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Assessing different approaches to ab initio calculations of spin wave stiffness
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Ab initio calculations of the spin-wave stiffness constant D for elemental Fe and Ni performed by different
groups in the past have led to values with a considerable spread of 50–100%. We present results for the stiffness
constant D of Fe, Ni, and permalloy Fe0.19Ni0.81 obtained by three different approaches: (i) by finding the
quadratic term coefficient of the power expansion of the spin-wave energy dispersion, (ii) by a damped real-space
summation of weighted exchange coupling constants, and (iii) by integrating the appropriate expression in
reciprocal space. All approaches are implemented by means of the same Korringa-Kohn-Rostoker (KKR)
Green’s function formalism. We demonstrate that if properly converged, all procedures yield comparable values,
with uncertainties of 5–10% remaining. By a careful analysis of the influence of various technical parameters, we
estimate the margin of errors for the stiffness constants evaluated by different approaches and suggest procedures
to minimize the risk of getting incorrect results.
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I. INTRODUCTION

Investigations of magnetic properties of materials at the
phenomenological level based on a model spin Hamiltonian
may be formulated either in a continuous field (micromag-
netic) representation or in an atomistic representation. In the
first case, the energy functional (neglecting relativistic effects)
is given by [1]

E [m] =
∫

V
d3r Aex

∑
c=x,y,z

(
∂m
∂c

)2

, (1)

where m(r) is the magnetization field and Aex is the exchange
stiffness constant. In the atomistic representation, the energy
is given by the Heisenberg Hamiltonian,

H = −
∑

i j

Ji j êi · ê j, (2)

where êi and ê j are unit vectors specifying the orientation
of the magnetic moments for the atoms i and j, with the
exchange coupling characterized by the exchange parameter
Ji j . Both approaches give access to the energy of spin-wave
excitations ε(q), which can be written in the long wave limit
as [2]

ε(q) = D |q|2 + . . . , (3)

where q is is the corresponding wave vector and D is the spin-
wave stiffness constant. The quantity is directly connected to
the exchange stiffness Aex via the relation [1]

Aex = D Ms

2gμB
, (4)

*sipr@fzu.cz; http://crysa.fzu.cz/ondra

where Ms is the saturation magnetization, g is the Landé factor
(g ≈ 2 for metals) and μB is the Bohr magneton. This relation
provides a link to the experiment: The model parameter Aex

entering Eq. (1) can be obtained from the spin-wave stiffness
constant D, which can be determined experimentally. On the
other hand, comparing the spin-wave stiffness calculated from
first principles with experimental data allows us to assess
the reliability of models and approximations used in the
calculations.

As the spin-wave stiffness constant D characterizes the
energy of spin-wave excitations in the long-wave limit, it can
be obtained on the basis of spin spiral calculations within
the adiabatic approximation. In this case, the energy ε(q)
calculated from first principles for a spin spiral characterized
by a wave vector q should be approximated around q = 0 by
a suitable polynomial and the stiffness constant D is just the
expansion coefficient of the quadratic term.

A similar scheme can also be applied to evaluate D by
using the spin-wave energy dispersion represented in terms
of real-space interatomic exchange coupling parameters, ob-
tained on the basis of the magnetic force theorem. In this case,
by expressing the spin spiral energy in a power series of q, one
arrives at the expression [3–5]

D =
∑

j

2μB

3μ j
J0 j R2

0 j, (5)

where μ j is the magnetic moment of atom j and R0 j is the
corresponding interatomic distance.

Both approaches, i.e., the one based on fitting calculated
spin spiral energies by a polynomial and the one based on
evaluating the real-space sum Eq. (5), were employed for
ab initio calculations of the spin-wave stiffness constant D in
the past. However, despite the conceptual simplicity of both
procedures, values of D obtained by different groups for the
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TABLE I. Previous theoretical results for the spin-wave stiffness
D (in meV Å2) of elemental Fe and Ni and of Fe1−xNix alloy (its
composition was Fe0.25Ni0.75 [6] and Fe0.19Ni0.81 [7]). Each study is
identified by a reference and the publication year. The method how D
was evaluated is indicated in the last column: ε(q) stands for fitting
the spin-wave dispersion Eq. (3) whereas Ji j denotes a weighted sum
of the coupling constants Eq. (5).

Work Fe Ni Fe1−xNix Method

[8] (1996) 214 527 Ji j

[9] (1997) 247 739 Ji j

[10] (1999) 135 180 ε(q)
[11] (1999) 280 740 ε(q)

[2] (2000) 355 790 ε(q)
[5] (2001) 250 756 Ji j

[12] (2003) 200 ε(q)
[6] (2008) 515 Ji j

[13] (2005) 322 541 ε(q)
[7] (2017) 320 707 620 Ji j

same systems exhibit a considerable spread. To illustrate this,
we present in Table I several values for the stiffness constant
D for elemental Fe and Ni and permalloy Fe0.19Ni0.81 (Py)
obtained by previous theoretical studies. Another comparison
can be found, e.g., in Table 10 of Vaz et al. [1]. One can see
from Table I that the deviations may easily reach 50%. Such
big discrepancies are extraordinarily high when compared,
for example, with the situation for the exchange coupling pa-
rameters Ji j—even when considering that the studies employ
different methods of electronic structure calculations relying
on different approximations. The discrepancies also appear
between studies which use the same method to evaluate the
stiffness constant D: It is not that results based on one method
would cluster around one value and results based on the other
method around another value. As none of the previous studies
presented results obtained by both methods—one always fo-
cused solely either on Eq. (3) or on Eq. (5)—it is difficult to
assess properly the accuracy and reliability of the procedures
involved.

