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Floquet oscillations in periodically driven Dirac systems
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Electrons in a lattice exhibit time-periodic motion, known as Bloch oscillation, when subject to an additional
static electric field. Here, we show that a corresponding dynamics can occur upon replacing the spatially periodic
potential by a time-periodic driving: Floquet oscillations of charge carriers in a spatially homogeneous system.
The time lattice of the driving gives rise to Floquet bands that take on the role of the usual Bloch bands. For
two different drivings (harmonic driving and periodic kicking through pulses) of systems with linear dispersion
we demonstrate the existence of such oscillations, both by directly propagating wave packets and based on a
complementary Floquet analysis. The Floquet oscillations feature richer oscillation patterns than their Bloch
counterpart and enable the imaging of Floquet bands. Moreover, their period can be directly tuned through the
driving frequency. Such oscillations should be experimentally observable in effective Dirac systems, such as
graphene, when illuminated with circularly polarized light.
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I. INTRODUCTION

In the early days of quantum mechanics, Bloch and Zener
[1,2] predicted that electrons in a periodic potential, when
accelerated by a constant external electric field, perform a
time-periodic motion, by now well known as Bloch oscilla-
tion [3]. It took about 60 years until this phenomenon was
observed in biased semiconductor superlattices [4–7]. Since
then Bloch oscillations or analogs of them have been found
in various systems ranging from cold atom gases [8,9] to
classical optical [10,11] and acoustic waves [12], to name a
few. In 2014, Bloch oscillations due to the crystal lattice of a
biased bulk semiconductor were eventually observed [13].

In the meantime, scientific interest in tuning Bloch bands
by means of external time-periodic driving has rapidly grown,
especially since the proposal of so-called Floquet topological
insulators [14] demonstrating the powerful influence external
driving can exert on the properties of a crystal. Recent ex-
periments also showed that Floquet band engineering allows
for switching Bloch oscillations on and off [15]. Moreover,
additional driving can immensely increase the amplitude of
conventional Bloch oscillations, giving rise to “super” Bloch
oscillations [16–19].

Here, we propose to consider the opposite limit of a time-
periodically driven system without any spatial lattice, but still
subject to a constant external electric field. We demonstrate
that, most notably, spatially periodic motion of the charge
carriers can still appear. We call this type of dynamics Floquet
oscillations since they arise from the periodic repetitions of
Floquet quasienergy bands. So far very few works have ad-
dressed Bloch-type oscillations in the absence of an external
lattice. One interesting prediction refers to Bloch oscillations
of light, i.e., frequency oscillations of photons [20]. Fur-
ther, Bloch-type oscillations were predicted theoretically for
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interacting one-dimensional (1D) spinor gases [21] and re-
cently observed in an atomic Bose liquid [22]. In these set-
tings interactions lead to the dynamical formation of periodic
structures, which can then yield Bloch oscillations. They do
not, however, involve external drivings, and hence are of a
different nature than the Floquet oscillations predicted here.

Specifically, we show that such periodic modes can emerge
in spatially uniform systems governed by effective Dirac
Hamiltonians, where the linear dispersion converts the en-
ergy periodicity of the Floquet spectrum into approximately
k-periodic bands. Most notably, Floquet oscillations are a
quantum phenomenon distinctly different from the classical
oscillatory motion of a charge in an ac field. Instead of
following the driving frequency, they exhibit a frequency in-
versely proportional to it. Moreover, Floquet oscillations offer
a possibility to directly image the Floquet quasiband structure.
Interestingly, they additionally show zitterbewegung features.
We support our predictions by numerical calculations for
two experimentally relevant prototypes of external driving, a
periodic pulse sequence and circularly polarized radiation.

II. GENERAL CONCEPT OF FLOQUET OSCILLATIONS

Consider a system H0(k) (with momentum operator k)
subject to a time-periodic driving VT (t ) with period T and
frequency ω = 2π/T described by the Hamiltonian

H (k, t ) = H0(k) + VT (t ) = H (k, t + T ). (1)

Via Floquet theory [23–25] the problem is transformed to find-
ing the quasienergy eigenvalues ε(k) of the Floquet Hamilto-
nian HF (k) = H (k, t ) − ih̄ ∂

∂t . The quasienergies ε(k) extend
to infinity in k space in the absence of a spatial lattice. How-
ever, they are periodic in quasienergy ε ∈ [−h̄ω/2, h̄ω/2]
forming a sequence of Floquet replicas which are the ana-
log of the usual Bloch bands—the latter being periodic in
quasimomentum k ∈ [−π/a, π/a] due to spatial periodicity
with lattice constant a.
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FIG. 1. Simplified scheme of the Floquet band structure ε±(k) of
a Dirac system subject to a time-periodic potential. In Floquet theory
the driving (at frequency ω) introduces replicas of the original Dirac
cone E± = ±h̄vF k (black), vertically shifted in energy by multiples
of h̄ω (thin gray). The blue dashed lines mark the first energy unit
cell. For finite driving strength the bands hybridize and gaps open at
the crossings, leading to distinct (approximately) k-periodic Floquet
bands (red dashed) whose local maxima are �kosc apart.

