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Methods of electron transport in ab initio theory of spin stiffness
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We present an ab initio theory of the spin-wave stiffness tensor for ordered and disordered itinerant
ferromagnets with pair exchange interactions derived from a method of infinitesimal spin rotations. The resulting
formula bears an explicit form of a linear-response coefficient which involves one-particle Green’s functions and
effective velocity operators encountered in a recent theory of electron transport. Application of this approach to
ideal metal crystals yields more reliable values of the spin stiffness than traditional ill-converging real-space
lattice summations. The formalism can also be combined with the coherent potential approximation for an
effective-medium treatment of random alloys, which leads naturally to an inclusion of disorder-induced vertex
corrections to the spin stiffness. The calculated concentration dependence of the spin-wave stiffness of random
fcc Ni-Fe alloys can be ascribed to a variation of the reciprocal value of alloy magnetization. Calculations for
random iron-rich bcc Fe-Al alloys reveal that their spin-wave stiffness is strongly reduced owing to the atomic
ordering; this effect takes place due to weakly coupled local magnetic moments of Fe atoms surrounded by a
reduced number of Fe nearest neighbors.
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I. INTRODUCTION

The spin stiffness, more specifically also referred to as
exchange or spin-wave stiffness, is undoubtedly among the
most important properties of itinerant ferromagnets. Its value
controls, e.g., the temperature dependence of magnetization at
low temperatures, the magnon dispersion law for long wave-
lengths, and the width of magnetic domain walls. Its reliable
experimental or theoretical determination is thus relevant for
the whole class of ferromagnetic materials, ranging from pure
transition metals [1] to dilute magnetic semiconductors [2].

Existing methods of ab initio calculations of magnon
spectra and the spin stiffness, as a rule based on the density-
functional theory, include a random-phase approximation [3]
and techniques dealing with noncollinear magnetic structures,
namely, self-consistent total-energy calculations of spin spi-
rals [4–7] and the method of infinitesimal spin rotations [8,9].
The latter approach leads to an effective classical Heisen-
berg Hamiltonian with isotropic pair exchange interactions
between the local magnetic moments; the spin stiffness can
then be expressed as a simple real-space lattice sum. However,
the asymptotic behavior of the exchange interactions for long
interatomic distances was shown to be of the Ruderman-
Kittel-Kasuya-Yosida (RKKY) form [10], which leads to an
ill-converging behavior of the real-space sum as a function
of the cutoff distance. A numerical technique to circumvent
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this problem was suggested which is based on an artificial
damping of the pair interactions and an extrapolation to zero
damping [10]. This practical solution seems to be sufficient
in certain cases [11,12]; nevertheless, a more fundamental
approach to overcome this obstacle would be highly desirable.

Theory and calculations of the spin stiffness for random
alloys (substitutionally disordered systems on nonrandom
crystalline lattices) face other difficulties. The most direct way
to handle the randomness seems to be a generalization of the
total-energy spin-spiral calculations using, e.g., the Korringa-
Kohn-Rostoker (KKR) multiple-scattering theory and the co-
herent potential approximation (CPA) [13]. This approach
neglects the effects of fluctuating local environments; the
same neglect is inherent in the method of infinitesimal spin
rotations applied to random alloys in the CPA [14,15]. The
local environment effect can be treated in supercell calcula-
tions; a study performed for an equiconcentration fcc Ni-Fe
alloy proved that the CPA-averaged exchange interactions
agree reasonably well with averages from a 16-atom supercell
[16]. Another problem related to this topic is the correct
CPA average of the pair exchange interactions. The latter
involve a product of two one-particle resolvents (Green’s
functions), so that the proper configuration average should
consist of a coherent contribution and the vertex corrections
[17]. However, the vertex corrections are typically ignored
in existing studies, which is sometimes loosely justified by
the so-called vertex-cancellation theorem [18] relevant for
interlayer exchange coupling of two ferromagnetic layers
separated by a thick nonmagnetic spacer layer. Hence, the role
of the vertex corrections in bulk alloy systems deserves more
detailed investigation, at least on the CPA level.
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Besides the mentioned problems in the determination of
the exchange interactions of random alloys, the evaluation
of magnon spectra of these systems is considered another
challenge for the solid-state theory [19]. The formulation of
effective-medium approaches is rather sophisticated, and it
leads to nontrivial numerical implementation [20,21]. Various
brute-force simulations using large supercells have thus been
used as alternatives which may be efficient and reliable in a
number of cases, including both the spin-wave spectra and
values of the spin-wave stiffness [19,21–24]. It was found that
the spin stiffness of random diluted ferromagnets is reduced
due to the sites without local magnetic moments compared
to the value obtained for a clean crystal with nonrandom
concentration-weighted exchange interactions of the alloy.
This reduction is weak for small concentrations of magnetic
vacancies [21], but it becomes appreciable in systems with
strong dilution, such as, e.g., Mn-doped GaAs [23,24].