Yet another way to determine the spin-wave stiffness as
the second derivative of the spin-wave energy with respect
to the wave vector q relies on evaluating the corresponding
derivatives of the exchange parameters J (q). This in turn leads
to an expression for the stiffness constant D formulated in
reciprocal space, as presented by Liechtenstein et al. [3,4].
So far, no results on spin-wave stiffness based on this third
approach have been reported in the literature. Only recently,
a relativistic extension of the reciprocal-space expression for
D was presented by Mankovsky et al. [14] and applied for
studying Fe-Ni alloys.

The stiffness constant D is an important characteris-
tic quantity as it determines—together with the magnetic
anisotropy—the domain structure of magnetic materials. In
addition, it determines the magnetization dynamics. There-
fore, there is an urgent need for a detailed comparison of
the various computational approaches to evaluate D so that
reliable values can be obtained.

The aim of this paper is therefore to calculate the spin-
wave stiffness constant D of Fe, Ni, and Py by analyzing the

long-wave limit of the spin-wave dispersion relation Eq. (3),
by evaluating the weighted sum of coupling constants Eq. (5),
and by a direct evaluation of D in reciprocal space [14]. All
three approaches are implemented by use of the same elec-
tronic structure method, namely, the Korringa-Kohn-Rostoker
(KKR) Green’s function formalism, meaning that the results
are directly comparable. A careful analysis of the influence
of various technical parameters makes it possible to estimate
the margin of errors for the stiffness constants evaluated by
the different approaches and to decide whether there is a
significant difference between them or not. By illustrating
how various factors affect the outcome, we offer a guidance
how the procedures ought to be performed to minimize the
risks of wrong results.

II. COMPUTATIONAL SCHEME

Evaluation of the spin-wave stiffness constant D is done
on the basis of a calculation of the underlying electronic
structure of the system. For this, we employed the ab initio
spin-polarized multiple scattering or KKR Green’s function
formalism [15] as implemented in the SPRKKR code [16].
The calculations were performed in a scalar-relativistic mode,
relying on the generalized gradient approximation to the spin-
density functional theory, using the Perdew, Burke, and Ernz-
erhof functional. For the multipole expansion of the Green’s
function, an angular momentum cutoff �max = 3 was used. The
potentials were subject to the atomic sphere approximation
(ASA). When dealing with Py, the substitutional disorder was
accounted for within the coherent potential approximation.
The energy integrals were evaluated by contour integration on
a semicircular path within the complex energy plane, using
a Gaussian mesh of 32 points. The k-space integration was
carried out via sampling on a regular mesh, making use of the
symmetry. The number of k points in the mesh is an important
technical parameter and will be considered in Sec. III in more
detail; here we just note that unless specified otherwise, we
used 893 points in the full Brillouin zone (BZ) for bcc Fe, 1123

points for fcc Ni, and 753 points for fcc Py. The equilibrium
lattice constant a0 was determined by minimizing the total
energy for each system. This gives us a0 = 2.830 Å for Fe,
3.506 Å for Ni, and 3.523 Å for Py.

To evaluate the stiffness constant D by means of finding
the expansion coefficient as in Eq. (3), the spin-wave energy
dispersion relation ε(q) has to be obtained. We achieved
this by evaluating the change of the total energy per unit
cell E (q, θ ) − E (0, θ ) due to a spin spiral characterized by
magnetic moment

μspin [cos(qR) sin θ, sin(qR) sin θ, cos θ ], (6)

where R is the Bravais lattice vector, q is the spin spiral wave
vector, θ is the spiral cone angle, and μspin is the magnitude
of the magnetic moment per site. The magnon energy ε(q) is
given by [2]

ε(q) = lim
θ→0

4μB

μspin

E (q, θ ) − E (0, θ )

sin2 θ
. (7)

The change of the energy E (q, θ ) − E (0, θ ) due to the spin
spiral Eq. (6) can be obtained either by employing self-
consistent calculations for each of the wave vectors q or by
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relying on the force theorem, meaning that the same potential
(obtained for the ferromagnetic state) for all wave vectors
q is used. The electronic structure for spiral magnetic order
was calculated as described by Mankovsky et al. [17]. Our
calculations are scalar-relativistic, therefore, the results do not
depend on the angle between the axis of the spin rotation cone
and the spin-wave propagation direction. The details how the
behavior of ε(q) for q → 0 was analyzed are described in
detail in Sec. III A.