For the undriven system, we take an (effective) two-
dimensional Dirac Hamiltonian

H0(k) = h̄vF k · σ, (2)

with constant Fermi velocity vF and σ = (σx, σy) the vector
of Pauli matrices. The spectrum of H0(k) is composed of
two energy branches E± = ±h̄vF k with k = |k|. The Floquet
bands ε± that emerge when adding the time-periodic driving
VT (t ) to the system are sketched in Fig. 1. Due to the radial
symmetry of the bands, we only show a cut along ky = 0. In
the limit of infinitely small driving VT (t ), the bare Dirac cone
E± (black) is accompanied by a mesh of intersecting replicas
(gray) that are shifted in energy by multiples of h̄ω. The blue
dashed lines mark the corresponding first Brillouin zone (BZ)
in energy. For finite VT (t ) band gaps open at replica crossings
and separated Floquet bands emerge (red dashed curves; see
Appendix A for an introduction to the relevant aspects of
Floquet theory). The band gaps sketched in Fig. 1 emerge
since different replicas are coupled. Under the influence of the
drift field E , a particle follows the band adiabatically along
k and successively absorbs/emits an increasing number n of
photons h̄ω at each avoided crossing between two replicas of
the (undriven) Dirac cone with a relative energy shift nh̄ω.
Hence, the farther away from k = 0, the more photons are
needed to bridge the energy difference required for adiabatic
dynamics associated with Floquet oscillations. As we will
show below, time-periodic potentials VT with pronounced
higher-order (in ω) Fourier components will correspondingly
open band gaps farther away from k = 0 compared to, e.g.,
single frequency harmonic driving. Due to the underlying
linear (Dirac) dispersion, the Floquet bands are approximately
k periodic, implying particularly pronounced Floquet oscilla-
tions with a well-defined frequency, in close analogy to Bloch
oscillations [26].

To gain insight into the Floquet oscillation dynamics let us
be definite and consider the time evolution of a wave packet

(WP) of Dirac electrons under the influence of an additional,
constant electric field E = Eex. Here, we consider the 1D
motion along the field direction; generalizations to higher
dimensions are straightforward. Due to the drift potential

V (x) = −eEx, e > 0, (3)

the WP is accelerated and its initial wave vector ki changes
linearly in time [18],

k(t ) = ki − (eE/h̄)t . (4)

For ordinary Bloch bands, the BZ with period �kosc = 2π/a
is traversed in time,

TB = 2π/(a|eE |h̄). (5)

While crossing the BZ, a charge carrier changes its velocity
according to the change in slope of the k-periodic band
structure, leading to a Bloch oscillation in k(t ) with frequency
ωB = 2π/TB.

For Floquet systems the velocity operator is given by v̂ =
dHF /dk [18]. The diagonal terms of a WP’s velocity read
〈v̂αα〉 = vαα = dεα/dk, with α = ±, and the corresponding
position expectation value 〈x̂αα〉 = xαα is obtained by time
integration of vαα . Using Eq. (4) this can be substituted by
an integration over k leading to

xαα (k(t )) = h̄

eE
[εα (k(t )) − εα (ki )]. (6)

These diagonal contributions to 〈x̂〉(t ) encode features of the
Floquet band structure into the WP position. In particular,
analogously to conventional Bloch oscillations, the WP is
expected to perform oscillations for Floquet bands similar to
the ones sketched in Fig. 1 (red dashed lines).

During one (Floquet) oscillation k changes by the period
�kosc of the Floquet bands (Fig. 1). Hence, Eq. (4) implies the
corresponding period TF = (h̄/|eE |)�kosc. Due to the linear
dispersion E±(k) = ±h̄vF k, we have h̄vF �kosc = h̄ω so that
the Floquet oscillation period reads

TF = h̄ω

vF |eE | . (7)

TF is proportional to the inverse period 1/T = ω/(2π ) of
the driving in Eq. (1). While its analog, the Bloch period TB

[Eq. (5)], is determined by the inverse (super)lattice constant
1/a, usually fixed in experiment, TF can be tuned through ω

in a range such that TF > T .

III. RESULTS FOR REPRESENTATIVE
DRIVING PROTOCOLS

In the following we consider two representative types of
driving well suited to generate Floquet oscillations: a periodic
sequence of short pulses and a circularly polarized light field.