The spin (exchange) stiffness represents one of the mi-
cromagnetic parameters of a ferromagnet which describe the
energetics and dynamics in cases with magnetization direc-
tion slowly varying in space (i.e., the magnetization varia-
tions are featured by length scales substantially exceeding
the nearest-neighbor interatomic distance). Another micro-
magnetic parameter, sometimes called spiralization [25], is
due to relativistic effects, especially the spin-orbit coupling
and the closely related Dzyaloshinskii-Moriya interaction. An
ab initio relativistic theory of spin stiffness and spiralization
for ordered and disordered systems was recently developed
within the KKR-CPA technique [26] as an extension of the
method of infinitesimal spin rotations [8,9]. For clean crystals,
the spiralization was also formulated in terms of the Berry
phase of k-vector-dependent Bloch eigenstates of the effective
one-electron Hamiltonian [25], i.e., using a concept encoun-
tered in the theory of electron transport properties such as the
anomalous Hall conductivity [27]. A natural question arises
thus in this context, namely, whether the spin stiffness can
also be expressed as a linear-response coefficient similar to the
conductivity and evaluated by means of techniques employed
for electron transport, with applicability to random alloys
as well.

From the materials point of view, existing applications
of the current ab initio techniques for the spin stiffness
were focused on pure ferromagnetic 3d transition metals (Fe,
Co, Ni) [1,5,7,10,28], selected stoichiometric ordered com-
pounds [11,29], random binary and ternary transition-metal
alloys [12,13,26,28], and dilute magnetic semiconductors
(Mn-doped GaAs) [23,24]. Less attention has been devoted so
far to random alloys of transition metals with p elements, such
as bcc Fe-M substitutional solid solutions, where M = Be, Al,
Si, and Ga. Some of these iron-rich alloys exhibit pronounced
magnetoelastic properties (tetragonal magnetostriction) which
motivated a number of experimental studies [30,31]. Full
assessment of the microscopic origin of this behavior requires
fair knowledge of the phonon and magnon spectra. As a rule,
the measured magnon spectra of the mentioned bcc Fe-M
alloys point to magnon softening due to M alloying [32].
However, a recent ab initio study of the spin-wave stiffness
of random Fe-Al alloys indicates an opposite concentration
trend [21]; this qualitative discrepancy thus deserves closer
examination.

The main aim of this study is to present an alternative for-
malism for the calculation of the spin stiffness in nonrandom
and random ferromagnetic systems which employs current
techniques of electron transport theory. The developed scheme
is then used to address some of the above-mentioned method-
ological and physical problems. The paper is organized as
follows: the theoretical formalism is introduced in Sec. II,
the numerical details are listed in Sec. III, and the results are
discussed in Sec. IV, including those for pure ferromagnetic
3d transition metals (Sec. IV A), for random fcc Ni-Fe alloys
(Sec. IV B), and for random bcc Fe-Al alloys (Sec. IV C).
Concluding remarks are presented in Sec. V.

II. THEORETICAL FORMALISM

The starting point of our approach to the spin stiffness is
the classical Heisenberg Hamiltonian

E ({eR}) = −
∑
RR′

JRR′eR · eR′ , (1)

where the indices R and R′ label the lattice sites, the unit
vectors eR denote directions of local moments attached to
respective lattice sites, and the quantities JRR′ are pair ex-
change interactions (satisfying JRR = 0 and JRR′ = JR′R).
This Hamiltonian is appropriate for ferromagnetic systems
that neglect relativistic effects and for local-moment direc-
tions deviating only slightly from the ground-state magneti-
zation direction. The latter direction is assumed along the z
axis in the following. The spin stiffness is related naturally to
energies of spin spirals which are parametrized by a reciprocal
space vector q and a cone angle θ . The spin structure of the
spin spiral is then defined explicitly as

eR = ( sin θ cos(q · R), sin θ sin(q · R), cos θ ), (2)

which yields

eR · eR′ = cos2 θ + sin2 θ cos[q · (R − R′)]. (3)

The energy of the spin spiral with respect to that of the
ferromagnetic ground state is then equal to

δE (θ, q) = sin2 θ
∑
RR′

JRR′ {1 − cos[q · (R − R′)]}. (4)

This expression in the limit |q| = q → 0 can be used for a def-
inition of the exchange stiffness relevant, e.g., for energetics
of domain walls.

