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The polaron concept captures physical situations involving an itinerant quantum particle (excitation) that
interacts strongly with bosonic degrees of freedom and becomes heavily boson-dressed. While the Gerlach-
Löwen theorem rules out the occurrence of nonanalyticities of ground-state-related quantities for a broad class
of polaron models, examples were found in recent years of sharp transitions pertaining to strongly momentum-
dependent interactions of an excitation with dispersionless (zero-dimensional) phonons. On the example of a
lattice model with Peierls-type excitation-phonon interaction, such level-crossing-type small-polaron transitions
are analyzed here through the prism of the entanglement spectrum of the excitation-phonon system. By
evaluating this spectrum in a numerically exact fashion it is demonstrated that the behavior of the entanglement
entropy in the vicinity of the critical excitation-phonon coupling strength chiefly originates from one specific
entanglement-spectrum eigenvalue, namely the smallest one. While the discrete translational symmetry of the
system implies that those eigenvalues can be labeled by the bare-excitation quasimomentum quantum numbers,
here it is shown numerically that they are predominantly associated with the quasimomenta 0 and π , including
cases where a transition between the two takes place deeply in the strong-coupling regime.
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I. INTRODUCTION

Recent years have witnessed an ever-increasing prolifera-
tion of techniques from quantum-information theory into the
field of condensed-matter physics [1]. The first major surge
of interest in this direction entailed the use of bipartite entan-
glement and the concept of entanglement entropy to charac-
terize various quantum phase transitions [2], primarily in the
realm of strongly-correlated and quantum-spin systems. For
a quantum system that can be partitioned into two entangled
subsystems, the entanglement entropy is defined as the von
Neumann entropy of the reduced density matrix pertaining to
either one of the two subsystems, obtained by tracing out the
degrees of freedom of the other one. This entropy – a single
number – represents a quantitative measure of entanglement
in any given state of a bipartite quantum system.

Over the past decade, the concept of the entanglement
spectrum attracted considerable interest in the context of the
symmetry-protected topological states of matter [3]. It arises
naturally – simply by noticing that each reduced density
matrix can be written in the form ρ = exp(−HE), i.e., as the
canonical density matrix corresponding to a “Hamiltonian”
HE at the inverse temperature βE = 1 [4]. In the same vein,
the entanglement entropy can be thought of as the thermody-
namic entropy [5,6] of a system described by HE. This last
Hamiltonian, the negative logarithm of the reduced density
matrix, became known as the modular (or entanglement)
Hamiltonian and the set of its eigenvalues the entanglement
spectrum. Such spectra have already proven their worth as
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they were shown to capture the edge physics of topologically
ordered phases [3,7,8], a research direction pioneered by Li
and Haldane [3]. They also led to nontrivial physical insights
in other condensed-matter areas, e.g., interacting spin chains
[9,10], topological insulators and superconductors [11], inte-
ger quantum Hall effect [12], interacting bosons [13,14] and
fermions [15], the Hofstadter problem [16,17], and many-
body localization [18,19]. This can be attributed to the fact
that entanglement spectrum provides a more detailed charac-
terization of the pattern of entanglement in a given system
than the corresponding entropy [3].

One area of condensed-matter physics that has not been
explored yet from the entanglement-spectrum viewpoint is
that of small polarons [20–22] – quasiparticles emerging in
lattice models based on the molecular-crystal paradigm [23].
Those models describe a short-ranged coupling of an itin-
erant excitation to dispersionless phonons [24], representing
an abstraction for the physical situation in which an excess
charge carrier or an exciton in a crystal of a narrow-band
semiconductor (or an insulator) interacts with optical phonons
of the host crystal. A strong excitation-phonon (e-ph) coupling
leads to a heavily phonon-dressed excitation, which acquires
at the same time a large effective band mass. In particular,
if the spatial extent of its wave function does not exceed
one unit cell of the host crystal the ensuing phonon-dressed
quasiparticle is referred to as small polaron [20].

Naturally arising from investigations of transport proper-
ties of narrow-band electronic materials [25–28], in the course
of time studies of small-polaron models spawned a research
area important in its own right [29–41]. While the bulk of such
studies have been devoted to the time-honored Holstein model
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[23], which captures the dependence of the excitation’s on-site
energy upon Einstein-phonon displacements on the same site
(local e-ph coupling), over the past two decades consider-
able attention was devoted to various models with nonlocal-
coupling mechanisms [34–37]. The most well known among
them is the Peierls-coupling mechanism (also known as Su-
Schrieffer-Heeger- or off-diagonal coupling) [42], which ac-
counts for the effective dependence of the hopping amplitude
between adjacent lattice sites upon the difference of local
Einstein-phonon displacements on those sites.

