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Microscopic theory of organic magnetoresistance based on kinetic equations
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A. V. Shumilin
Ioffe Institute, 194021 St.-Petersburg, Russia

(Received 16 January 2020; accepted 12 March 2020; published 6 April 2020)

The correlation kinetic equation approach is developed that allows describing spin correlations in a material
with hopping transport. The quantum nature of spin is taken into account. The approach is applied to the problem
of the bipolaron mechanism of organic magnetoresistance in the limit of large Hubbard energy and small applied
electric field. The spin relaxation that is important to magnetoresistance is considered to be due to hyperfine
interaction with atomic nuclei. It is shown that the line shape of magnetoresistance depends on short-range
transport properties. Different model systems with identical hyperfine interaction but different statistics of
electron hops lead to different line shapes of magnetoresistance including the two empirical laws H2/(H2 + H 2

0 )
and H 2/(|H | + H0 )2 that are commonly used to fit experimental results.
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I. INTRODUCTION

Hopping conductivity is one of the fundamental types of
electron transport in solid-state materials. It exists when the
electron wave functions are localized. The conductivity is
achieved due to the acts of hopping when the electron hops
between localized functions (sites) with different energies due
to the emission or absorption of phonons. The conventional
theory of hopping conductivity is closely related to doped
semiconductors with compensation. It is based on the mean-
field approximation and Miller-Abrahams resistor network,
which follows from this approximation in weak applied elec-
tric field [1,2]. The drawback of the mean-field approximation
is that it neglects correlations between occupation numbers of
different sites.

One type of material with hopping transport that is actively
developed right now is the organic semiconductors. They
are already widely applied in organic light-emitting diodes
(OLEDs)[3] and have other possible applications, for example
in organic solar cells [4]. These materials very often display an
intriguing property that is called “organic magnetoresistance”
or “OMAR” [5–11]. It is quite a strong magnetoresistance
observed in magnetic fields 10–100 gs both at low and room
temperatures. Although the qualitative explanations [12,13]
and semiqualitative theories [14–20] of this phenomenon
started to appear 10 years ago, the detailed microscopic theory
of OMAR is not yet developed. One of the reasons for it is the
close relation of OMAR to nonequilibrium spin correlations.
The magnetoresistance is equal to zero in the mean-field
approximation [21] but reappears when the correlations are
included in the theory even in an oversimplified model [22].
The physical reason for OMAR is the dependence of the
relaxation of spin correlations on the applied magnetic field.
This relaxation is often associated with hyperfine interac-
tion with atomic nuclei. With some simplification, it can be
described as spin rotation around the so-called “hyperfine
fields.” These fields are different at different sites, therefore,

random hopping of electron with rotation around these fields
leads to spin relaxation. When the external magnetic field is
large compared to hyperfine fields, the spin rotates around
approximately the same direction on all the sites and its
relaxation is suppressed.

The microscopic theory of OMAR requires a theoretical
approach that takes into account the nonequilibrium corre-
lations including the spin correlations. Up to very recent
times, practically the only theoretical tool to do this was the
Monte Carlo numerical simulation. It was used in one of
the pioneering studies of OMAR to show the possibility of
its bipolaron mechanism (the mechanism related to double
occupation of a single site with two electrons in the spin-
singlet state) [13]. However, this method has its drawbacks.
It is a numerical method not suited for analytical theory. Also,
it is based on the semiclassical nature of hopping transport
where all the quantum mechanics is included in the electron
hopping rates. It has some problems with spin correlations that
actually have quantum nature. In [13] the spin was described
semiclassically as the two possibilities for an electron: to have
spin up or spin down. This approximation can readily be used
in Monte Carlo simulation, however, it cannot describe actual
spin rotation around hyperfine fields. To describe it, the spin
should be allowed to be directed along any axis, not only “up”
and “down.” It will be shown that it requires a more rigorous
description of spin correlations based on quantum mechanics.

There is an approach to consider pair correlations in
close pairs of sites as a modification of Miller-Abrahams
resistors [22–24]. However, up to now, electron spin was
considered with this approach only in the semiclassical “up”
and “down” model.