For the spin-wave stiffness related to the magnon spectra
and considered in the rest of this paper, one has to include
the total spin magnetic moment M of the solid and the
quantization of the z component of the total spin operator [5].
This leads to a condition for the small cone angle θ given by

2μB = δmz = M(1 − cos θ ) ≈ 1
2 Mθ2, (5)

where the gyromagnetic ratio g = 2 for electrons is assumed,
μB denotes the Bohr magneton, and δmz is the change in the z
component of the total magnetic moment. The last condition
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together with Eq. (4) yields the magnon energy

Emag(q) = 4μB

M

∑
RR′

JRR′ {1 − cos[q · (R − R′)]}

≈
∑
μν

Dμνqμqν, (6)

where the approximate relation is valid for small q vectors
with Cartesian components qμ (μ ∈ {x, y, z}) and where Dμν

denotes the spin-wave stiffness tensor. This tensor is explicitly
given by

Dμν = 2μB

M

∑
RR′

JRR′
(
X μ

R − X μ

R′
)(

X ν
R − X ν

R′
)
, (7)

where the symbol X μ

R denotes the μ component of the lattice
site vector R.

According to the well-known formalism based on infinites-
imal spin rotations and the magnetic force theorem [9], the
pair exchange interactions JRR′ can be expressed in terms of
the electronic structure of the ferromagnetic ground state as

JRR′ = i

8π

∫
C

trL{�R(z)g↑
RR′ (z)�R′ (z)g↓

R′R(z)}dz,

�R(z) = P↑
R (z) − P↓

R (z). (8)

In this relation, the trace (trL) is taken over the composed
orbital index L = (�, m), the argument z denotes a complex
energy variable, and the complex integration contour C is
oriented counterclockwise, with starting and ending points
at the Fermi energy EF and containing the whole occupied
valence spectrum. The quantities gs

RR′ (z) abbreviate blocks of
matrix elements gs

RL,R′L′ (z) of one-electron Green’s functions
gs(z) in the spin channel s, where s ∈ {↑,↓} is the spin
index. The complex integration in Eq. (8) is equivalent to the
standard real-energy integration [9,14] owing to analyticity of
the integrated function. In this work, we employ the linear
muffin-tin orbital (LMTO) method [33–35], in which gs(z)
refers to the auxiliary Green’s function defined by

gs(z) = [Ps(z) − S]−1, (9)

where Ps(z) denotes the site-diagonal matrix of potential
functions and S is the LMTO structure-constant matrix. The
site-diagonal blocks Ps

R(z) of the matrices Ps(z) define the
energy-dependent local exchange splittings �R(z) entering
the expression for JRR′ (8); the blocks �R(z) form a site-
diagonal matrix �(z) = P↑(z) − P↓(z) to be used in the fol-
lowing. Let us note that the LMTO formalism employed here
can be replaced by the KKR formalism, which leads to a
replacement of the auxiliary Green’s function gs(z) in the last
two equations by the scattering path operator [36,37].

The formulation of a compact expression for the spin-
wave stiffness tensor Dμν rests on the definition of coordinate
operators X μ (μ ∈ {x, y, z}), represented by matrices diagonal
in the site (R) and orbital (L) indices, given explicitly by

X μ

RL,R′L′ = δRR′δLL′X μ

R . (10)

These coordinate operators were introduced in an ab initio
theory of electron transport [38]. In the present context, one

can use them in relations of the type

gs
RL,R′L′ (z)

(
X μ

R − X μ

R′
) = [X μ, gs(z)]RL,R′L′ , (11)

where [A, B] = AB − BA is a commutator. The last relation
together with Eqs. (7) and (8) leads to the tensor Dμν in the
form of a contour integral,

Dμν = μB

2M

1

2π i

∫
C

fμν (z)dz, (12)

with the integrated function fμν (z) given by

fμν = Tr{�[X μ, g↑]�[X ν, g↓]}, (13)

where all energy arguments (equal z) have been suppressed for
brevity and where the trace (Tr) extends over all RL indices
of the whole system. The commutators in the last relation can
be rewritten as

[X μ, gs] = igsvμgs,

vμ = −i[X μ, S], (14)

where we introduced the effective velocity operators vμ that
enter the LMTO transport theory as well [38–40]. Relation
(14) follows from Eq. (9) and from the site-diagonal nature of
the potential functions Ps(z), which implies [X μ, Ps(z)] = 0.
The substitution of Eq. (14) into Eq. (13) and the use of the
cyclic property of the trace together with the identity

g↑�g↓ = g↓�g↑ = g↓ − g↑ (15)

yield the final expression for the function fμν (z), namely,

fμν = −Tr{vμ(g↑ − g↓)vν (g↑ − g↓)}, (16)

where energy arguments z are omitted. This is the central
result of this section.