When resorting to the second option, namely, an evaluation
of the stiffness constant D in real space by relying on Eq. (5),
one has to deal with the fact that the sum over the atoms∑

j in Eq. (5) does not converge for metals (due to the
long-range character of the exchange coupling) [5]. Hence, an
additional damping factor has been introduced which enables
evaluation of Eq. (5) by extrapolating the partial results to zero
damping [5]. In particular, we evaluated the stiffness constant
D as [5,18,19]

D = lim
η→0

D(η), (8)

D(η) =
∑

α

cα Dα (η), (9)

Dα (η) =
∑

j

∑
β

cβ

2μB

3
√|μα||μβ | J (αβ )

0 j R2
0 j e−η

R0 j
R01 , (10)

where j labels the lattice sites, cα and μα are the concentration
and the magnetic moment of atoms of type α, J (αβ )

0 j is the
pairwise exchange coupling constant if an atom of type α is
located at the lattice origin and an atom of type β is located
at the lattice site j, R0 j is the distance of the site j from
the lattice origin, η is the damping parameter and R01 is the
nearest-neighbor interatomic distance [5,18–20]. Note that we
have one atomic type for Fe and Ni whereas two atomic
types for Py. The exchange coupling constants J (αβ )

0 j were
evaluated from the electronic structure using the prescription
of Liechtenstein et al. [4]. Taking the limit limη→0 D(η) in
Eq. (8) is a delicate issue and we devote to it most of Sec. III B.

Performing the sum over atomic sites in Eq. (5) or Eqs. (9)–
(10) can be by-passed by evaluating the stiffness constant D
via a reciprocal-space integration [3,4]. A recently reported
relativistic generalization of this approach [14] leads to the
expression:

Dαβ = 1

πμspin
ImTr

∫ EF

dE
1


BZ

∫
BZ

d3k

×
[

T x

∂τ (k, E )

∂kα

T x

∂τ (k, E )

∂kβ

+ T y

∂τ (k, E )

∂kα

T y

∂τ (k, E )

∂kβ

]
. (11)

The matrix τ is the Fourier transform of the scattering path
operator and the matrices T x, T y represent the change of the
potential upon rotating the spin,

Tx,�1�2 =
∫

d3r Z×
�1

(r, E ) βσx Z�2 (r, E ), (12)

Ty,�1�2 =
∫

d3r Z×
�1

(r, E ) βσy Z�2 (r, E ), (13)

where Z�(r, E ) stands for the regular solution of a single-site
Dirac equation, and subscripts α, β denote cartesian compo-
nents. We deal with cubic lattices, so the stiffness constant D
is isotropic, Dxx = Dyy = Dzz = D. For more details, see the
original paper [14]. The advantage of using Eq. (11) is that
there is no need for polynomial fitting as when employing
Eqs. (3) and (7) or for extrapolation as when employing
Eq. (8). On the other hand, when proceeding along Eq. (11),
one has to evaluate the derivative (∂τ/∂k) which is a numeri-
cally demanding task.

In this work we evaluated the integrand in Eq. (11) using
the same scalar-relativistic potential as when obtaining the
stiffness constant D via Eqs. (3) and (7) or via Eqs. (8)–
(10). Moreover, we suppress the spin-orbit coupling (SOC)
by employing an approximate two-component scheme [21],
similarly as when investigating the influence of SOC on
electronic-structure-related properties in the past [22,23]. The
results we obtain by means of Eq. (11) are thus directly
comparable to scalar-relativistic results obtained by means of
the other two approaches. The k-mesh used for this type of
calculations contained 1353 points for Fe and Py and 1443

points for Ni.
Let us note finally that even though we employ a particular

electronic structure calculation method (KKR Green’s func-
tion formalism), the issues we deal with are not specific to it
and will have to be cared upon no matter which calculational
method is used.

III. RESULTS

A. Fitting spin-wave energy dispersion

First we consider various aspects when obtaining the spin-
wave stiffness constant D as the coefficient of the quadratic
term of the power expansion for the spin-wave energy disper-
sion relation Eq. (3). An obvious technical parameter against
which the convergence should be checked is the density of
the mesh used to evaluate the integrals in k-space. We verified
that for the grids used in this section, namely, 1653 points in
the full BZ for Fe, to 1493 points for Ni, and to 1333 points for
Py, the values of D are converged within ±0.2 meV Å2. This
means that for the purpose of the convergency tests outlined in
this section, the values of D can be considered as practically
accurate in this regard.

The magnon energy ε(q) is represented in terms of the
spin-spiral energy Eq. (7) in the limit θ → 0. For this one
should calculate the electronic structure for spin spirals with
the cone angle θ as small as possible. However, if the angle
θ approaches zero, so does the energy difference E (q, θ ) −
E (0, θ ), and evaluating the ratio [E (q, θ ) − E (0, θ )]/ sin2 θ

becomes numerically unstable. Therefore, we start by looking
closely on the sensitivity of [E (q, θ ) − E (0, θ )]/ sin2 θ to the
value of θ .

To get an overview, we plot the ratio

E (q, θ ) − E (0, θ )

sin2 θ
(14)

as a function of the wave vector q for several values of the
cone angle θ . This is done in the upper panels of Figs. 1
and 2 for Fe and Ni, respectively. The wave vector q is ori-
ented along the [001] direction. The corresponding spin spiral
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FIG. 1. Magnetic moment per atom (lower panel) and energy
dispersion [E (q) − E0]/ sin2 θ (upper panel) for spin spiral waves
propagated along the [001] direction in Fe, obtained by means of
self-consistent calculations (markers) and by means of magnetic
force theorem (lines). The spiral cone angle θ is specified in the
legend.

energies were calculated by means of self-consistent calcu-
lations (SCF), i.e., with the potential recalculated for each q
vector (shown via markers), as well as using the magnetic
force theorem (MFT), with the potential taken always the
same as for q = 0 (shown via lines). Additionally, we present
data on magnetic moments in the lower panels of Figs. 1–2, to
provide a more complete picture. Interestingly, the magnetic
moment is more sensitive to whether the calculation is done
self-consistently or not than the energy is — especially if
|q| gets large. The sudden decrease of μspin of Ni at about
0.5(2π/a0) clearly seen for θ = 90◦ (Fig. 2) corresponds to
the well-known collapse of the magnetic moment of Ni in case
of anti-ferromagnetic order [9,24].