An important point of distinction between various cou-
pled e-ph models is provided by the Gerlach-Löwen theorem
[43,44]. This rigorous result rules out nonanalyticities in
ground-state-related properties for all models with e-ph vertex
functions that are either completely momentum-independent
(Holstein-type coupling [23]) or depends on the phonon quasi-
momentum, but not on that of the excitation (e.g., Fröhlich-
type coupling [45]). Thus, couplings that depend on both the
excitation and phonon quasimomenta do not belong to the
domain of applicability of this theorem. Moreover, for some
particular e-ph interactions of this type – with the Peierls-type
coupling being the prime example – level-crossing-type sharp
transitions were shown to exist [42,46,47]. Namely, at certain
critical coupling strengths their ground states change their
character from nondegenerate zero-quasimomentum ones to
twofold-degenerate ones corresponding to a symmetric pair of
nonzero quasimomenta. To demonstrate one such transition,
a quantum simulator based on superconducting qubits and
resonators was proposed [47,48].

In this paper, the sharp transition in a one-dimensional
(1D) model with Peierls-type coupling is analyzed from the
point of view of the entanglement spectrum of the underlying
(bipartite) e-ph system. In particular, the main aim of this
paper is to analyze the dependence of the entanglement-
spectrum eigenvalues on the effective e-ph coupling strength.
Its principal finding is that the behavior of the entanglement
entropy in the vicinity of the critical coupling strength is to a
large extent determined by the smallest eigenvalue. It is also
demonstrated that – as a consequence of the discrete trans-
lational symmetry of the system – the eigenvalues from the
entanglement spectrum can be labeled by the bare-excitation
quasimomentum quantum numbers. This is complemented
by the numerical finding that this quantum number in the
model under consideration takes values 0 and π , including
cases where a transition between the two occurs at a coupling
strength far larger than the critical one.

The remainder of this paper is organized as follows. In
Sec. II the relevant coupled e-ph Hamiltonian is introduced
(Sec. II A), along with a short description of the computa-
tional methodology utilized here to compute its ground-state
properties (Sec. II B). In Sec. III, after recapitulating the
most general properties of entanglement in bipartite systems
(Sec. III A), basic aspects of entanglement spectra in such
systems are briefly reviewed (Sec. III B), followed by some
general symmetry-related considerations and their specific
application to the coupled e-ph system at hand (Sec. III C).
The main findings of this paper are presented and discussed
in Sec. IV. Finally, the paper is summarized, with conclusions
and some general remarks, in Sec. V. An involved mathemat-
ical derivation is relegated to Appendix.

II. MODEL AND METHOD

A. Hamiltonian of the system

The system under consideration comprises a spinless-
fermion excitation nonlocally coupled to dispersionless
phonons. It is described by a 1D e-ph model, whose Hamil-
tonian can succinctly be written as

H = He + Hph + He-ph. (1)

Here He is the excitation hopping (i.e., kinetic-energy) term in
the tight-binding representation, given by

He = −te
∑

n

(c†n+1cn + H.c.), (2)

with te being the corresponding hopping amplitude; c†n (cn)
creates (destroys) an excitation at site n (n = 1, . . . , N). [For
simplicity, the excitation on-site energy is set to zero in the
following.] At the same time Hph stands for the free-phonon
term (h̄ = 1 in what follows)

Hph = ωph

∑
n

b†nbn, (3)

where b†n (bn) creates (destroys) an Einstein phonon with fre-
quency ωph at site n. Finally, the e-ph coupling term describes
the lowest-order (linear) dependence of the effective hopping
amplitude between two adjacent sites, say n and n + 1, on
the difference of the local phonon displacements un+1 and un

(where un ∝ b†n + bn) at those sites (Peierls-type coupling). It
is given by

He-ph = gωph

∑
n

(c†n+1cn + H.c.)(b†n+1 + bn+1 − b†n − bn),

(4)

with g being the dimensionless coupling strength.
The eigenstates of the Hamiltonian H in Eq. (1) ought to be

good-quasimomentum states, i.e., joint eigenstates of H and
the total quasimomentum operator

Ktot =
∑

k

kc†k ck +
∑

q

qb†qbq, (5)

since the latter commutes with H . In the following, the
eigenvalues of Ktot are labeled with K and quasimomenta are
dimensionless, i.e., expressed in units of the inverse lattice
period. In particular, use is made of periodic boundary con-
ditions, with N permissible quasimomenta in the Brillouin
zone given by kn = 2πn/N , where n = −N/2 + 1, . . . , N/2
(in what follows, N is assumed to be even).