The final expression for the spin stiffness tensor [see
Eqs. (12) and (16)] has the form of a genuine linear-response
coefficient suitable for direct numerical evaluation. This cal-
culation requires merely the self-consistent electronic struc-
ture of the ferromagnetic ground state as an input for the
relevant integrations over the Brillouin zone (BZ) and over
the complex energy path (Sec. III). This straightforward pro-
cedure should be contrasted with most existing approaches
which require (in addition to the self-consistent ferromagnetic
ground state) another intermediate step which is numerically
quite demanding or delicate. This refers to the method based
on the ill-converging real-space lattice summation [10] (where
the real-space pair exchange interactions have to be obtained
first, followed by an extrapolation with respect to the artificial
damping parameter), to the technique employing the spin-
spiral calculations [5] (where total energies of the spin spirals
for finite q vectors and cone angles θ have to be obtained
first, followed by numerical derivatives), and to the recent
KKR approach with reciprocal-space integration [26] (where
numerically demanding derivatives of the scattering-path op-
erator with respect to the k-vector components have to be
evaluated).

The derived alternative formula for the spin-wave stiffness
tensor also deserves further comments. First, in contrast to
local exchange splittings entering the previous expressions for
this tensor [8,26], the present result contains the nonlocal,
spin-independent velocity operators vμ while all effects of
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the exchange splitting are contained in the difference g↑(z) −
g↓(z) of the spin-resolved Green’s functions. Second, the
form of fμν (z) (16) strongly resembles the Kubo-Greenwood
formula for the conductivity tensor σμν in the LMTO method
[38]. The latter is obtained by replacing g↑(z) and g↓(z) in
Eq. (16) by g(EF + i0) and g(EF − i0), respectively, i.e., by
the retarded and advanced Green’s functions at the Fermi en-
ergy. Third, this analogy with the theory of electron transport
enables one to apply the same techniques of configuration
averaging in the CPA also for the spin-wave stiffness tensor of
random alloys. In particular, the quantity M in Eq. (12) has to
be replaced by the average alloy magnetization, and the CPA
average of the Green’s function [35,41]

ḡs(z) = [P s(z) − S]−1, (17)

where P s(z) denotes the site-diagonal matrix of coherent
potential functions, is used for the average of Eq. (16). This
leads to the result

f̄μν (z) = f̄ coh
μν (z) + f̄ VC

μν (z), (18)

where the first term defines the coherent (coh) part, given
explicitly by

f̄ coh
μν = −Tr{vμ(ḡ↑ − ḡ↓)vν (ḡ↑ − ḡ↓)}, (19)

while the second term in Eq. (18) is the corresponding inco-
herent part (vertex corrections, VC). Note that this decompo-
sition follows the original approach by Velický [17] owing to
the nonrandom effective velocities vμ; the vertex corrections
in the present LMTO-CPA formalism have been evaluated ac-
cording to the Appendix in Ref. [42]. As a direct consequence
of the decomposition (18), the spin-wave stiffness tensor of
random alloys can also be written as a sum of its coherent
and incoherent parts, Dμν = Dcoh

μν + DVC
μν , which represents

the complete CPA average. Fourth, the proposed approach
is not limited to the LMTO technique, but it is transferable
to other electronic structure methods, such as the KKR tech-
nique. The effective velocities vμ enter the formalism via the
commutator relation, Eq. (14), which involves the diagonal
coordinate operators X μ, Eq. (10). The transferability rests
on the very simple form of these coordinate operators which
reflects the basic starting point of the method of infinitesimal
spin rotations [8,9], in which the rotations refer to the whole
local magnetic moments at the respective lattice sites.

Finally, the original (canonical) LMTO formalism used in
this section can be replaced by its tight-binding (TB) version,
in which the potential functions Ps(z), the structure-constant
matrix S, and the Green’s functions gs(z) are replaced by
their screened counterparts [35,43,44]. The TB-LMTO tech-
nique is advantageous for numerical implementation. It can
be proved that the function fμν (z) (16) and the tensor Dμν

(12) are invariant with respect to the TB-LMTO screening
transformation. This invariance holds also within the CPA, so
that both Dcoh

μν and DVC
μν are invariant quantities as well. The

proof of invariance is omitted here for its similarity to that
done in the case of transport properties [40].