Very recently, the approach that allows to include correla-
tions of arbitrary order into the analytical theory of hopping
transport was developed [25,26]. The approach operates with
correlation kinetic equations (CKE) that relate occupation
numbers and their correlations. It is based on a Bogol-
ubov chain of equations [27,28]. In [25,26] this approach is
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developed only for charge correlations, i.e., it does not con-
sider electron spin in any model.

The goal of this study is to develop CKE theory that
includes spin correlations and explicitly takes into account
their quantum nature and to apply this theory to the problem
of organic magnetoresistance. The study is restricted to the
bipolaron mechanism of OMAR in low electric fields and
large Hubbard energy. The spin relaxation is considered to be
provided by hyperfine interaction with atomic nuclei.

Although the qualitative theories can give a general under-
standing of OMAR, it is desirable to have an approach that can
be used to calculate OMAR explicitly. The progress in general
understanding of organic semiconductors and in simulation
techniques leads to the possibility to calculate the microscopic
properties of organic materials: the energy of molecular or-
bitals and their overlap integrals [29]. Some additional study
of electron-phonon interaction in organic materials may lead
to the possibility of direct calculation of hopping rates. If all
these properties will be known, the CKE approach can be
used to quantitatively calculate the magnetoresistance. In this
paper, the magnetoresistance is calculated in model systems.
It is shown that the so-called line shape of magnetoresistance
(the shape of the dependence of resistivity on the applied
magnetic field) depends on the properties of short-range
electron transport. Different model systems with identical
hyperfine interaction but different statistics of hopping rates
show different line shapes of organic magnetoresistance. The
obtained line shapes include (but are not limited to) the two
empirical laws that are most often used to fit experimental
data [6,7]: H2/(H2 + H2

0 ) and H2/(|H | + H0)2. Here, H is
the applied magnetic field and H0 is a fitting parameter. It
gives hope that the calculations of OMAR can be used to
relate microscopic models of hopping transport in organics
with experimental results.

The paper is organized as follows. In Sec. II, I discuss
the model that is used to describe organic semiconductors. In
Sec. III, the general mathematical definitions of quantum spin
and charge correlations are introduced. In Sec. IV, the kinetic
equations that relate these correlations to currents are derived.
In Sec. V, the obtained system of CKE is used to describe the
possible line shapes of the bipolaron mechanism of OMAR.
In Sec. V A, it is done analytically in the model of modified
Miller-Abrahams resistors. In Sec. V B, it is done in the more
general case with the numerical solution of CKE. In Sec. VI,
the general discussion of the obtained results are provided.
In Sec. VII, the conclusion is given. Some part of quantum
mechanical calculations that are made to derive spin CKE is
discussed in the Appendix.

II. MODEL

The following model is considered in this work. The
material contains a number of hopping sites where electrons
(or polarons) are localized. In principle, a hopping site can
contain two polarons, however, the energy of its double occu-
pation is larger than the energy of its single occupation. If the
energy of the single occupation of site i is εi, the energy of its
double occupation is εi + Uh, were Uh is the Hubbard energy.
The spins of electrons on a double-occupied site should form
a spin singlet. The possibility of double occupation with

(a) (b)

FIG. 1. The density of states in the system with a broad distribu-
tion of energies (a) and in the adopted simplified model (b). The A-
and B-type sites marked with red and blue color, correspondingly.

electrons in a triplet state is neglected. It is considered that
the system has some concentration of electrons and the Fermi
level μ. The current in small applied electric fields in the linear
response regime is discussed.

I consider the Hubbard energy to be much larger than tem-
perature and energy differences in the hopping process. In this
situation, all the sites participating in hopping transport can
be divided into the two groups. A-type sites have the energy
of single occupation near Fermi energy εi ∼ μ. They have 0
or 1 electrons but are never double occupied because εi + Uh

is too large for an A-type site i. B-type sites have the energy
of double occupation near chemical potential ε j + Uh ∼ μ.
They always have at least one electron because ε j � μ for a
B-type site j. Therefore “unoccupied” B-type site is a B-type
site with one electron and has the spin degree of freedom.
An occupied B-type site has two electrons in the spin-singlet
state. This model is most convenient for the description of
a situation when the distribution of site energies εi is broad
not only compared to temperature, but also to the Hubbard
energy Uh [Fig. 1(a)]. In this case, only a small part of hopping
sites effectively participate in transport. The consideration of
sites without an energy level near μ significantly complicates
the numeric simulation and has little impact on the result. I
adopt the simplified model where there are two independent
densities of states for A- and B-type sites [Fig. 1(b)].