By switching to momentum space, the e-ph coupling
Hamiltonian of Eq. (4) can be recast in the generic form

He−ph = N−1/2
∑
k,q

γe-ph(k, q)c†k+qck (b†−q + bq), (6)

where its corresponding vertex function is given by

γe-ph(k, q) = 2igωph[sin k − sin(k + q)]. (7)

Because the latter depends both on k and q, the Peierls-
coupling term in Eq. (4) does not satisfy the conditions for
the applicability of the Gerlach-Löwen theorem [44].
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Ground-state properties of small polarons are custom-
arily discussed in terms of an effective coupling strength.
For the most general (momentum-dependent) vertex func-
tion γe-ph(k, q), the effective coupling strength is defined as
λeff = 〈|γe-ph(k, q)|2〉BZ/(2teωph), where 〈. . .〉BZ stands for the
Brillouin-zone average. For γe-ph(k, q) given by Eq. (7), this
reduces to λeff ≡ 2g2ωph/te. In particular, the ground state of
the Hamiltonian (1) with Peierls-type coupling undergoes a
sharp level-crossing-type transition (i.e., first-order nonana-
lyticity) at a critical value λc

eff ∼ 1 of λeff [42,46]. For λeff <

λc
eff the ground state is the (nondegenerate) K = 0 eigenvalue

of Ktot, while for λeff � λc
eff it is twofold-degenerate and

corresponds to a symmetric pair of nonzero quasimomenta
K = ±Kgs. Upon increasing λeff beyond its critical value,
Kgs also changes – which is reflected in the ground-state
energy as a sequence of further first-order nonanalyticities
– and saturates at Kgs = π/2 for a sufficiently large λeff.
Importantly, both λc

eff and the values of λeff that correspond to
the latter nonanalyticities are not universal, being dependent
on the adiabaticity ratio ωph/te.

It is worthwhile to mention that a similar sharp transition
was found [47,48] in a model where Peierls-type coupling is
complemented by e-ph interaction of the breathing-mode type
[26]. It is important to stress that a dependence on both the
excitation and phonon quasimomenta (k, q) is not a sufficient
condition for the existence of a ground-state nonanalyticity;
a counterexample is furnished, e.g., by the Edwards model
[36,37,40].

B. Computational methodology

The ground-state properties of the e-ph system at hand
are here computed using the conventional Lanczos diagonal-
ization method for sparse matrices [49,50], combined with a
controlled truncation of the (otherwise infinite-dimensional)
phonon Hilbert space.

The Hilbert space of the e-ph system is spanned by
states of the form |n〉e ⊗ |m〉ph, where |n〉e ≡ c†n|0〉e repre-
sents an excitation localized at site n, m ≡ (m1, . . . , mN )
is the set of phonon occupation numbers, and |m〉ph =∏N

i=1(1/
√

mi!)(b
†
i )mi |0〉ph (here |0〉e and |0〉ph are the exci-

tation and phonon vacuum states, respectively). With the
restriction to a truncated phonon space comprising states with
at most M phonons, all m-phonon states with 0 � mi � m
are included, where m = ∑N

i=1 mi � M. The dimension of the
total Hilbert space is given by D = De × Dph, where De = N
and Dph = (M + N )!/(M!N!). A generic state in this Hilbert
space is given by

|ψ〉 =
∑
n,m

Cn,m|n〉e ⊗ |m〉ph, (8)

where the information about the phonon content of this state
is contained in the coefficients Cn,m.

The truncation of the phonon Hilbert space follows a
well-established procedure in which the system size (N) and
maximum number of phonons retained (M) are gradually
increased until the convergence for the ground-state energy
and phonon distribution is reached [31]. The convergence
criterion adopted here is that the relative error in these quan-
tities upon further increase of N and M is not larger than

10−4. While for Holstein-type coupling the system size is
practically inconsequential [29], this is not the case for the
nonlocal Peierls-type coupling investigated here. In partic-
ular, the stated criterion is here satisfied for a system with
N = 6 sites and M = 8 phonons, the values adopted in the
following.