III. NUMERICAL IMPLEMENTATION

The developed theory was implemented numerically in
a way resembling that employed recently for the so-called
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FIG. 1. The calculated spin-wave stiffnesses Dxx = Dyy (circles,
left scale) and Dzz (triangles, right scale) for hcp Co as functions of
the number N of k vectors sampling one half of the first Brillouin
zone.

Fermi sea contribution to the conductivity tensor in the
relativistic TB-LMTO-CPA theory [40]. The self-consistent
electronic structure was obtained within the local spin-density
approximation (LSDA) and the atomic sphere approximation
using the scalar-relativistic spd basis [35]. The contour inte-
gration in Eq. (12) was performed along a circular path C with
a diameter of 1.5 Ry; the numerical integration was done with
20 to 40 complex nodes distributed on the lower half of C.
The BZ averages were evaluated by using ∼108 k vectors for
a uniform sampling of one half of the full BZ.

For the sake of a comparison of Dμν calculated from
Eq. (12) with results of traditional approaches, we have also
applied a procedure based on TB-LMTO-CPA total-energy
calculations for spin spirals (2), implemented according to the
KKR-CPA technique [13]. The calculations were performed
for cubic systems with planar spirals (θ = π/2) and q vec-
tors along the z axis, q = (0, 0, q). The spin-wave stiffness,
denoted as Dsp in the following, was then obtained from a
numerical derivative of the total energy as a function of q for
q → 0 [5].

IV. RESULTS AND DISCUSSION

A. Pure transition metals

The numerical aspects of the developed formalism were
first examined for pure ferromagnetic 3d transition metals:
bcc Fe, hcp Co, and fcc Ni. Figure 1 shows the convergence
behavior of the spin-wave stiffness tensor for hcp Co. One can
see that with the increasing number N of k vectors sampling
the hcp BZ, both nonzero elements of Dμν , namely, Dxx = Dyy

and Dzz, exhibit fairly rapid convergence to their limiting
values. A similar fast convergence was observed for cubic
iron and nickel (not shown here). This convergence property is
substantially better than that of the real-space lattice summa-
tions (involving the pair exchange interactions) as a function
of the cutoff distance dmax (see Fig. 2 in Ref. [10]). The reason
lies in the typical modest values of dmax < 10a used in the
lattice summations, where a denotes the lattice parameter. The
employed numbers N > 106 for the BZ sampling (Fig. 1) are
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TABLE I. The calculated and experimental values of the spin-
wave stiffness D (in meV nm2) for 3d transition-metal ferromagnets.
The values obtained in this work are completed by values calculated
previously from spin spirals [5] and from real-space lattice summa-
tions [10].

Calculations
This work Ref. [5] Ref. [10] Expt.

Fe 2.73 2.47 2.50 3.3a

Co 7.38 5.02 6.63 5.8b

Ni 8.01 7.39 7.56 5.3c

aReference [45].
bReference [46].
cReference [47].

equivalent to big, but finite, crystals (with periodic boundary
conditions) with edge lengths L ≈ N1/3a > 100a, exceed-
ing thus the cutoff distances dmax by at least one order of
magnitude.

Let us note that the convergence problems of the real-space
lattice summations are caused by the RKKY-like asymptotic
behavior of the pair exchange interactions, leading to their
very slow decay for long intersite distances. The new formal-
ism removes the real-space pair interactions completely by
using the BZ integrations. Its efficiency is closely related to
the lattice Fourier transformation of the TB-LMTO structure
constant matrix S, which is the only non-site-diagonal matrix
entering the evaluated expression. The spatial range of the
matrix S is extremely short, so that, typically, a cutoff to the
second or third shell of nearest neighbors is fully sufficient for
close-packed lattices such as fcc, bcc, and hcp [43,44]. This
property allows one to perform the Fourier transformation
very fast and, consequently, to increase the number of the
sampling k vectors substantially.

The converged values of the spin-wave stiffness D for all
three metals are summarized in Table I together with values
obtained from the spin-spiral calculations [5] and the real-
space lattice summations [10] as well as from experiments.
The value of D for hcp Co in Table I refers to the isotropic
part of Dμν , i.e., D = (2Dxx + Dzz )/3, whereas the values
from both previous calculations [5,10] refer to fcc Co; the
experimental value [46] was obtained for the hcp phase. One
can observe that all theoretical values reproduce roughly the
measured data, with the biggest discrepancy encountered for
nickel; for the cubic metals (Fe and Ni), similar values of D
were recently obtained by a thorough analysis of results of the
KKR multiple-scattering theory [28]. The overestimation of D
for Ni by the LSDA calculations can be explained by the well-
known overestimation of the exchange splitting which comes
out about two times bigger than that from photoemission ex-
periments [48]. A systematic way to achieve better agreement
between the theory and the experiment should include effects
of electron-electron correlations beyond the LSDA [49]; this
task has to be left for future studies.