Based on the curves in Figs. 1 and 2, it appears that for |q|
less than about 0.2(2π/a0), the ratio Eq. (14) depends only
little on θ and that the differences between SCF and MFT
calculations are small. To get more quantitative information
on the dependence of the expression in Eq. (14) on the cone
angle θ , we summarize in Tables II–IV the values of D
obtained by fitting a bi-quadratic function

f4(q, θ ) = a2(θ )q2 + a4(θ )q4, (15)

to the energy

ε(q, θ ) = 4μB

μspin

E (q, θ ) − E (0, θ )

sin2 θ
(16)
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FIG. 2. As Fig. 1 but for Ni. Note that the energy dispersion
curves for θ = 5◦ and 20◦ almost coincide.

in the interval |q| ∈ [0, 0.1(2π/a0)], for different values of
the cone angle θ . The stiffness constant D is obtained as the
expansion coefficient of the quadratic term,

D = a2(θ ).

The necessary k-space integrals were evaluated using a regu-
lar mesh corresponding to 1653 points in the full BZ for Fe,
to 1493 points for Ni, and to 1333 points for Py. The results
based on SCF and MFT calculations are shown separately.
The q-vector was varied along the [001] direction, the fit was
obtained for values of |q| from zero to 0.1(2π/a0). Data for
θ < 20◦ are not included in Tables II–IV because for small
values of θ the stability of the fit gets worse due to very small
differences E (q, θ ) − E (0, θ ) and the results are not reliable.

One can infer from Tables II–IV that going to very low
values of θ is not needed for spin-wave stiffness calculations.

TABLE II. Spin wave stiffness constant D of Fe evaluated by
fitting the energy dispersion Eq. (16) for q → 0 by a biquadratic
polynomial Eq. (15), for spiral cones angles θ = 20◦, 45◦, and 90◦.
The energies were obtained either from self-consistent calculations
(SCF) or by employing the magnetic force theorem (MFT).

SCF MFT
θ (deg) D (meV Å2) D (meV Å2)

20 302.4 292.8
45 301.1 292.3
90 301.7 294.0
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TABLE III. Same as Table II but for Ni.

SCF MFT
θ (deg) D (meV Å2) D (meV Å2)

20 752.4 747.9
45 753.4 746.9
90 755.7 745.9

The energy ε(q, θ ) is practically independent on the cone
angle θ . Consequently, all the spin spiral calculations are
done for θ = 20◦ in the rest of the paper, because this value
appears to be a good representation of θ → 0 for the purpose
of evaluating Eq. (7) and still is large enough to lead to
numerically stable results.

To obtain correct and unambiguous results on D from spin
spirals energies, as outlined by Eqs. (3) and (7), it is necessary
to assess critically the fitting procedure which provides the D
coefficient. To find the power expansion of the energy Eq. (7),
the function ε(q) is fitted by a polynomial via a least-squares
method, within a certain interval of q. Therefore one has to
check how the expansion coefficient D is affected by the
degree of the polynomial which is fitted to ε(q) and also by
the size of the interval within which this fit is determined.

Concerning the choice of the interval for the fit, there is the
natural requirement that the interval is not very large, because
a fit within a small interval emphasizes the behavior of ε(q)
at the origin and that is what we aim at. However, for small
q, there are technical problems with the numerical accuracy
of the difference E (q, θ ) − E (0, θ ). Namely, if the number
of k-points increases, the energy dispersion curves E (q, θ )
approach each other not uniformly but in a quasi-oscillatory
way. This is illustrated in Fig. 3 where the energy dispersion
[E (q) − E0]/ sin2 θ for spin spiral waves in Fe obtained using
different k-meshes is displayed very close to the origin |q| = 0.
One can see that fine details of the energy dispersion still vary
even for quite dense meshes. If the k-mesh density is not high
enough, the behavior of the ε(q) function may significantly
deviate from the expected form. E.g., for the mesh with 1063

points, there is actually a local maximum at q = 0; it is shallow
and can be seen only if the step in q is sufficiently small
but it clearly hinders finding the correct power expansion
coefficients. If one wants to by-pass the numerical problems
with determining E (q, θ ) − E (0, θ ) for small q by performing
the fit within a large interval, one has to include more terms in
the fitting polynomial, because as one moves away from q = 0,
higher order terms get more important. A proper balance
between the size of the interval in which the fit to ε(q) is
performed and the order of the fitting polynomial thus has to
be achieved.

TABLE IV. Same as Table II but for Py.

SCF MFT
θ (deg) D (meV Å2) D (meV Å2)

20 519.7 520.6
45 521.6 522.9
90 521.2 522.2
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FIG. 3. The energy dispersion [E (q) − E0]/ sin2 θ for spin spiral
waves in Fe obtained when the k-space integrals were evaluated
using a regular mesh corresponding to 893 points, 1063 points, and
1653 points in the full BZ. The q-vector was varied along the [001]
direction and the cone angle is θ = 20◦. The energies were calculated
employing self-consistent potentials.