A. Short pulse sequence

For the first driving protocol we use

VT (t ) =
∞∑

l=1

	(t − (lT − �t ))	(lT − t )Mσz (8)
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FIG. 2. Floquet oscillations in a driven, spatially homogeneous
Dirac system. (a) Floquet bands from a periodically opened mass gap
[see Eq. (8) and lower left inset for the pulse shape] with band gaps
at the intersections of the unperturbed Dirac cones and their replicas
(as sketched in Fig. 1). Two separated bands emerge in the energy
window h̄ω. The motion of a WP (with initial position indicated by
the blue dot) due to a static electric field [Eq. (3)] is sketched by the
blue arrows in the zoomed-in region framed in red. (b) Left panel:
Simulations of the WP position and velocity expectation values
based on direct time evolution (TQT) and Floquet theory (see text
for details). The numerical results confirm the Floquet oscillations
mirroring the characteristic shape of the Floquet band structure. They
also show zitterbewegung signatures. Right panel: Snapshots of the
WP in position space taken at times marked as black crosses in the
left panel.

in Eq. (1) (with Heaviside function 	 and Pauli matrix σz).
This pulse train periodically couples the two branches of
the Dirac Hamiltonian H0(k) [Eq. (2)] by opening a mass
gap of strength M and duration �t [see the lower inset in
Fig. 2(a)]. The resulting Floquet spectrum can be tuned either
by M or by the ratio �t/T . To be definite we choose the
normalized pulse strength M/h̄ω = 4.4/π and �t/T = 0.09.

The resulting Floquet band structure for this representative
set of parameters is shown in Fig. 2(a). The driving opens
a sequence of gaps around ε = 0 at the intersections of the
original Dirac spectrum and its replicas. A detailed analysis
of these Floquet bands and the k dependence of the gaps is
given in Appendix B.

A WP with initial quasienergy and wave number as marked
by the blue dot in the zoomed-in area in Fig. 2(a) (red
box, k̄ivF /ω = 0.25) will undergo Floquet oscillations (blue
arrows) when driven through the bands by a static electric
field E < 0 [Eq. (3)] such that k increases in time [Eq. (4)].
Notably, since the Floquet band maxima and hence the band-
width vary over k space, the resulting Floquet oscillation is
expected to change its amplitude but not its frequency. In
our simulations we choose the field strength E such that,
according to Eq. (7), TF /T = 2π h̄/(T 2vF |eE |) � 20.8π . We
took initially Gaussian WPs of the form


̃(k, 0) =
√

1√
π�k

exp

(
− 1

2�k2
(k − k̄i )

2

)(
1
1

)
, (9)

with width �k and initial central mode k̄i. We employ two
complementary approaches to compute and analyze Floquet
oscillations: Floquet theory and direct time integration of the
full time-dependent effective Dirac equation including the
E field.

To compute the WP velocity within Floquet theory, we start
from Ehrenfest’s theorem,

v(t ) = 〈v̂(t )〉 = i

h̄
〈
(t )|[H (t ), x̂]|
(t )〉, (10)

where [H (t ), x̂] = −ih̄vF σx for the Dirac case. |
(t )〉 is ob-
tained via the time-evolution operator of a Floquet system [27]
that for a single k mode reads

Uk (t, 0) =
∑
α=±

exp

(
− i

h̄
εα (k)t

)
|φα,k (t )〉〈φα,k (0)|. (11)

Here, εα are the Floquet quasienergies and |φα,k (t )〉 the cor-
responding eigenstates of HF , including replicas nh̄ω [see
Eq. (A3)], each consisting of two branches α = ± from the
linear dispersion. The additional electric field induces a linear
change of k, which we account for by adjusting k(t ) according
to Eq. (4). Applying Uk (t, 0) to an initial (WP) state

|
(0)〉 =
∑

ki

cα,ki

∣∣φα,ki (0)
〉
, (12)

where |cα,ki |2 = |〈φα,ki (0)|
(0)〉|2 describes the initial occu-
pation of branch α, and plugging Eq. (11) into Ehrenfest’s
theorem gives

v(t ) = vF

∑
ki

∑
α,β=±

c∗
α,ki

cβ,ki〈φα,k(t )(t )|σx|φβ,k(t )(t )〉

× exp

(
− i

h̄
[εβ (k(t )) − εα (k(t ))]t

)
. (13)

Here, k(t ) is given by Eq. (4). The occupation |cα,ki |2 is
time independent as long as different Floquet bands are far
enough apart for Landau-Zener interband transitions [28–33]
to be neglected. This is the case for the timescales t � 200T
considered below.
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For the periodic pulse sequence [Eq. (8)] we numerically
compute v(t ) by means of Eq. (13) and x(t ) = ∫ t

0 dt ′v(t ′).
Due to the rectangular pulse shape we must include up to n =
500 Floquet modes to achieve sufficient convergence. The
results are shown in the left panel of Fig. 2(b) as red and green
lines for x(t ) and v(t ), respectively. They indeed show distinct
Floquet oscillations, as predicted, with period TF � 20.5πT ,
matching the expected value TF � 20.8πT from Eq. (7). The
off-diagonal velocity term (α 
= β) in Eq. (13) encodes the
interference of states living in different Floquet bands, giving
rise to an additional feature, zitterbewegung [34,35] caused by
the Floquet Dirac band structure (see Appendix C).