III. ENTANGLEMENT SPECTRUM

To set the stage for further discussion, the concept of en-
tanglement spectra for bipartite quantum systems is briefly in-
troduced here, complemented by its specific application to the
coupled e-ph system under consideration. To begin with, a re-
minder is presented about some basic aspects of entanglement
in bipartite systems, including the definition of von Neumann
entanglement entropy (Sec. III A). The most general features
of entanglement spectra, exemplified by their intimate con-
nection to the Schmidt decomposition [51,52], are then briefly
reviewed (Sec. III B). Finally, Sec. III C is devoted to general
considerations on labeling the entanglement-spectrum eigen-
values with quantum numbers of certain symmetry-related
observables, as well as their concrete use in the coupled e-ph
system at hand.

A. Bipartite systems, entanglement entropy,
and application to the coupled e-ph system

The Hilbert space of a quantum system that can be divided
up into two subsystems A and B has the form of a tensor
product H = HA ⊗ HB of the component spaces. In what
follows the respective dimensions of HA and HB will be
denoted by dA and dB.

In a pure state |	〉 – not necessarily normalized – the
density matrix of the full system is given by

ρ = |	〉〈	|
〈	|	〉 . (9)

The reduced (marginal) density matrix ρA of the subsystem A
is obtained by tracing ρ over the degrees of freedom of the
subsystem B: ρA = TrB ρ. The von Neumann (entanglement)
entropy, defined as

SE = −TrA(ρA ln ρA), (10)

describes the quantum correlations in the state |	〉. Note that
SE = − TrA(ρA ln ρA) = − TrB(ρB ln ρB), where the reduced
density matrix ρB is obtained by tracing ρ over the degrees of
freedom of the subsystem A.

In accordance with general relation in Eq. (9), the density
matrix corresponding to the ground state |ψgs〉 of the coupled
e-ph system (A → e, B → ph) with the tensor-product Hilbert
space H = He ⊗ Hph is given by

ρe-ph = |ψgs〉〈ψgs|
〈ψgs|ψgs〉 . (11)

The reduced excitation density matrix is then given by

ρe = Trph(ρe-ph), (12)

and the ground-state entanglement entropy Sgs of the system
is defined as

Sgs = −Tre(ρe ln ρe). (13)
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B. Entanglement spectrum: Generalities

Let {|sA〉, sA = 1, . . . , dA} and {|sB〉, sB = 1, . . . , dB} be
orthonormal bases in the component spaces HA and HB of
the above bipartite system. A generic pure quantum state |	〉
of the bipartite system can be decomposed in the orthonormal
basis {|sA〉 ⊗ |sB〉}, i.e., the tensor product of {|sA〉} and {|sB〉}:

|	〉 =
dA∑

sA=1

dB∑
sB=1

csA,sB |sA〉 ⊗ |sB〉. (14)

The coefficients csA,sB in this last expansion can be thought of
as the matrix elements of a (generically rectangular) matrix
M, which will henceforth be referred to as the entanglement
matrix. Through singular-value decomposition (SVD) this
matrix can be recast as

M = UDV †, (15)

where U is a matrix of dimension dA × min(dA, dB) that
satisfies U †U = 1 and V a dB × min(dA, dB) matrix which
satisfies VV † = 1; D is a diagonal square matrix of dimension
min(dA, dB) where all entries – the singular values of the
matrix M – are non-negative and can be written as {e−ξα/2|α =
1, . . . , min(dA, dB)}.

Using the above SVD of the entanglement matrix, one
arrives at the Schmidt decomposition [52]

|	〉 =
αmax∑
α=1

e−ξα/2
∣∣ψα

A

〉 ⊗ ∣∣ψα
B

〉
, (16)

where αmax = min(dA, dB) and

∣∣ψα
A

〉 =
dA∑

sA=1

U †
α,sA

|sA〉, ∣∣ψα
B

〉 =
dB∑

sB=1

V †
α,sB

|sB〉, (17)

are the singular vectors of the matrix M. The latter allow one
to express the reduced density matrices as

ρA =
αmax∑
α=1

e−ξα
∣∣ψα

A

〉〈
ψα

A

∣∣,

ρB =
αmax∑
α=1

e−ξα
∣∣ψα

B

〉〈
ψα

B

∣∣. (18)

Thus the joint spectrum of ρA and ρB can be obtained from
the Schmidt decomposition of the state |	〉 [cf. Eq. (16)]
(or, equivalently, from the SVD of the entanglement matrix)
and is given by the set {e−ξα } (i.e., squares of the above
singular values). In particular, the entanglement spectrum
corresponds to the set {ξα} of the negative logarithms of the
joint eigenvalues of ρA and ρB.