The calculated tensor Dμν for hcp Co exhibits a small
anisotropy featured by Dxx > Dzz (Fig. 1). However, a recent
calculation based on pair exchange interactions up to six
nearest neighbors [1] yields an opposite anisotropy (Dxx <

Dzz). This fact documents the importance of well-converged

values for reliable resolution of subtle details of the spin-wave
stiffness tensor. Similarly, the values of D for bcc Fe and fcc
Ni obtained in this work (Table I) differ from those based on
the real-space lattice summation [10]; the relative difference
(below 10% for both metals) points to an uncertainty inherent
in the employed regularization procedure of the ill-converging
lattice sums [10]. Let us note that pure metals and ordered
clean crystals represent the most difficult cases for the lattice-
sum approach, whereas random alloys can be treated by
this technique with a higher accuracy and efficiency due to
the disorder-induced exponential damping of the exchange
interactions for large interatomic distances [12].

B. Random fcc Ni-Fe alloys

For the random fcc Ni-Fe alloys, we considered a concen-
tration range up to 60% Fe; the fcc lattice parameter for a
given alloy composition was set according to Vegard’s law
using the experimental atomic (Wigner-Seitz) radii of the pure
constituents in their equilibrium structures, sNi = 2.60a0 and
sFe = 2.66a0, where a0 denotes the Bohr radius. The calcu-
lated spin-wave stiffness D is displayed in Fig. 2(a) together
with values from the spin-spiral calculations (Dsp) and from
the experiment [47]. One can see that both calculated quan-
tities, D and Dsp, acquire mutually close values and exhibit
very similar concentration trends, thus giving confidence in
both formalisms and their numerical implementations. More-
over, the calculated values for the permalloy composition
Ni0.8Fe0.2, namely, D = 5.53 meV nm2 and Dsp = 5.45 meV
nm2, compare reasonably well with recent KKR values for
a Ni0.81Fe0.19 alloy, which lie in the interval [5.12, 5.63] meV
nm2 depending on the particular approach employed [28]. The
experimental stiffness shows also a similar decreasing trend
with increasing Fe concentration; however, the measured val-
ues are appreciably smaller than the theoretical ones, espe-
cially for Ni-rich alloys, which originates in the discrepancy
found for pure Ni (see Sec. IV A).

The theoretical results in Fig. 2(a) are in reasonable agree-
ment with those obtained recently from a fully relativistic
extension of the method of infinitesimal spin rotations (see
Fig. 1 in Ref. [26]). This fact indicates that the spin-orbit
interaction has a negligible effect on the spin stiffness in this
alloy system and that its omission in the present work cannot
be responsible for the existing discrepancy between the theory
and experiment for Ni-rich alloys. The decreasing trend of D
with increasing Fe content deserves a brief comment as well
since attempts to explain similar concentration dependences in
binary transition-metal systems appeared rather early [45,50].
Figure 2(b) displays the calculated value of D together with
the reciprocal value of the alloy magnetization M, which
enters the expressions for D [see Eqs. (7) and (12)]. While the
concentration trends of D and 1/M differ slightly, the largest
part of the variation of the spin-wave stiffness throughout
the whole concentration range studied can safely be ascribed
to the variation of the alloy magnetization. Finally, we note
that the total stiffness D in the fcc Ni-Fe alloys coincides
practically with its coherent part while the incoherent part
(vertex corrections) is completely negligible in the entire con-
centration interval (the maximum vertex part is encountered
for 60% Fe, where it amounts to about 0.5% of the total D).
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C. Random bcc Fe-Al alloys

The random bcc Fe-Al alloys were studied for Al concen-
trations up to 25%; the variation of the bcc lattice parameter
with composition was set according to existing experimental
data [52,53]. The theoretical values of the spin-wave stiffness
are shown in Fig. 3 simultaneously with the experimental
points [51] (the measured value for pure iron was taken from
Ref. [45]). One reveals a close mutual similarity of both calcu-
lated values (D and Dsp), which however, differ significantly
from the measured values. The measured monotonic decrease
of the spin-wave stiffness of bcc Fe due to an alloying by
a p element M has been reported not only for M = Al but
also for other dopants (M = Be, Ga, Si; see Ref. [32] and
references therein). On the theoretical side, the initial decrease
of D (up to 5% Al) is changed into an increase for higher
Al contents (with a saturation close to 25% Al; see Fig. 3).
A nonmonotonic concentration dependence of D has also
been calculated by the authors of Ref. [21] with a maximum
stiffness around 20% Al.