Tables V–VII summarize the stiffness constant D for Fe,
Ni, and Py evaluated by fitting the energy dispersion Eq. (7) to
polynomials of different degrees, within intervals of different
sizes. We consider polynomials of even powers only (because
of the symmetry), they can be symbolically written as

f2n(q) =
n∑

i=1

a2iq
2i. (17)

The spin-wave stiffness constant D corresponds to the
quadratic term,

D = a2. (18)

The highest degree of a polynomial employed within this
study is twelve. The spiral cone angle was set to θ = 20◦, en-
ergies were obtained by means of self-consistent calculations,
and the k-space integration was carried out on a mesh of 1653

points in the full BZ for Fe, 1493 points for Ni, and 1333 points
for Py.

Inspecting Tables V–VII gives an idea about the stability
of the procedure. Fitting ε(q) within the smallest interval
[0, 0.05] (in units of 2π/a0) is clearly unstable, due to the
problems with the k-mesh convergence (see also Fig. 3).
When fitting within larger intervals, one should employ

TABLE V. Spin wave stiffness constant D (in meV Å2) of Fe
evaluated by fitting the energy dispersion Eq. (7) by polynomials
Eq. (17) of degrees 2n = 2, 4, 6, 8, and 12, within intervals of
different sizes.

polyn. interval for fitting (in units of 2π/a0)

degree [0, 0.05] [0, 0.10] [0, 0.15] [0, 0.20]

4 301.0 302.6 302.5 316.8
6 303.6 302.6 298.6 298.1
8 298.6 301.6 305.0 294.3
10 276.2 301.6 304.8 302.8
12 251.6 302.1 300.6 302.8
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TABLE VI. As Table V but for Ni.

polyn. interval for fitting (in units of 2π/a0)

degree [0, 0.05] [0, 0.10] [0, 0.15] [0, 0.20]

4 746.3 751.9 761.7 768.8
6 774.1 747.5 749.1 760.2
8 648.9 747.8 749.0 750.3
10 463.9 747.2 747.4 747.6
12 353.6 747.1 748.8 745.1

polynomials of at least sixth degree. For the largest interval
[0, 0.20], the results sometimes depend on the choice of the
polynomial even up to the twelfth degree (see Table VI),
suggesting that more complicated trends which cannot be
described by a simple polynomial may be present (see the
upper panels of Figs. 1 and 2 for an overall picture). As a
whole, however, for each of the systems one can find a “region
of stability” at the bottom right corner of the respective table,
where the values do not significantly depend on the size of
the fitting interval or on the degree of the fitting polynomial
(within the accuracy of ±0.2 meV Å2 determined by the k-
mesh convergence). The numbers in this region do not depend
on the fine details of how the coefficient at the quadratic term
has been determined, therefore, they can be considered as the
correct artefact-free values of the stiffness constant D. The
spread of the values within this region can be used to estimate
the error of D if it is determined by fitting the spin-wave
energy dispersion.

B. Weighted sum of Ji j constants

In this section, we inspect problems that may be encoun-
tered when evaluating the stiffness constant D via a weighted
sum of the coupling constants Ji j , as in Eqs. (8)–(10). Basic
understanding can be gained by looking on the dependence of
D on the maximum distance Rmax up to which the individual
terms in Eq. (10) are evaluated. This is presented in Fig. 4 for
Ni and Py, for several values of the damping parameter η. One
can see that the quasi-oscillations of D(Rmax) extend to quite
large distances and that the limiting value limRmax→∞ D(Rmax)
depends on the damping parameter η.

The stiffness constant D is finally determined via D =
limη→0 D(η). The limit has to be found by extrapolating D(η)
down to η = 0. Therefore, one should evaluate D(η) for as
small η as possible. Fig. 4 demonstrates that to evaluate D(η)
for small η, one has to extend the sum in Eq. (10) up to

TABLE VII. As Table V but for Py.

polyn. interval for fitting (in units of 2π/a0)

degree [0, 0.05] [0, 0.10] [0, 0.15] [0, 0.20]

4 534.4 519.8 525.5 528.4
6 505.2 518.9 521.0 524.5
8 342.9 518.0 521.6 521.4
10 205.7 499.0 521.5 520.6
12 170.6 535.4 521.2 520.9
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FIG. 4. Dependence of the spin-wave stiffness constant D on
the maximum distance Rmax up to which the terms in Eq. (10) are
included, for different damping parameters η. Lower panel shows
data for for Ni obtained using the mesh of 1123 points in the full BZ,
upper panel shows data for Py obtained using the mesh of 753 points
in the full BZ. The distance Rmax is in units of the lattice constant a0.

large Rmax. Evaluating the exchange coupling constants Ji j

for large interatomic distances requires a high density of the
mesh used for integration in k space [5]. To illustrate this, we
present in Fig. 5 the dependence of the constant D of Ni on
the cut-off distance Rmax, for several k-space grids. It can be
seen immediately that going to larger Rmax requires a denser
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D
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112 112 112
62 62 62
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FIG. 5. Dependence of the stiffness constant D for Ni on the
maximum distance Rmax up to which the terms in Eq. (10) are
included, for different numbers of k points in the full BZ (shown in
the legend). The data were obtained for damping parameter η = 0.30.
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FIG. 6. Dependence of the spin-wave stiffness constant D for Ni
(lower panel) and for Py (upper panel) on the damping parameter η.
Data are shown for different k-space grids. The maximum distance
Rmax up to which the individual terms in Eq. (10) were evaluated is
20.5a0.

k-mesh, increasing dramatically the demand on conputational
resources.