In the following part of the text, the energy of double
occupation of B-type site i is denoted as εi because the energy
of its single occupation does not appear in the theory. The
hopping between sites is controlled by hopping rates Wi j . It
is assumed that the electron spin is always conserved in the
hopping process. When sites i and j have the same type, the
site j is occupied and site i is not, the electron hops from j to

FIG. 2. Rotation of spins on sites i and j with Larmor frequen-
cies �i and � j .
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i with rate Wi j :

Wi j = W0|ti j |2 exp

(
−max[(εi − ε j ), 0]

T

)
. (1)

Here, ti j is the overlap integral between localized states on
sites i and j. W0 describes the strength of electron-phonon
interaction. In principle, it can have a power-law dependence
of site energies εi, ε j . However, this dependence is not uni-
versal (is material dependent) and is not considered in this
study. Therefore, W0 is treated as a constant. When site j is of
type B and i is A-type site (B → A hop) the hopping occurs
with the rate 2Wi j because both of the two electrons on site
j can hop to i. After the hop, the spins of electrons are in
the singlet state. In the situation of A → B hop, when spins
are in thermal equilibrium, the hopping occurs with the rate
Wi j/2. However, this rate increases to 2Wi j when the spins are
in singlet state. It ensures that the detailed balance holds in
the thermal equilibrium in a pair of sites of different kinds.
The A → B hop is impossible when the spins are in a triplet
state because the electron spin is conserved during the hop.

The equilibrium occupation number of an A-type site i
is equal to n(0)

i = 1/(1 + e(εi−μ)/T /2). The factor 2 in this
expression follows from the degeneracy of the occupied state
of an A-type site [2]. The A-type site i has two occupied
states with different spin. The joint probability of the occupied
states is 2e−(εi−μ)/T /Zi where Zi is the statistical sum of site i:
Zi = 1 + 2e−(εi−μ)/T . It leads to the mentioned expression for
the occupation probability n(0)

i . For the B-type site j the free
state is degenerate. With similar arguments it leads to slightly
different expression for the equilibrium occupation number of
site j: n(0)

j = 1/(1 + 2e(ε j−μ)/T ).
In any pair of sites i − j, the equality holds without respect

for site types:

�i j = Wi j p(i j)
sp

(
1 − n(0)

i

)
n(0)

j

= Wji p
( ji)
sp

(
1 − n(0)

j

)
n(0)

i = � ji. (2)

�i j is the number of electrons that hop from site j to site i in
unit of time in thermal equilibrium. p(i j)

sp is the spin term in
the hopping probability. It is equal to 1

2 when site j has type A
and site i has type B. When site j is B-type site and i is A-type
site, p(i j)

sp = 2. When the types of sites i and j are the same,
p(i j)

sp = 1. Equation (2) shows that detailed balance holds in
thermal equilibrium.

The organic magnetoresistance is closely related to the
dynamics of spin correlations. The mathematical description
of these correlations is introduced in Sec. III. Here, I describe
the physics that is considered. The main reason for spin
dynamics is the hyperfine interaction with atomic nuclei. It
is described as effective onsite magnetic fields H(i)

hf that are
different on different sites. These fields should be added to the
external magnetic field H. The electron spin rotates around the
total field with Larmor frequency �i = μbg(H + H(i)

hf ). This
description is valid when the slow dynamics of nuclear spins
can be neglected.

The rotation in hyperfine fields can modify spin corre-
lations. Consider that at some point of time the spins of
electrons on sites i and j were parallel. After some time
due to rotation with different vector frequencies �i and � j

there will be an angle between spin directions (Fig. 2). In
combination with electron hops, this rotation leads to spin
relaxation [30–32].

I also introduce a phenomenological time of spin relaxation
τs. It can describe the time of onsite spin relaxation related to
(for example) the spin-phonon interaction. However, the main
reason to introduce τs is the possibility to compare the results
with previous theories where spin relaxation was treated in
this way [13,22].