Our second, complementary method to compute Flo-
quet oscillations is based on the WP propagation algorithm
“time-dependent quantum transport” (TQT) [36] (see also
Appendix D). The WP is discretized on a rectangular grid and
the time-evolution operator for the full Hamiltonian includ-
ing the drift field, H (t ) = H0(k) + VT (t ) − Ex, is computed.
Then the Lanczos method [37] is used to evaluate the action of
the time-evolution operator on the WP and to compute 
(x, t ).
The time-dependent position and velocity expectation values
are then calculated through

x(t ) = 〈x̂(t )〉 =
∫

|
(x, t )|2x dx (14)

and

v(t ) = 〈v̂(t )〉 = d

dt
〈x̂(t )〉. (15)

The resulting TQT data are shown in the left panel of Fig. 2(b)
as black and blue curves for x(t ) and v(t ), respectively. They
approximately coincide with those computed within Floquet
theory, also showing zitterbewegung on top of the Floquet
oscillations. Moreover, the WP position x(t ) computed with
TQT precisely reflects the characteristic features of the Flo-
quet quasibands, shown in the red box in Fig. 2(a), namely, the
increasing amplitude and the sharpening of the maxima and
minima although TQT directly integrates the time-dependent
Schrödinger equation without using Floquet formalism.

While the static electric drift field enters into the full
Hamiltonian governing the numerically exact TQT time evo-
lution, within the Floquet approach its effect is included via
the acceleration theorem (4) into the time evolution, Eqs. (11)
and (13). The latter approximation, together with residual
numerical errors from the cutoff in the Floquet quantum
number, could explain the slight deviations between Floquet
and TQT data in the left panel of Fig. 2(b).

Finally, in the right panel of Fig. 2(b) we present snapshots
of the absolute square |
(x, t )|2 taken at the turning points
(marked as black crosses) of the red curve in the left panel.
They show clear-cut Floquet oscillations of the full WP in
configuration space generated for the setting of a periodic
pulse sequence.

B. Circularly polarized light

The experimental realization of Floquet oscillations could
be easier to achieve in an alternative setup, employing circu-
larly polarized light as periodic driving. The associated vector
potential A enters (linearly) the Dirac Hamiltonian (1) via the

FIG. 3. (a) Floquet bands of a Dirac system illuminated with cir-
cularly polarized light with scaled amplitude Ã = 0.5 (black curves)
and 1.1 (red curves). (b) Floquet oscillations: Mean position of a
WP driven through the bands shown in (a) starting with momenta
k̄i marked as blue dots in (a). The initial time t0 for the black
curve is shifted to t0/T = 107.5 to highlight the close connection
to the Floquet band structure of (a). Additional oscillations due to
the momentum change caused by the circulating electric field of the
pulse are not resolved on this timescale.

minimal coupling

VT (t ) = A(t ) · σ = A

(
cos(ωt )
sin(ωt )

)
· σ. (16)

The Floquet quasibands of graphene illuminated by circularly
polarized light have already been studied extensively [38–41].
Recently, also transport [42] and topological [43–46] prop-
erties were investigated. Instead, here we focus on generat-
ing Floquet oscillations for realistic experimental parameters.
To be closer to measurements, we explicitly treat the two-
dimensional (2D) case with an initial, radially symmetric
Gaussian WP analogous to Eq. (9), with k and k̄i replaced
by k and k̄i = (k̄i, 0). Using again TQT we simulate the WP
dynamics (see Fig. 4) in the presence of the electric field
E = Eex, where TF /T = 2π h̄/(T 2vF |eE |) � 140.

We calculate the Floquet band structure and the WP dy-
namics for two different dimensionless driving strengths Ã =
vF eA/(h̄ω) to demonstrate the field amplitude influence on the
Floquet oscillation frequency. Figure 3(a) shows the radially
symmetric Floquet band structure along the direction of the
electric field. For small enough driving strengths, the distance
of local band minima is independent of k (black). For larger
driving amplitudes, multiple-photon processes significantly
alter the formation of band gaps.

As displayed in Fig. 3(b), our TQT simulations of the
position expectation values [Eq. (14)] of two WPs with scaled
initial momenta k̄ivF /ω = −2.07 and −1.22 for Ã = 1.1 and
0.5, respectively [marked by blue dots in Fig. 3(a)], clearly
show Floquet oscillations, nicely reflecting the shape of the
underlying Floquet band structure as expected. Since the gaps
between unperturbed Dirac cones open in a smaller k range
than for the periodic pulse train (8), there are less cycles of
regular Floquet oscillations. At longer times Landau-Zener
transitions to neighboring Floquet bands substantially alter the
WP motion. Nevertheless, Fig. 3 shows Floquet oscillations
with four full periods. In the famous experiments of Bloch os-
cillations in superlattices [5–7] and bulk semiconductors [13],
their detection was possible even though only one to three
periods could be achieved. Moreover, oscillations involving
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FIG. 4. (a) Simulation of the position expectation value of the
WP in the direction of the electric field [Eq. (3)] [as shown in
Fig. 3(b)] and its shape in position space. The orange crosses mark
when the snapshots of the WP are taken. The tiny oscillations on
top of the comparably slow Floquet oscillations are due to the
momentum change caused by the circulating electric field of the
pulse [Eq. (16)]. (b) Trajectory of the WP’s center of mass 〈x̂〉(t )
displayed in (a) in the x-y plane. The red curve has been included as
a guide for the eye.

many periods exist for the case of periodic kicking which can
be experimentally realized through laser pulse trains.