C. Symmetry-related considerations and application
to the coupled e-ph system

In what follows, it is shown that the entanglement-
spectrum eigenvalues of the e-ph system can be labeled by
the quantum number associated with the excitation quasimo-
mentum operator, this being a special case of more general
symmetry-related considerations.

Consider a Hermitian operator (observable) O acting on
the tensor-product Hilbert space H = HA ⊗ HB that can be

decomposed as O = OA + OB, where OA acts only on HA

and OB only on HB. Assuming that the state |	〉 is an
eigenstate of O, it immediately follows that its corresponding
density matrix ρ commutes with O. Furthermore, [O, ρ] = 0
implies that TrB[O, ρ] = TrB[OA, ρ] + TrB[OB, ρ] = 0. By
virtue of the fact that TrB[OB, ρ] = 0, which can be verified
by evaluating this last trace in the eigenbasis of the operator
OB, and

TrB[OA, ρ] = [OA, TrBρ] ≡ [OA, ρA], (19)

one readily finds that [OA, ρA] = 0. Therefore, one can simul-
taneously diagonalize ρA and OA, and label the entanglement-
spectrum eigenvalues {ξα} according to the quantum number
of OA.

It is pertinent to apply these general symmetry-related
considerations to the coupled e-ph system at hand, which
possesses a discrete translational symmetry. Owing to this
symmetry, mathematically expressed by [H, Ktot] = 0, the
ground state |ψgs〉 of the system is an eigenstate of the opera-
tor Ktot [cf. Eq. (5)]. This operator – the generator of discrete
translations – plays the role of the observable O in the above
discussion. Namely, it can be decomposed as Ktot = Ke + Kph,
where Ke = ∑

k kc†k ck acts only on He and Kph = ∑
q qb†qbq

on Hph. Following the above general reasoning, one concludes
that the operator Ke commutes with the reduced density
matrix ρe corresponding to |ψgs〉 [cf. Eq. (20)]. Thus, the
operators Ke and ρe can be diagonalized simultaneously and
the entanglement-spectrum eigenvalues {ξ1, . . . , ξN } can be
labeled by the quantum number of Ke, i.e., they correspond to
different quasimomenta in the Brillouin zone permissible by
the periodic boundary conditions (cf. Sec. II A). In particular,
the excitation-quasimomentum eigenvalue Kα

e ≡ 〈ξα|Ke|ξα〉
corresponding to ξα (α = 1, . . . , N) is given by Eq. (A6) in
Appendix.

IV. RESULTS AND DISCUSSION

The strategy employed here to analyze the coupled e-ph
system entails the following steps. After the ground-state
vector |ψgs〉 – represented by the coefficients Cgs

n,m [cf. Eq. (8)]
– is obtained through Lanczos diagonalization [49,50] of the
e-ph Hamiltonian (1) for each value of λeff in the chosen
range [0,4], the reduced density matrix is determined with
the aid of Eqs. (11) and (20). Its matrix elements (ρe)nn′

(n, n′ = 1, . . . , N) are given by

(ρe)nn′ =
∑

m Cgs
n,mCgs∗

n′,m∑N
p=1

∑
m

∣∣Cgs
p,m

∣∣2 . (20)

The entanglement-spectrum eigenvalues and their associated
eigenvectors are then obtained by simply solving the (N ×
N)-dimensional eigenproblem of ρe. Alternatively, the same
spectrum can be obtained through a numerical SVD [53] of
the corresponding entanglement matrix [cf. Eq. (15)].

In what follows, the entire range of e-ph coupling strengths
is analyzed – from the weak-coupling regime characterized
by a weakly-dressed (quasi-free) excitation to the strong-
coupling regime with a heavily-dressed one (small po-
laron). The analysis was repeated for different values of the
adiabaticity ratio, covering the adiabatic (ωph/te < 1) and
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FIG. 1. Dependence of the ground-state e-ph entanglement en-
tropy for a system of size N = 6 on the effective coupling strength,
depicted for three different values of the adiabaticity ratio.

antiadiabatic (ωph/te > 1) regimes, as well as the intermediate
case (ωph/te = 1).