III. SPIN CORRELATIONS

The site occupation numbers are insufficient for the de-
scription of OMAR that is controlled by spin degrees of
freedom. OMAR appears due to spin correlations. Starting
from the first qualitative studies of OMAR [12,13], the mag-
netoresistance is attributed to different probabilities of par-
allel and antiparallel configurations of two spins. In terms
of statistics the description of these probabilities is possible
only beyond the mean-field approximation. By definition, the
mean-field approximation deals with occupation numbers on
a single site. It can describe only the situation when one
spin direction on some site is more probable than another
without respect to other sites. It corresponds to the appearance
of averaged onsite spin polarization that is impossible at
room temperatures and magnetic fields ∼100 gs. OMAR is
controlled by the probabilities of the relative directions of
two spins. For example, let us consider the situation when
parallel configuration is more probable than antiparallel. In
this case, the probability for both spins to have up direction
↑↑ is equal to the probability of ↓↓ direction but is larger than
the probability of ↑↓ and ↓↑ directions. In terms of statis-
tics, this situation is described with correlations. When the
correlations are neglected in the mean-field approximation, it
is impossible to distinguish between parallel configuration of
two spins (without averaged polarization) and the equilibrium
statistics. Therefore, a microscopic theory of OMAR should
be developed beyond the mean-field approximation and take
at least some correlations into account. The approach adopted
in this paper is to write the equations for arbitrary correlations
and neglect the insignificant ones at the last step of the theory
when the equations are solved numerically.

In this section, the general notations for spin correlations
between electrons on different sites are introduced. The spe-
cial attention is paid to the quantum nature of spin. It allows
to describe simultaneously the hopping transport and the
spin rotation around local hyperfine fields. These fields are
responsible for spin relaxation in different materials [30–32],
including many organic semiconductors.

At first, I describe the electron state on a single A-type site
i. The electron has the two quantum-mechanical states: with
spin up |↑〉 or down |↓〉. The general description of its state
can be given by 2 × 2 density matrix ρ̂i. Its diagonal terms
are real. Their sum is unity because the site i is considered
to be occupied. The nondiagonal terms are complex and are
conjugate. It leads to three independent parameters describing
the density matrix. These parameters can be selected to have
clear physical meaning [33]: the averaged spin polarizations
of site in the directions x, y, and z. The density matrix ρ̂i

can be reconstructed with this averaged polarization ρ̂i =
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(1/2)(̂1 + sx
i σ̂x + sy

i σ̂y + sz
i σ̂z ). Here, sx,y,z

i are the averaged
values of operators ŝx,y,z

i of spin polarization along the axes
x, y, and z. σ̂x,y,z are the Pauli matrices. 1̂ is the unit 2 × 2
matrix. In this work it also will be denoted as σ̂0.

Now, consider an A-type site i with finite occupation
probability ni ≡ s0

i . When the conductivity is due to electron
hops the terms of density matrix with uncertain occupation
numbers can be neglected between hops (although they should
be treated with perturbation theory when the hopping rates
are calculated). The density matrix ρ̂i can be given in block-
diagonal form. The free site is described by the block ρ̂

(0)
i

that actually is a single number equal to 1 − ni. The single-
occupied site is described by the block ρ̂

(1)
i that can be

expressed as follows:

ρ̂
(1)
i =

∑
p sp

i σ̂p

2
= 1

2

(
s0

i σ̂0 + sx
i σ̂x + sy

i σ̂y + sz
i σ̂z

)
. (3)

Here, index p can have one of the four values (0, x, y, z). The
averaged quantities s0

i , sx
i , sy

i , and sz
i can describe any state of

the site i.
It is possible to describe spin correlations in a similar

manner. The density matrix of two sites i and j can be
expressed as the four blocks with well-defined occupation
numbers. Let i be an A-type site and j be a B-type site. In
this case, the site i can have 0 or 1 electrons and j can have
1 or 2 ones. The joint density matrix of sites i and j can be
expressed in terms of four blocks

ρ̂i j =

⎛⎜⎜⎜⎝
ρ̂

(12)
i j 0 0 0
0 ρ̂

(11)
i j 0 0

0 0 ρ̂
(02)
i j 0

0 0 0 ρ̂
(01)
i j

⎞⎟⎟⎟⎠. (4)

Here, the upper indices stand for the occupation numbers
of the sites. For example, ρ̂

