a first order phase transition, it
should occupy a relatively narrow window on the h/D axis
and is unlikely to be strongly first order. We cannot make any
further statements due to the limited system size and the long
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autocorrelation time of the QMC algorithm at this value of
h/D.

V. DISCUSSION

To conclude, our QMC simulation of Eq. (1) shows that
we may tune the two-step melting process of the

√
3 × √

3
phase by quantum fluctuations. At the weak transverse field,
the

√
3 × √

3 phase melts through the intermediate magnetic
charge order. This process is connected to the classical limit
[1,2,4]. By contrast, at relatively large transverse field, a
distinct melting process emerges—the

√
3 × √

3 phase melts
through the floating KT phase by two successive KT transi-
tions.

Our work thus reveals the interesting prospect of con-
trolling the thermal melting processes of complex magnetic
orders through quantum fluctuations. Yet, a couple of impor-
tant questions remain unanswered. The behavior of the model
Eq. (1) near the intermediate transverse field h/D = 0.5 is
unclear. Specifically, it is unknown if the two aforementioned
melting processes in this model are separated by a first order
phase transition or a multicritical point. In addition, the zero
temperature quantum phase transition from the

√
3 × √

3
phase to the paramagnetic phase is not determined in this
work. Given that accessing the moderate to large transverse
field regime is challenging for Trotter-type QMC algorithms,
stochastic series expansion algorithms that are tailored for
models with long range interactions [25] or with geomet-
rical frustration [38,39] may prove useful in tackling these
questions. One could also reduce the time cost for evaluating
the interaction energies by employing a clocked factorized
Metropolis filter [40].

Given that the Ising models with short range interactions
are more amenable to Monte Carlo simulations, it would be
interesting to explore the melting processes of the

√
3 × √

3
phase there as well. Extensive Monte Carlo simulation of the
classical Ising model on triangular and kagome lattices with
first, second, and third neighbor interactions have clarified
how the two-step melting processes merge into a single first
order melting transition [41]. It is then natural to examine the
impact of quantum fluctuations on these systems [39] with an
eye toward the multicritical point [9].

In light of the Ho3+ based tripod kagome magnet [15], our
work suggests that one may potentially explore these distinct
melting sequences in a thin film of Mg2Ho3Sb3O14 or similar
systems by tuning the relative strength of the dipole interac-
tion energy scale D with respect to the quantum fluctuation
energy scale h. This may be achieved by epitaxial strain from
the substrates [42] or by chemical pressure.

From the material perspective, while the minimal model
Eq. (1) captures the competition between the magnetic dipole
interaction and the quantum fluctuations, a few important
features of the tripod kagome magnets are not accounted for.
The spin quantization axis ẑi cants away from the kagome

plane in the tripod kagome materials by about 26◦ [12–14]. As
the magnetic dipole interaction depends on the configurations
of ẑi, one would expect the canting angle to have significant
impact on the physics of Eq. (1). Indeed, the classical limit of
the model Eq. (1) is known to exhibit dramatically different
physics when the canting angle varies. On one hand, when
ẑi are in the kagome plane, the model hosts the

√
3 × √

3
magnetic ground state [1,2,4]. On the other hand, when ẑi are
perpendicular to the kagome plane, the system is very glassy
and shows different magnetic long range orders (the so-called
“figure seven” state) [43–45]. The tripod kagome material
interpolates these two limits, and it is not clear a priori
which limit is closer to the material reality. The experiment
on Mg2Dy3Sb3O14 suggests that the former in-plane limit
is perhaps a more appropriate starting point for theoretical
discussions [14].

Another important feature of the tripod kagome materials
is their three dimensionality. Since the floating KT phase is ab-
sent in three dimensions, one may expect a direct continuous
phase transition from the

√
3 × √

3 phase to the paramagnetic
phase in the 3D XY universality class. Alternatively, the
system may develop long range order in the kagome plane
but remain short range correlated between the planes. In
addition, the subtle interplay between the canting and the
three dimensionality plays a crucial role in understanding
the tripod kagome magnets. In the classical tripod kagome
magnet Mg2Dy3Sb3O14, the interlayer coupling stabilizes the
magnetic charge order and helps the system evade the spin
glass physics that would otherwise occur in systems with large
canting angles [14,46].

Finally, the Ho3+ ion carries large nuclear spin and signifi-
cant hyperfine coupling [47]. It has been argued that the hyper-
fine coupling is responsible for the magnetic ordering in Ho3+

based garnet Ho3Ga5O12 [48] and suppresses the quantum
coherence in tripod kagome magnet Mg2Ho3Sb3O14 [15]. The
role of the hyperfine coupling thus requires careful theoretical
assessment as well. To conclude, we expect exploring these
aspects will reveal more interesting physical effects in tripod
kagome magnets and pave the way for a deeper understanding
of this material family.
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