The conclusion is thus the following: if we want to evaluate
the stiffness constant D via Eq. (5), we have to extrapolate
D(η) to η = 0, which requires obtaining D(η) for small η’s,
which requires extending the sum in Eq. (10) to large Rmax and
that requires a high density for the k-mesh. Graphically this is
depicted in Fig. 6, where we show how the stiffness constant
D(η) of Ni and Py depends on the damping parameter η, for
several choices of the k-mesh. The summation in Eq. (10)
covers interatomic distances up to Rmax = 20.5a0. It can be
clearly seen that if the η parameter is relatively large, the
values of D(η) do not depend on the k-mesh; the situation
is numerically stable. However, for small η, the values of
D(η) depend strongly on the k-mesh density. Data for η < 0.2
cannot be regarded as numerically stable.

The fact that the values of D(η) obtained for low η are not
reliable questions the accuracy with which the stiffness con-
stant can be determined. The extrapolation of D(η) to η = 0 is,
obviously, a delicate procedure depending on several technical
parameters. This is illustrated in Tables VIII–X where we
show the stiffness constant D for Fe, Ni, and Py obtained
by extrapolating D(η) to η = 0 using different methods. In
particular, the extrapolation was done using a polynomial of
the second, third, or fifth degree in η, determined by least-
squares fitting of D(η) when η lies in the interval [0.2,1],
[0.4,1], or [0.6,1]. The summation Eq. (10) includes all sites

TABLE VIII. Spin wave stiffness constant D of Fe evaluated
by summing the J0 jR2

0 j terms, Eqs. (8)–(10). The extrapolation of
D(η) to η = 0 has been done by fitting D(η) by a polynomial, within
specific intervals of η values. The interval within which the fit is done
is specified in the first column, further columns contain values of D
obtained by employing a fitting polynomial of the second, third, and
fifth degree in η.

2nd degree 3rd degree 5th degree
η D D D
interval (meV Å2) (meV Å2) (meV Å2)

0.2–1.0 269.7 278.1 281.6
0.4–1.0 261.7 275.7 276.8
0.6–1.0 252.9 273.0 296.7

up to the distance Rmax = 20.5a0, which means about 70000
atoms (563 coordination shells) for bcc Fe and about 136000
atoms (773 coordination shells) for fcc Ni and Py. The k-space
integrals needed to evaluate the Ji j constants were carried out
on a mesh of 893 points in the full BZ for Fe, 1123 points for
Ni, and 753 points for Py.

One can see from Tables VIII–X that the extrapolated
values D(η → 0) significantly depend on the choice of the
fitting interval. The most conclusive estimates of D are those
obtained using a polynomial fitted to D(η) within an interval
which includes the smallest usable values for η, i.e., η ∈ [0.2–
1.0]. Decreasing the lower boundary of the fitting interval
even further is not desirable because the values of D(η) may
be numerically unstable for η < 0.2 (see Fig. 4). As concerns
the degree of the polynomial used for the extrapolation: if
the extrapolation is done via the second degree polynomial
in η, the outcome significantly depends on the choice of the
interpolating interval. This can hardly be considered as robust
or stable. On the other hand, for the fifth-degree polynomial,
this dependence is only mild. For the third degree polynomial,
the situation is somewhere in between. We can thus conclude
that estimating the stiffness constant D by fitting the D(η)
dependence by a fifth degree polynomial in η leads to trust-
worthy results.

A complementary picture can be obtained by inspecting
Fig. 7, where we show the calculated values of D(η) for
Ni, together with three different polynomial fits of the D(η)
dependence. Note that if η � 0.10, the values of D(η) contain
significant numerical errors (see the bottom panel of Fig. 4) —
we indicate this by errorbars. The polynomials of the second,
third, and fifth degree in η were obtained by a least-squares
fit for η ∈ [0.4,1.0]. One can see that the quadratic fit (green
dash-dotted line) fails to reproduce D(η) outside the fitting

TABLE IX. As Table VIII but for Ni.

2nd degree 3rd degree 5th degree
η D D D
interval (meV Å2) (meV Å2) (meV Å2)

0.2–1.0 708.3 754.6 768.1
0.4–1.0 663.2 736.7 769.1
0.6–1.0 618.2 712.9 785.5
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TABLE X. As Table VIII but for Py.

2nd degree 3rd degree 5th degree
η D D D
interval (meV Å2) (meV Å2) (meV Å2)

0.2–1.0 539.4 560.6 563.1
0.4–1.0 518.5 555.1 565.4
0.6–1.0 495.9 546.1 567.6

range — it significantly deviates from the values marked by
open circles in Fig. 7. The situation is better for the cubic fit.
The best outcome is apparently achieved if the fit is done by a
fifth-degree polynomial.

C. Direct evaluation of D in reciprocal space

The third way to calculate the spin-wave stiffness constant
D is via integrating the relevant expression in reciprocal
space, according to Eq. (11). As this is a direct evaluation,
no analysis of the fitting or extrapolation procedure is needed.
The values we obtained from Eq. (11) are given in the fourth
column of Table XI.