 1

 2

 3

 4

 0  0.1  0.2

D

Dsp

Dexp

D
  (

m
eV

 n
m

2 )

Al  concentration

FIG. 3. Concentration dependence of the spin-wave stiffness in
a random bcc Fe-Al alloy: the stiffnesses from Eq. (12) (D, solid
diamonds), from spin-spiral calculations (Dsp, open circles), and
from experiment [45,51] (Dexp, open squares).

For an explanation of the above discrepancy, one has to
consider effects of atomic ordering, pronounced in the Fe-
Al alloy especially for higher Al concentrations [54] but
neglected in the calculations reported in Ref. [21] as well
as in our approach (Fig. 3). As suggested by several authors
[32,51,55], the strong reduction of the spin-wave stiffness for
the alloy with 25% Al compared to that of pure iron should be
ascribed to the D03 or B2 atomic orders. Moreover, theoretical
investigation of the atomic short-range order in bcc Fe-Al
alloys predicts that the alloys with about 20% Al exhibit a
substantial degree of the B2 short-range order when annealed
from high temperatures [56,57]. Our theoretical spin-wave
stiffness for the stoichiometric Fe3Al system with the D03

structure amounts to D = 1.74 meV nm2, which represents a
pronounced reduction compared to the calculated value for
pure Fe (D = 2.73 meV nm2), but it still remains above the
experimental value for alloys with 25% Al (see Fig. 3).

In order to assess the effect of the B2 atomic order on
the spin-wave stiffness, we have performed calculations for
bcc Fe-Al alloys with B2 atomic long-range order (LRO).
The structure of an Fe1−cAlc alloy thus contains two sim-
ple cubic sublattices with respective compositions given by
Fe1−c+uAlc−u and Fe1−c−uAlc+u, where c denotes the global
Al concentration and u is an auxiliary concentration variable
(0 � u � c � 0.25). The degree of the B2 LRO can then
be quantified by the LRO parameter S = u/c (0 � S � 1);
a completely random bcc alloy is given by S = 0, whereas
the value S = 1 refers to the maximum B2 LRO. It should be
noted that the developed formalism can be directly extended
to random systems with a few sublattices within the single-site
CPA since the coherent potential function in Eq. (17) is a site-
diagonal matrix. The calculated stiffness D for the Fe0.8Al0.2

alloy as a function of the LRO parameter S is presented in
Fig. 4(a). One can see a monotonic decrease of D with increas-
ing S; the B2 LRO thus reduces the stiffness with an efficiency
similar to the D03 order. Since the type and degree of the
atomic order in experimentally prepared Fe-Al samples are
unknown, we have assumed the maximum B2 LRO (S = 1)
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FIG. 4. The spin-wave stiffnesses obtained from Eq. (12) (D,
solid diamonds) and its coherent part (Dcoh, open circles) in Fe-Al
alloys with B2 atomic LRO: (a) in the Fe0.8Al0.2 alloy as a function
of the LRO parameter S and (b) in Fe-Al alloys with maximum B2
LRO as a function of Al concentration together with experimental
values [45,51] (Dexp, open squares).

for each Al concentration and recalculated the composition
dependence of the stiffness. As documented in Fig. 4(b), the
theoretical values of D reproduce now the measured data in
fair agreement, yielding for 25% Al a spin-wave stiffness as
low as D ≈ 1 meV nm2.

The theoretical results displayed in Fig. 4 include also the
coherent part of the spin-wave stiffness which enables one to
assess the role of the vertex corrections in this alloy system.
One finds that for the completely random bcc Fe0.8Al0.2 alloy,
the vertex corrections are negative and their magnitude is
about 4% of the total stiffness [Fig. 4(a)]. The importance of
the vertex corrections increases with increasing Al content and
B2 LRO; for Fe0.75Al0.25 and S = 1, the relative magnitude
of the incoherent part slightly exceeds 30% of the total D
[Fig. 4(b)]. The negative sign and the appreciable magnitude
of the vertex corrections bring the theoretical values of D into
better agreement with the measured data. A comparison of the
role of the incoherent contribution to the spin stiffness in the
Fe-Al system to that in the Ni-Fe system (Sec. IV B) reveals a
striking analogy to a general rule valid for residual electrical