In analogy to Fig. 2(b), Fig. 4(a) shows the position ex-
pectation value [Eq. (14)] along the electric field [Eq. (3)]
and the 2D shape of the WP. Here, we choose k̄ivF /ω =
−0.64 and TF /T = 2π h̄/(T 2vF |eE |) � 14 without shifting
the initial time t0 and including orange crosses to mark when
the snapshots of the WP are taken. The snapshots displayed
on the right show the absolute square of the WP in 2D space
and the oscillation of its center of mass around x = 0. Note
that, according to Eq. (7), TF is inversely proportional to E ,
therefore in Fig. 4 the timescale of the Floquet oscillations
is a factor of 10 smaller than in Fig. 3. Here, the oscillations
induced by the circulating electric field [Eq. (16)] are resolved
on top of the slower Floquet oscillations. In Fig. 4(b), we plot
the trajectory of the WP’s center of mass in the x-y plane.
The red curve is meant to serve as a guide for the eye. In the
trajectory, one can recognize the Floquet oscillations but also
some additional features. The smaller oscillations have the
same origin as the tiny oscillations on top of the comparably
slow Floquet oscillations in Fig. 4(a): They arise from the
momentum change due to the circulating electric field of
the pulse [Eq. (16)] and are modulated by zitterbewegung. The
drift of the WP in the y direction, however, has a less intuitive
explanation. We assume that it is caused by the anomalous

velocity, i.e., the Berry curvature of the Floquet bands, since
it is orthogonal to the electric driving field. This assumption
will be tested in future studies.

C. Including trigonal warping and introducing experimental
parameters

Finally, we want to give a few more details on the experi-
mental realizability of Floquet oscillations in graphene. First,
we numerically verify that when choosing the correct energy
scales, trigonal warping effects do not play a role. Therefore
we extend our Hamiltonian H0(k) [Eq. (2)] to

H (k) = h̄vF k · σ − μ
[(

k2
y − k2

x

)
σx + 2kxkyσy

]
, (17)

with vF = 106 m/s and μ = 3a2t/8, where a = 1.42 Å is
the nearest-neighbor distance and t = 2.7 eV the nearest-
neighbor hopping strength of graphene [47]. We set the
light amplitude A = 45 nV s/m and the frequency ω/2π =
10 THz. We simulate the wave packet motion for k̄i =
0.013 1/Å. The described parameters are equivalent to the
unitless values chosen for Fig. 3. In Fig. 5 we compare the
Floquet oscillations obtained with and without the trigonal
warping term and find no qualitative differences. However, for
experimental realization in graphene the transport relaxation
time τ has to be higher than the period TF of the Flo-
quet oscillations [Eq. (7)], typically τ = 1–20 ps [48,49]. As
TF � 13.5 ps for E = 30 V/cm [Fig. 5(a)], good quality sam-
ples would already allow for the observation of one period.
If we increase the electric field by a factor of 10 [Fig. 5(b)],
TF � 1.3 ps. Then, all four Floquet oscillation cycles could
be detected. Note that for the higher electric field the Floquet
oscillations become slightly altered. The additional oscilla-
tions are caused by zitterbewegung and the momentum change
induced by the circularly polarized light field and are resolved
here since the Floquet oscillations occur on the timescale of
picoseconds.

IV. CONCLUSIONS

The above analysis and simulations constitute a proof of
principle for generating Floquet oscillations in systems with
an effective Dirac dispersion. Concerning possible experimen-
tal realizations, graphene [50], topological insulators [51,52],
and cold atoms in artificial honeycomb lattices [53] appear
suitable [54,55]. The latter have the advantages that one
can additionally tune vF entering the Floquet frequency and
that relaxation through disorder or interaction effects can be
avoided. Other effective Dirac systems, e.g., for plasmons [56]
or polaritons [57], could also be considered. In the following,
we will quantitatively focus on realizations for charge carriers
in real monolayer graphene.

The radiation frequency ω must be chosen such that several
Floquet BZs lie in the energy range governed by the linear
dispersion. In graphene, a frequency ν = 2πω of 1–10 THz
is small enough to accommodate roughly 50–5 Floquet repli-
cas over the energy range of 400 meV, for which the lin-
ear Dirac cone is a very good approximation. Additionally,
ω > ωF � 2π/τ is required, where τ denotes a typical re-
laxation time of charge carriers. To realize the oscillations
shown in Fig. 5(b) with Ã = 1.1 at a radiation frequency of
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FIG. 5. Floquet oscillations in graphene with a driving frequency
ω/2π = 10 THz and laser amplitude A = 45 nV s/m. (a) When a
static electric field E = 30 V/cm is applied, clear Floquet oscilla-
tions of period TF � 13.5 ps are visible. (b) Increasing the electric
field E by a factor of 10 reduces the Floquet period to TF �
1.3 ps. Because of the smaller timescale, the oscillations due to the
momentum change induced by the circularly polarized light (T =
0.1 ps) are now resolved. Their features are additionally altered by
zitterbewegung. For both cases (a) and (b) including trigonal warping
in the calculations does not lead to qualitative changes of the Floquet
oscillations.