IV. DISCUSSION

Our goal was to critically review different approaches to
calculate the spin-wave stiffness constant D and to compare
the results calculated for selected systems on the same footing.
The approaches we investigated include (i) examining the
long-wave-length behavior of the spin-wave energy disper-
sion [see Eqs. (3) and (7) and Sec. III A], (ii) evaluating a
weighted sum of exchange coupling constants [Eqs. (8)–(10)
and Sec. III B], and (iii) direct evaluation of Eq. (11) in
reciprocal space. The results for Fe, Ni, and Py obtained
by these methods are summarized in Table XI. The errors
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1000

D
(m
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A

2 )

0.0 0.2 0.4 0.6 0.8 1.0

damping parameter

fit by 5th degree pol.
fit by 3rd degree pol.
fit by 2nd degree pol.

data not used by fit
data used by fit

Ni

FIG. 7. Dependence of the spin-wave stiffness constant D for
Ni on the damping parameter η, together with fits of D(η) by
polynomials of the second, third, and fifth degree in η (as indicated
by the legend). To obtain the fitting polynomials, only data for
η ∈ [0.4, 1.0] were used. The k-space integrals were evaluated using
the grid of 1123 points in the full BZ, the maximum distance Rmax up
to which the terms in Eq. (10) were included is 20.5a0.

TABLE XI. Overall estimates of the stiffness constant D for
Fe, Ni, and Py based on fitting the spin-wave energy dispersion as
in Eq. (3) (second column), by performing a weighted sum of Ji j

constants as in Eq. (5) (third column), and by a direct integration of
scattering matrices and operators in reciprocal space as in Eq. (11)
(fourth column).

From ε(q) From
∑

J0 j R2
0 j From

∫
BZ[T (∂τ/∂k)]2

Fe 302 ± 2 279 ± 2 262 ± 3
Ni 747 ± 4 768 ± 6 781 ± 7
Py 521 ± 1 563 ± 2 512 ± 5

were estimated by considering the k-mesh convergence (for
all three cases) and, additionally, considering the ambiguity
of finding the right fits for ε(q) in case of analysis of the spin-
wave energy dispersion (see Tables V–VII) and of extrapolat-
ing D(η) to D(η → 0) in case of the

∑
J0 j R2

0 j summation in
real space (see Tables VIII–X). A minor contribution to the
errors comes also from the θ → 0 limit when determining
ε(q) and from having a finite Rmax when determining D(η).
These last two contributions are quite small in comparison
with the errors due to the ambiguity of the fitting and/or
extrapolating procedure.

Small but distinct differences are evident in Table XI,
even though all the approaches use very similar physical
assumptions. In particular, in all cases it is assumed that
the magnetization direction can be described by vectors êi

pinned to atomic sites i [3,4]. All calculations have been
performed within the same KKR Green’s function formalism,
using the SPRKKR code, ensuring that the quantities used in
different approaches (coupling constants, spin-wave energies)
are consistent.

To point out the differences in the approaches used here,
we start by noting that the scalar relativistic spin spiral calcu-
lations are performed selfconsistently for each wave vector
q. As a consequence, the exchange splitting of the energy
bands as well as the local magnetic moments are q dependent.
Moreover, the spin-spiral energy has been evaluated based
on the total energy of the system. The other two approaches,
i.e., the methods based on the real-space summation

∑
J0 j R2

0 j
according to Eqs. (8)–(10) and on the reciprocal space integral∫

BZ[T (∂τ/∂k)]2 according to Eq. (11), rely on the magnetic
force theorem and assume that the magnitude of the magnetic
moments does not change if they are tilted (rigid spin approx-
imation). These two approaches are formally equivalent, as
was shown, e.g., by Liechtenstein et al. [3]. However, small
differences in the results occur because the approaches lay
different requirements concerning the accuracy of numerical
calculations. The requirements laid by the real-space approach
are discussed above in detail. The approach based on the BZ
integration is very sensitive to the features of the electronic
structure because of the k derivatives of the τ matrix in
Eq. (11), in contrast to the real-space approach. As a result, a
very dense k mesh is needed for the BZ integration to achieve
convergence with respect to the number of k points.

The effect of using the magnetic force theorem can be seen
from the data in Tables II–IV: It may result in errors of a
few percent. The assumption that the magnetic moments do
not change their magnitude if they are tilted is plausible for
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TABLE XII. Experimental results for spin-wave stiffness D (in
meV Å2) for Fe, Ni, and Fe1−xNix alloy. Each study is identified
by a reference and the publication year. The concentration of Ni in
Fe1−xNix is given in the last column.

Work Fe Ni Fe1−xNix x

[25] (1964) 325 400 400 80
[26] (1966) 350
[27] (1968) 314 470
[28] (1973) 555
[29] (1973) 311
[30] (1975) 525 335 68
[31] (1975) 555
[32] (1976) 390
[33] (1977) 398
[34] (1981) 593
[35] (1982) 270 413
[36] (1983) 530 390 80
[37] (1984) 307
[38] (1985) 398
[39] (2017) 440 80

the systems we are dealing with (see, e.g., Ref. [9] or lower
panels of Figs. 1 and 2); nevertheless, small differences still
may occur because of this.