TABLE II. Local quantities of Fe atoms in three different phases
(bcc, D03, B2) of the Fe75Al25 alloy: the average number of the
nearest-neighbor Fe atoms NFe, the relative occurrence w of the
particular Fe atom position with respect to all Fe atoms, the local
magnetic moment m, and the on-site exchange parameter J0. For
the ordered phases, different sublattices occupied by Fe atoms are
denoted in the parentheses.

phase NFe w m (μB) J0 (mRy)

bcc 6 1 2.19 12.6
D03 (A,C) 4 2/3 1.85 8.0
D03 (B) 8 1/3 2.37 17.3
B2 (A) 4 2/3 1.74 5.6
B2 (B) 8 1/3 2.49 14.9

conductivities of random alloys [58]: the vertex corrections
are quite small in alloys of transition metals (with dominating
d character of electron states at the Fermi energy) but become
significant in alloys involving noble and simple metals.

A detailed microscopic explanation of the spin-wave soft-
ening due to the atomic ordering in Fe-Al alloys goes beyond
the scope of the present work; nevertheless, its possible origin
can be estimated from an inspection of various site-resolved
quantities of iron atoms. A brief list of such quantities is
presented in Table II for the Fe75Al25 alloy in three different
phases: the random bcc phase, the ordered D03 structure, and
the alloy with the maximum degree of B2 LRO. Note that
the D03 structure contains four fcc sublattices, A, B, C, and
D, occupied by Fe atoms (A, B, C) and by Al atoms (D),
whereby sublattices A and C are mutually equivalent. The B2
phase with S = 1 consists of two simple cubic sublattices A
and B, with the former occupied solely by Fe atoms while the
chemical composition of the latter is Fe50Al50. The average
numbers NFe of nearest-neighbor Fe atoms of central Fe atoms
on different sublattices are displayed in Table II together with
their local magnetic moments m and relative occurrences w.
The latter quantity is defined with respect to all Fe atoms in
the system; that is, w denotes the probability that a randomly
chosen Fe atom of the alloy occupies the given sublattice (or
any of sublattices A and C in the D03 phase). The ordering
tendencies in the Fe-Al system generally reduce the average
number of Fe-Fe nearest neighbors; this reduction is accom-
panied by a decrease of the local magnetic moments of Fe
atoms on the A (and C) sublattice in both ordered alloys that
is only partly compensated by an increase of the Fe moments
on the B sublattice (see Table II). The ordering induces an
even stronger decrease of an on-site exchange parameter J0

for Fe atoms on the A (and C) sublattice. The on-site exchange
parameter is defined in terms of the pair exchange interactions
as J0

R = ∑
R′ JRR′ ; it reflects the exchange field experienced

by the local magnetic moment at site R, and it is evaluated
easily from the on-site blocks of the Green’s functions by
using a well-known sum rule [9,14]. The ordering-induced
magnon softening can thus be ascribed to the weakly coupled
local moments of Fe atoms featured by a reduced number
of Fe nearest neighbors. The validity of this conclusion is
probably not confined only to the studied Fe-Al system but
can also be extended to other iron-rich alloys with p elements
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(e.g., Fe-Si, Fe-Ga) where similar ordering tendencies are
encountered as well [54].

V. CONCLUSIONS

In this work, a formulation of the spin-wave stiffness tensor
of itinerant ferromagnetic systems has been worked out by
employing the concepts and techniques used currently in the
theory of electron transport. Application of the developed for-
malism to clean crystals allows one to overcome convergence
problems inherent in real-space lattice summations involving
pair exchange interactions. The derived formulas can easily
be combined with the CPA for an efficient treatment of substi-
tutionally disordered alloys, which enables one to include the
vertex corrections, often neglected in existing calculations of
the pair exchange interactions.

The first results of an implementation within the LSDA
reproduced successfully previous results of other authors for
transition-metal systems; in particular the decreasing trend
of the spin-wave stiffness with increasing Fe content in fcc
Ni-Fe random alloys was related to the concentration trend

of the alloy magnetization. For bcc Fe-Al random alloys,
a strong sensitivity of the spin-wave stiffness to the atomic
order was proved indispensable for correct reproduction of
the measured concentration dependence by the calculations.
The two alloy systems studied represent two opposite cases
from the viewpoint of the vertex corrections: the latter are
negligibly small in the Ni-Fe alloys but appreciable in the Fe-
Al alloys. These results thus follow similar findings obtained
in the theory of electron transport.

The developed approach to the spin-wave stiffness tensor
has been presented in the TB-LMTO method, but it can obvi-
ously be implemented in the KKR multiple-scattering theory
as well. An open question remains its possible generalization
within a relativistic theory of exchange interactions [59,60]
and micromagnetic parameters [25,26]; this has to be explored
in the future.
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