ω/2π = 10 THz, a moderate intensity (avoiding sample heat-
ing) of I = cε0

2 A2ω2 � 1 MW/cm2 is needed. Here, c is the
speed of light and ε0 the vacuum permittivity. Then an
electric field E � 0.3 kV/cm is sufficient to generate Flo-
quet oscillations of frequency ωF /2π � 1 THz. Hence ωF �
2π/τ for typical inverse transport relaxation times 1/τ =
0.05–1 THz of clean hexagonal boron nitride-encapsulated
graphene [48,49]. Thus, Floquet oscillations could in principle
be observed, opening an alternative way to generate THz
radiation [58,59].

To conclude, we showed that free particles in a static elec-
tric drift field and obeying a linear Dirac-type dispersion can
perform spatially periodic motion, Floquet oscillations, when

subject to time-periodic driving. The Floquet time lattice takes
on the role of the spatial lattice required for conventional
Bloch oscillations. Such Floquet oscillations feature zitterbe-
wegung and characteristic amplitude modulations that could
provide a tool to experimentally map the Floquet quasibands.
A closer consideration of Landau-Zener transitions between
different Floquet bands and the question of how the topology
of Floquet bands [14] is reflected in corresponding Floquet
oscillations opens interesting perspectives for future research.
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APPENDIX A: BASIC RELATIONS IN FLOQUET THEORY

In the following we describe how to obtain the Floquet
band structure for a finite driving strength VT (t ) without an
electric field, which is later included by a shift of k when
computing Floquet oscillations. Generally, the Floquet oper-
ator HF is given by

HF = H0(k) + VT (t ) − ih̄∂t , (A1)

where H0(k) is the Hamiltonian of the time-independent
system. Since the eigenstates of HF , �α (k, t ), are periodic
in time, they can be expanded in a Fourier series,

�α (k, t ) =
∞∑

n=−∞
uα (k, n)einωt . (A2)

The dimension of the coefficients uα (k, n) is equal to the
number of branches α of the time-independent Hamiltonian
H0(k), i.e., two in our case. In order to find these coefficients
and the corresponding eigenenergies εα , the Floquet equation
(A1) is multiplied by e−imωt , m ∈ Z, and averaged over one
period T to end up with [60,61]

∞∑
n=−∞

(
H0F,mn(k) + VF,mn

)︸ ︷︷ ︸
HF,mn (k)

uα (k, n) = εα (k)uα (k, m).

(A3)
Here, the contributions from VT (t ) are denoted by VF,mn and
the contributions from H0(k) and −ih̄∂t by H0F,mn(k). Note
that the resulting eigenvalue problem is time independent and
all the dynamics of a WP in the system are incorporated
in the Floquet basis states [18]. To account for this when
projecting a WP from the time-dependent basis to the Floquet
basis, the relation 〈ko(t )〉t = kFloquet is used, where 〈ko(t )〉t =
1
T

∫ T
0 ko(t )dt . The time dependence of ko(t ) is introduced by

the time-periodic driving VT (t ). Hereafter, we refer to kFloquet

when talking of wave numbers and suppress its subscript
to simplify the notation. The Floquet Hamiltonian without
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coupling,

H0F,mn(k) = (h̄vF k · σ + mh̄ω)δmn, (A4)

is diagonal and describes the Dirac band structure shown in
Fig. 1. The driving Hamiltonian,

VF,mn = 1

T

∫ T

0
dt VT (t )ei(n−m)ωt , (A5)

on the other hand, couples different Floquet modes uα (k, n)
and thus can lead to the opening of band gaps in the originally
linear spectrum (see Fig. 1). For the numerical evaluation, the
resulting infinite matrix HF has to be truncated at a finite value
±n that corresponds to the number of Floquet replicas taken
into account. When performing numerical calculations, one
has to make sure that the results are converged for the chosen
value of n.

APPENDIX B: FLOQUET QUASIBAND STRUCTURE OF A
DIRAC SYSTEM WITH A PERIODICALLY OPENED

MASS GAP

Here, we give a more detailed analysis of the Floquet band
structure of a Dirac system with a periodically opened mass
gap. The potential describing this time-dependent pulsing is
given in Eq. (8). For the mass gap, we find with Eq. (A5),

VF,mn = M

2π i(n − m)

(
1 − e−2π i(n−m) �t

T
)
σz. (B1)

Qualitatively, the two timescales �t and T involved are
reflected in k space. While the longer scale T makes for
the high-frequency oscillations of the Floquet bands due to
the replicas, the smaller timescale �t is responsible for the
slow modulation, i.e., the different gap sizes as a function of
k shown in Fig. 6.