Before embarking on the analysis of the ground-state en-
tanglement spectrum of the system it is instructive to discuss
its corresponding entanglement entropy Sgs [cf. Eq. (13)]. In
Fig. 1, this quantity is depicted for three different values of
the adiabaticity ratio and clearly shows a first-order nonan-
alyticity at a critical value λc

eff of λeff. This critical value
decreases – albeit rather slowly – with ωph/te. Beyond this
critical value, the entanglement entropy grows monotonously
and for a sufficiently large coupling strength saturates at the
value ln N characteristic of maximally-entangled states [54]
in this system; for N = 6, this maximal value is Smax

gs ≈ 1.79
(cf. Fig. 1).

The numerically-obtained entanglement spectrum has the
same qualitative structure for all values of the adiabaticity
ratios, which appears to be consistent with the previously
established general conclusion that the gross features of small
polarons in the presence of Peierls-type coupling are for
the most part insensitive to the value of ωph/te [30]. Its
corresponding eigenvalues, i.e., their dependence on λeff, are
depicted in Figs. 2 (α = 1, 2, 3) and 3 (α = 4, 5, 6) for all
three relevant regimes. While the nonanalytic behavior is
manifested in all six eigenvalues, what is noticeable from
Figs. 2 and 3 is that this nonanalyticity is much more pro-
nounced in the three eigenvalues shown in Fig. 2 than in those
displayed in Fig. 3.

Importantly, from Fig. 2 it can be inferred that the behavior
of the ground-state entanglement entropy Sgs = ∑6

α=1 ξαe−ξα

(displayed in Fig. 1) – especially for λeff � λc
eff – is deter-

mined almost entirely by that of the smallest entanglement-
spectrum eigenvalue (α = 1)[cf. Fig. 2(a)], i.e., the largest
eigenvalue of the corresponding reduced density matrix [cf.
Eq. (20)]. Namely, the remaining five eigenvalues – espe-
cially those corresponding to α = 2 and α = 4, depicted
in Figs. 2(b) and 3(b), respectively – have a rather weak
dependence on λeff beyond the critical coupling strength,
thus giving nearly constant contributions to Sgs for λeff �
λc

eff. Another feature that sets the α = 1 eigenvalue apart is
that it is the only one which monotonously increases with
λeff below λc

eff, with all the other eigenvalues showing fairly
similar decreasing behavior for λeff < λc

eff. Interestingly, not

FIG. 2. Entanglement-spectrum eigenvalue ξα in the ground state
of a system of size N = 6 as a function of the effective coupling
strength: (a) α = 1, (b) α = 2, and (c) α = 3.

only that the λeff-dependence of its corresponding contri-
bution Sα=1 ≡ ξα=1e−ξα=1 (cf. Fig. 4) mimics the behavior
of the total ground-state entanglement entropy Sgs, but this
entanglement-spectrum eigenvalue itself also shows a very
similar dependence on λeff as Sα=1 and Sgs.

This last finding that the ground-state e-ph entanglement
entropy Sgs is to a large extent determined by ξα=1 – i.e.,
by the smallest eigenvalue of the corresponding entanglement
Hamiltonian – squares with a conclusion drawn in studies
of other types of many-body systems. Namely, the interest-
ing, universal part of the entanglement spectrum is typically
captured by the largest eigenvalues of the relevant reduced
density matrix [55]. Recalling that the entanglement entropy
corresponding to a certain reduced density matrix is equal
to the thermodynamic entropy of the attendant entanglement
Hamiltonian HE at the inverse temperature βE = 1, this find-
ing also becomes closely related to the far more general issue
as to when an entire Hamiltonian of a many-body system
can be considered as being encoded in a single eigenstate
(typically its ground state). Such situations are not uncom-
mon in many-body systems, but have so far been systemat-
ically discussed only in the context of thermodynamic and
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FIG. 3. Entanglement-spectrum eigenvalue ξα in the ground state
of a system of size N = 6 as a function of the effective coupling
strength: (a) α = 4, (b) α = 5, and (c) α = 6.

entanglement entropies of single-component systems, such
as interacting quantum spin-1/2 chains or interacting hard-
core bosons on a 1D lattice [56]. The present study of the
entanglement spectrum in a (two-component) coupled e-ph

FIG. 4. Contribution Sα=1 ≡ ξα=1 e−ξα=1 of the α = 1
entanglement-spectrum eigenvalue to the ground-state entanglement
entropy Sgs.