As a whole, the differences between the values of D
obtained for identical systems by different methods seem to
be larger than what could be ascribed to numerical noise. A
closer look at Tables V–VII in Sec. III A and Tables VIII–X
in Sec. III B reveals that use of just a bit different fitting and
extrapolation method can give rise to differences of 5–10%.
Even though we put a lot of effort to compensate for ambigui-
ties, some issues probably remained. The third approach does
not require any fitting or extrapolation but it requires a very
dense k mesh to get truly converged results for the spin-wave
stiffness, making the calculations very demanding. We assume
that the results obtained by means of Eq. (11) could still be
improved upon by increasing the k-mesh density but only at
very high (impractical) computational costs.

On the other hand, possible errors of the procedures to
calculate D concern mostly the absolute values, not the
trends. For example, application of the real-space summation
Eqs. (8)–(10) to Py doped with V, Gd, and Pt led to a
good theoretical description of the way the dopants influence
the spin-wave stiffness, in agreement with experiment [20].
Likewise, the dependence of the spin-wave stiffness of the
Fe1−xNix alloy on its composition can be properly described
both by fitting the spin-wave energy dispersion according to
Eqs. (3) and (7) and by direct evaluation of D via a reciprocal-
space integral according to Eq. (11) [14].

Uncertainty in determining the theoretical values of the
stiffness constants D for Fe, Ni, and Py is accompanied by
uncertainty in experiment. We summarize in Table XII a
selection of available experimental data; a more complete list
can be found, e.g., in Tables 7 and 8 of Vaz et al. [1]. One
can see that the spread of results of different studies is quite
large—about 15% for Fe and Py and about 20% for Ni. A crit-
ical assessment of experimental studies is beyond our scope.
Despite the relatively large spread of the data, Tables XI–XII
indicate that our theory agrees well with experiment for Fe,

whereas for Ni and Py the agreement is less good. Tentatively,
this is linked to problems with describing the exchange cou-
pling of Ni in terms of the coupling constants [40,41]. Some
errors could be also introduced because of the restrictions of
our computational scheme, notably the ASA; nevertheless,
full-potential effects are usually small in close-packed metals
such as those we are dealing with. It is more likely that the
assumption of rigid moments is not fully justified for Ni and
its alloys.

Even though our study has been performed for Fe, Ni, and
Py, it is focused on analyzing and discussing concepts that
have to be dealt with when studying the spin-wave stiffness
for any material. Metallic systems such as those we investigate
here represent the most difficult case as concerns evaluating
the stiffness by means of a weighted sum of the coupling
constants (Sec. III B). This is because, for metals, the coupling
constants Ji j decay with distance as 1/R3

i j [5], i.e., relatively
slowly. For semiconductors and insulators, the opening of a
gap leads to an exponential decay of the exchange coupling, as
1/R3

i j exp(−Ri j/λ) [5,42], improving the convergence of the
expression Eq. (5) considerably. This will enable us to employ
larger Rmax and lower η, possibly disposing of the damping
term exp(−ηR0 j/R01) altogether. Increasing the disorder (as,
for example, in the case of high-entropy alloys) will introduce
an exponential spatial damping of the exchange coupling as
well [42].

The analyses performed in Sec. III enable us to draw some
recommendations how to evaluate the stiffness constant D. In
general, evaluating D by means of fitting ε(q) by a polynomial
is less demanding and more reliable than evaluating D by
means of extrapolating D(η) obtained by means of J0 jR2

0 j
summation. The convergence with the k-mesh density is better
in the former case and, moreover, extrapolation required in
the latter case is always an ambiguous procedure. However,
fitting ε(q) by a polynomial to determine the coefficient at
the quadratic term is not without risks either. Higher powers
should be included in the fitting polynomial Eq. (17); employ-
ing just a simple quadratic fit as done, e.g., in Ref. [43] may
not always be sufficient.

In many cases, calculating the energy dispersion ε(q) is
difficult or impractical (e.g., for multicomponent systems with
substitutional disorder). Extrapolating D(η) down to η → 0
then remains the only viable option. In such cases, extra care
has to be taken and the robustness of the selected extrapolation
procedure should be checked. For example, application of
a quadratic extrapolation within the η ∈ [0.6,1.0] interval
(employed, e.g., for transition metals [5] or for Heusler al-
loys [18]) to the systems investigated here would lead to a
systematic undershooting of D by about 10%. Of course, these
conditions have to be explored specifically for each system
considered. Evaluating D directly in reciprocal space Eq. (11)
does not suffer from the pitfalls of fitting or extrapolating but
it is numerically demanding and sensitive to the details of the
electronic structure.

V. CONCLUSIONS

Evaluating the spin-wave stiffness constant D by current
schemes is technically difficult and potentially numerically
unstable. Differences between values obtained by different
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methods of 5–10% remain even if care is taken to make all the
calculations consistent with each other and well converged.
The agreement between theoretical values and experimental
data is good in case of Fe but significant differences occur for
Ni and permalloy Fe0.19Ni0.81.

Calculating the stiffness constant D usually involves
either fitting the long-wavelength part of the spin-wave
energy dispersion ε(q) by a polynomial, or extrapolat-
ing the values D(η) obtained via a real-space summation
of weighted exchange coupling constants to zero damp-
ing, η → 0. Both procedures are tricky and quite sensi-

tive to technical details how the fitting or extrapolation is
done.
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