On a more quantitative level, the dependence of the Flo-
quet bands on the pulse amplitude M and pulse duration �t
can be best understood when studying the influence of one
pulse on a WP in the static Dirac cone. This has been done
extensively in Ref. [62] and will only be summarized here. Let
us consider a WP initially occupying states in the upper cone.
The opening and closing of the gap causes a redistribution
of the WP to both cones, leading to a new superposition
state. The amplitude of the part now occupying the other
cone—in our example the lower one—can easily be calculated
analytically [62],

A(k) = − i√
1 + η2

sin(μ
√

1 + η2), (B2)

where η = Ek,±/M and μ = M�t/h̄. This transition ampli-
tude only depends on the initial energy Ek,± of the state
and the pulse parameters. A numerical comparison of the
corresponding transition probability P(k) = |A(k)|2 and the
Floquet band structure reveals that the gaps that open at
the intersections of the repetitions of the original cone are
directly related to the transition probability at that k value:
The larger P(k), the larger is the band gap. The reason for
this dependence can be motivated in the following way. P(k)
describes for a single pulse the proportion of the WP that is
transferred to the other band, i.e., how much a single pulse
couples the upper and lower band of the Dirac cone. On the
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FIG. 6. Floquet band structure (black curves) and corresponding
transition probability P(k) (blue) for (a) μ = 6.3, �t/T = 0.5 and
(b) μ = 0.4, �t/T = 0.09. The bands shown in Fig. 2(a) of the main
paper are a zoom into those depicted in (b). For both parameter sets
one can easily see that the gap in the Floquet bands closes whenever
P(k) goes to zero.

other hand, the band gap of the Floquet bands is due to this
coupling of (initially) linear band replicas. Therefore, it is
not surprising that P(k) and the band gap width are directly
related.

We show this for two exemplary band structures in Fig. 6.
In Fig. 6(a) we set μ = 6.3 and �t/T = 0.5. Since P(k) = 0
around kvF /ω = 0 the original Dirac cone is preserved. For
larger k, the band gaps open. The resulting complex band
structure is a perfect example of how nicely the Floquet band
structure can be tuned based on the transition probability P(k).
The band structure shown in Fig. 6(b) is the same as the one
shown in Fig. 2(a) of the main paper but for a larger range of
k values. There, a wide area around kvF /ω = 0 is gapped. For
an appropriate choice of parameters [as in Fig. 6(b)] a large
k window, in which Landau-Zener transitions are suppressed,
can be chosen to support Floquet oscillations. As a rule of
thumb, the smaller �t/T , the more the band gaps open and
thus allow for more periods of Floquet oscillations before
Landau-Zener transitions diminish them.
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FIG. 7. Frequency analysis by a Fourier transform of the velocity
ṽ(ωv ) of WPs with different k̄. Since no electric field is applied, k
is constant. The dashed lines mark ωZB as expected from Eq. (C1)
which match perfectly the numerically obtained peaks. The inset
shows the corresponding time dependency of the velocities. For
the Fourier analysis, the respective average velocities have been
subtracted to avoid a zero-frequency peak.

APPENDIX C: ZITTERBEWEGUNG IN A DIRAC SYSTEM
WITH A PERIODICALLY OPENED MASS GAP

Zitterbewegung (ZB) was originally predicted by
Schrödinger for the Dirac equation [34] but an analog is
also visible in multiband systems [35,63–67]. The reason is
the interference of particle and antiparticle contributions in
a WP, or respectively, the contributions of different bands,
in cases when the velocity operator does not commute with
the Hamiltonian. The corresponding term is the off-diagonal
term of the expectation value of the velocity operator and the
frequency is given by the difference of the energies. In our
case, we also have an effective two-band model due to the
Floquet bands with an off-diagonal term of the velocity as
seen in Eq. (13). The frequency of the corresponding “Floquet
zitterbewegung” is given by the energy gap between the two
Floquet quasienergies,

ωZB = [εβ (k) − εα (k)]/h̄. (C1)

In Fig. 7 we show the Fourier transform ṽ(ωv ) of the
velocity of a WP starting at different k values in the Floquet
band structure to analyze the frequency spectrum. We denote
the variable of the Fourier transform of the velocity by ωv .
For these calculations no static electric field was applied,
such that k and therefore ωZB stay constant in time. Before
performing the Fourier transform to investigate the frequency
of the oscillations, the mean velocity value was subtracted of
the corresponding data to avoid a peak at ωv = 0.

The dashed lines mark ωZB as calculated by Eq. (C1).
Their good agreement with the spectrum confirms that the off-
diagonal velocity in the Floquet picture describes ZB caused
by the interference of states occupying different Floquet
bands. Since the velocity has a rectangular shape, the peaks
are repeated at higher harmonics. This rectangular shape can
be explained in our example by the fact that the velocity can

only change while the mass gap is open, which means that the
harmonic oscillation of the ZB is effectively sampled with the
driving frequency ω.