FIG. 5. Relative contributions Sα/Sgs of the entanglement-
spectrum eigenvalues α = 1, 4, 5 to the total ground-state entangle-
ment entropy (independent of the adiabaticity ratio).

system thus provides another, qualitatively different, example
of a physical system where this same issue becomes relevant.

As regards the relative importance of different
entanglement-spectrum eigenvalues, a useful insight can
be gleaned by evaluating the relative contributions Sα/Sgs

of those eigenvalues to the total entanglement entropy at
different coupling strengths. The actual calculation shows
that the eigenvalues α = 1, 4, and 5 give much larger
contributions to Sgs than the remaining ones. To be more
specific, they account for around 80% of Sgs, with their
maximal contributions being attained in the vicinity of
the critical coupling strength. Their individual relative
contributions, depicted in Fig. 5, are completely independent
of the adiabaticity ratio (hence the value of ωph/te is not
indicated in the plot).

As discussed in Sec. III C, resulting from the presence of a
discrete translational symmetry is the possibility to label the
entanglement-spectrum eigenvalues by the quantum number
of the excitation-quasimomentum operator Ke; its values are
the quasimomenta kn in the Brillouin zone permitted by the
periodic boundary conditions. Based on the expression given
by Eq. (A6) in Appendix, it is straightforward to numerically
determine the quasimomenta associated to different eigenval-
ues ξα for different coupling strengths and adiabaticity ratios.

The actual calculation shows that for ωph/te � 1 (i.e.,
in the antiadiabatic and intermediate cases) one eigenvalue,
more precisely α = 3, corresponds to the quasimomentum
π at all coupling strenghts, while the five remaining eigen-
values correspond to 0. This is illustrated in Fig. 6(a) for
the special case ωph/te = 1. The corresponding behavior for
ωph/te < 1, i.e., in the adiabatic regime, has an additional
interesting feature. Namely, while in this regime there are
eigenvalues corresponding to the bare-excitation quasimo-
menta 0 and π at all coupling strengths, one also finds cases
where a specific eigenvalue corresponds to 0 in a certain
interval of coupling strengths and to π otherwise. For in-
stance, Fig. 6(b) illustrates one such example for ωph/te =
0.5, where for a certain coupling strength slightly below
λeff = 3 – thus lying deeply in the strong e-ph coupling
regime – such a transition occurs between the quasimomenta
0 and π for the α = 3 and α = 6 entanglement-spectrum
eigenvalues.
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FIG. 6. Quasimomentum Kα
e ≡ 〈ξα| Ke |ξα〉 (expressed in units

of π ) associated to the α = 3 and α = 6 entanglement-spectrum
eigenvalues for (a) ωph/te = 1.0, and (b) ωph/te = 0.5.

The occurrence of this last generalized transition provides
a differentiation between the e-ph entanglement pattern in
the adiabatic regime and the other relevant regimes (antia-
diabatic, intermediate). This can be linked to the fact that
this transition takes place at a coupling strength for which
maximally-entangled small-polaron states are still not reached
in the adiabatic case, unlike in the other two cases [cf.
Fig. 1]. An immediate question is whether a concrete physical
meaning can be attributed to it, this being related to the much
more general issue as to how universal is the entanglement
spectrum [4]. In Ref. [4], based on several physical examples
it was argued that the entanglement Hamiltonian of a physical
system may undergo transitions in which its ground state and
low-energy spectrum exhibit singular changes, even when the
system actually remains in the same phase. In other words, the
entanglement spectrum may exhibit spurious quantum phase
transitions that do not have any genuine physical counterpart,
a property that it shares with the less general concept of
entanglement entropy [2]. While this issue was previously
discussed in connection with broken-symmetry or topolog-
ical phases of many-body systems, here it comes up in the
qualitatively different context of small-polaron states that do
not spontaneously break the discrete translational symmetry
of the underlying excitation-phonon Hamiltonian.

V. SUMMARY AND CONCLUSION

To summarize, in this paper the onset of nonanalytic behav-
ior of ground-state-related properties in models with strongly
momentum-dependent excitation-phonon coupling was inves-
tigated from the point of view of the underlying entanglement
spectrum. This was accomplished through a case study of a
lattice model with Peierls-type coupling whose entanglement

spectrum was obtained in a numerically-exact fashion. The
accompanying analysis was carried out in the full range of
the relevant effective excitation-phonon coupling strength –
from weak- (quasifree excitation) to strong coupling (heavily-
dressed excitation, i.e., small polaron) – and in different
regimes of the adiabaticity ratio.