APPENDIX D: THE C++ LIBRARY “TIME-DEPENDENT
QUANTUM TRANSPORT” (TQT)

To propagate a quantum state |ψ〉, one has to solve the
time-dependent Schrödinger equation,

ih̄
∂

∂t
|ψ〉 = Ĥ |ψ〉, (D1)

with the Hamilton operator Ĥ , which depends in general
on time. Formally, it can be solved using the time-evolution
operator

U (t, t0) = T exp

(
− i

h̄

∫ t

t0

Ĥ (t ′)dt ′
)

, (D2)

which is unitary and fulfills

U (t, t0) = U (t, t ′)U (t ′, t0), (D3)

where t0 is the initial time, t is some arbitrary later time, and t ′
is a time in between. The time evolution of a state then yields

|ψ (t )〉 = U (t, t0)|ψ (t0)〉. (D4)

Moreover, for time-independent Hamiltonians, the time-
evolution operator simplifies to

U (t0, t ) = exp

(
−i

Ĥ

h̄
(t − t0)

)
. (D5)

On the other hand, any function can be approximated by
stepwise constant functions—the smaller the steps, the better
is the approximation. Thus, the time-ordered exponential of
Eq. (D2) can be estimated by

U (t0, t0 + Nδt ) ≈
N−1∏
j=0

exp

(
−i

Ĥ (t0 + jδt )

h̄
δt

)
, (D6)

where the Hamiltonian is made stepwise constant for the time
duration δt . The advantage is that instead of the time-ordered
product of Eq. (D2), a rather easy multiplication can be
performed. Of course, one has to make sure that the time step
δt is small enough, such that the numerical result is converged.

Using the time-evolution operator, we shifted the problem
of solving the differential equation in Eq. (D1), to having the
Hamilton operator in an exponential, which is defined by its
(infinite) series expansion. The publicly available C++ li-
brary “time-dependent quantum transport” (TQT) by Krueckl
[36] takes care of this expansion as efficiently as possible for
1D or 2D systems. The expanded time-evolution operator acts
on a numerically defined initial state in real space. Since a
sufficiently smooth function can be approximated by its values
at discrete points, the space is discretized by a grid, in 1D with
Nx and in 2D with Nx × Ny points. Thus, the wave function
becomes a complex valued Nx-component vector or (Nx × Ny)
matrix, respectively. For this work we usually take Nx = 8192
for 1D and Nx × Ny = 8192 × 256 for 2D systems.

The Hamiltonian can be either given as a tight-binding
Hamiltonian or as a mixed position and momentum space
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representation, i.e., a function of both the position and mo-
mentum operator, the latter being the Hamiltonian used in
most cases for analytical calculations. In the mixed represen-
tation, instead of using the spatial derivative, the momentum
operator acts in momentum space, i.e., the wave function is
transformed by a fast Fourier transform, then the momen-
tum operator acts as a factor, and finally the inverse fast
Fourier transformation is applied to get back to position space.
The reason for using the Fourier transformation instead of
the derivative is the numerical instability of the latter. Since
the momentum operator acts several times (in higher orders
kn

i ) in each small time step, the errors add up quickly. In
this paper, only the mixed representation of the position and
momentum operator is used.

Due to the explicitly time-dependent Hamiltonian in our
problem, a Lanczos method is used to expand the time-
evolution operator [68,69] instead of a Chebyshev expansion
[70,71]. The difference here is that instead of expanding in
a fixed set of polynomials, the time-evolution operator is
expanded in terms of the wave function ψ itself and pow-
ers of the Hamiltonian acting on the wave function Ĥnψ .
The thereby spanned subspace is an N-dimensional Krylov
subspace K = span{ψ, Ĥψ, . . . , ĤN−1ψ}, which is orthonor-
malized to get the basis vectors un by a Gram-Schmidt
procedure during the recursive creation for better numerical
stability,

u0 = ψ (t0)

|ψ (t0)| , (D7)

u1 = Ĥu0 − α0u0

β0
, (D8)

un+1 = Ĥun − αnun − βn−1un−1

βn
, (D9)

with the overlaps αn = 〈un|Ĥ |un〉 and βn−1 = 〈un−1|Ĥ |un〉.
Note that un is a linear combination of powers of Ĥ acting
on ψ , with highest order n.

The truncated Hamiltonian in this subspace becomes tridi-
agonal,

HK =

⎛
⎜⎜⎜⎜⎜⎜⎝

α0 β0 0 · · · 0
β0 α1 β1 0
0 β1 α2 0
...

. . . βN−2

0 · · · 0 βN−2 αN−1

⎞
⎟⎟⎟⎟⎟⎟⎠, (D10)

which can be diagonalized by conventional algorithms and
enables the calculation of approximate eigenvalues of the
operator Ĥ [37]. With the matrix of eigenvectors T and
eigenvalues E of the Hamiltonian in the reduced Krylov space
HK, the time evolution of one small time step is given by

ψ (t + δt ) =
N−1∑
n=0

[
Tt exp

(
− i

h̄
Eδt

)
T ψK(t )

]
n

· un. (D11)

The expansion in the Krylov subspace is faster than a Taylor
expansion [72], and for the Krylov space, a dimension N in
the range 10–40 is usually enough. It turned out that for the
calculations in this paper, the dimension of the Krylov space
of N = 15 is sufficient.

With the thus obtained time-dependent state on our discrete
timeline, an arbitrary (observable) quantity such as the posi-
tion expectation value can be obtained as a function of the
time for the propagation, which yields in our case the Floquet
oscillations.
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