The main finding of the present work is that the de-
pendence of the ground-state entanglement entropy on the
excitation-phonon coupling strength – and, in particular, the
first-order nonanalyticity that it shows at the critical coupling
strength – chiefly originates from the smallest entanglement-
spectrum eigenvalue. Another nontrivial conclusion drawn is
that this particular eigenvalue shows a very similar depen-
dence on the effective coupling strength as the entanglement
entropy itself. In addition, as a special case of quite general
symmetry-related arguments it was demonstrated that the
discrete translational symmetry of the system implies that
the entanglement-spectrum eigenvalues can be labeled by the
bare-excitation quasimomentum quantum number. Finally, it
was shown numerically that these eigenvalues are predom-
inantly associated to quasimomenta 0 and π . Interestingly,
it was also found that in particular in the adiabatic regime
a generalized transition between these two quasimomenta –
for specific entanglement-spectrum eigenvalues – takes place
deeply in the strong-coupling regime. This feature sets apart
the adiabatic regime from the other two relevant regimes.

The present work extends the range of applications of
the concept of entanglement spectrum to polaronic systems.
Generally speaking, what makes the ground-state nonanalyt-
icities in models of the kind investigated here particularly
appealing is that they take place in a system of finite size
and are thus amenable to a rigorous numerical analysis. It
would be interesting to test the generality of the conclusions
drawn here in a future work by studying other models with
strongly momentum-dependent excitation-phonon coupling
whose ground states show a similar nonanalytic behavior.
Furthermore, the local (single-qubit) addressability of the pre-
viously proposed analog quantum simulators of those models
[47,48] may allow an experimental measurement of the corre-
sponding entanglement spectra. Namely, a completely general
method for such measurements was recently suggested and
applied to a specific class of locally-addressable systems
(cold atoms in optical lattices) [57]. This method – based
on an analogy to a many-body Ramsey interferometry [58]
– makes use of the fact that the conditional evolution of a
many-body system is determined by a copy of its density
operator, which acts as the Hamiltonian. It is conceivable
that the ever-improving scalability and coherence properties
of superconducting-qubit systems will allow the realization
of the aforementioned simulators in not-too-distant future,
which will in turn make it possible to measure the relevant
entanglement spectra using the latter method.
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APPENDIX: DERIVATION OF THE
EXPRESSION FOR 〈ξα| Ke |ξα〉

To begin with, it is worthwhile noting that the expectation
value of the operator Ke with respect to the entanglement-
spectrum eigenvector (i.e., entanglement-Hamiltonian eigen-
state) |ξα〉 (α = 1, . . . , N)

〈ξα| Ke |ξα〉 =
∑

k

k〈ξα| c†k ck |ξα〉 (A1)

can be rewritten as

〈ξα| Ke |ξα〉 =
∑

k

k‖ ck |ξα〉‖2, (A2)

where ‖ . . . ‖ stands for the norm of a vector. On the other
hand, the eigenvector |ξα〉 can be expanded in the basis of the
N-dimensional excitation Hilbert space He

|ξα〉 =
N∑

n=1

ξα,n|n〉e ≡
N∑

n=1

ξα,nc†n|0〉e, (A3)

where ξα,n ≡ e〈n|ξα〉 is the projection of |ξα〉 onto |n〉e. By
Fourier transforming the momentum-space operator ck in

Eq. (A2) back to real space and noting that cn′c†n|0〉e ≡
δn,n′ |0〉e, one readily obtains

ck|ξα〉 = 1√
N

N∑
l=1

eiklξα,l |0〉e. (A4)

It immediately follows that

‖ck|ξα〉‖2 = 1

N

N∑
l,l ′=1

eik(l−l ′ )ξα,lξ
∗
α,l ′ (A5)

and, finally, by reinserting this last result into Eq. (A2),

〈ξα| Ke |ξα〉 = 1

N

∑
k

k

⎡
⎣

N∑
l,l ′=1

eik(l−l ′ )ξα,lξ
∗
α,l ′

⎤
⎦. (A6)

From this last expression the quasimomenta corresponding
to different entanglement-spectrum eigenvalues ξα can easily
be determined numerically, using the previously obtained
components ξα,l of their corresponding eigenvectors |ξα〉 and
carrying out the k summation over the N permissible quasi-
momenta in the Brillouin zone (cf. Sec. II A).
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