(12)
i j describes the part of density

matrix related to single-occupied site i and double-occupied
site j. ρ̂

(11)
i j is 4 × 4 matrix that describes the single-occupied

state of both sites and contain all the spin correlations

ρ̂
(11)
i j = 1

4

∑
pq

sp
i sq

j

(
σ̂ (i)

p ⊗ σ̂ ( j)
q

)
, (5)

where sp
i sq

j is the quantum mechanical average of operator
ŝp

i ŝq
j . Here, ŝx,y,z

i and ŝx,y,z
j are the operators of spin polar-

izations of sites i and j, correspondingly. s0
i and s0

j are the
operators of single occupations of sites i and j. They always
have well-defined values between hops. Note that the relation
between occupation number and s0 is different for different
types of sites. For A-type site i, s0

i = ni. For a B-type site
j, s0

j = 1 − n j because B-type sites have one electron in an
unoccupied state. I keep these double notations because the
notation ni is useful to track the charge conservation law while
the notation ŝ0 allows to give the expression for density matrix
in terms of correlations in unified form for both A-type and
B-type sites.

The sign ⊗ in Eq. (5) denotes the Cartesian product of
matrices. The upper indices (i) and ( j) in σ̂ (i)

p and σ̂
( j)
q have

no mathematical meaning but help to track what Pauli matrix
is related to what site.

The block ρ̂
(02)
i j is a single number equal to (1 − ni )n j . The

blocks ρ̂
(12)
i j and ρ̂

(01)
i j are 2 × 2 matrices

ρ̂
(12)
i j =

∑
p

(
1 − s0

j

)
sp

i σ̂
(i)
p , ρ̂

(01)
i j =

∑
p

(
1 − s0

i

)
sp

j σ̂
( j)
p . (6)

The whole matrix ρi j can be parametrized with 24 averaged

values: sp
i , sp

j , and sp
i sq

j . These values have clear physical
meaning: they describe the occupation probabilities, mean
spin polarizations, and their correlations. The kinetic equa-
tions for these averaged values would allow to describe all
the dynamics of the density matrix for a system with hopping
transport. This result can be generalized for arbitrary number
of sites. Let I be some set of sites. The density matrix ρ̂I of
this set can be described by averaged products of ŝp

i in all the
subsets In of the set I:

sP
In

=
∏
i∈In

ŝpi
i , P = {p1, . . . , pn(In )}, In ⊂ I. (7)

Here, P is the set of upper indices pi equal to 0, x, y, or z
related to the sites i in the set In.

All the kinetics of a hopping system can be described
with sP

I . However, these values cannot be considered as cor-
relations. When two A-type sites i and j are not correlated,
s0

i s0
j = nin j �= 0 in thermal equilibrium. Therefore, sP

I cannot
be neglected even when correlations inside the set I are not
important.

The idea of correlation kinetic approach [25] is to write
equations for correlations themselves and neglect the correla-
tions at large distance and of high order. To follow this idea,
the correlations cP

I are introduced:

cP
I =

∏
i∈I

cpi
i , c0

i = ni − n(0)
i , cα

i = ŝα
i . (8)

Here, the Greek letter α stands for the spin projection on x,
y, or z. n(0)

i is the equilibrium filling number. In this notation
cα

i = 0 when we neglect averaged spin polarization and c0
i =

ni − n(0)
i is the perturbation of the occupation number due

to applied electric field. When the hopping system is close
to equilibrium, Eq. (8) describes the correlations that can be
neglected if occupation numbers and spins in the set I are not
considered to be correlated.

IV. KINETIC EQUATIONS FOR SPIN
AND CHARGE CORRELATIONS

In this section, the kinetic equations are derived for the
correlations defined in Sec. III. Consider the correlation cP

I
in some set I of sites. It can be changed due to one of the
following processes: the hopping of electrons between sites
of the set and outer sites, the hopping of electrons inside set I
and due to the internal spin dynamics:

d

dt
cP

I =
∑

i∈I,k /∈I

(
d

dt

)
ik

cP
I +

∑
i, j∈I

(
d

dt

)
i j

cP
I +

∑
i∈I

(
d

dt

)
i

cP
I .

(9)

Here in the right-hand side of Eq. (9) the symbolical ex-
pressions for different terms are used. (d/dt )i jcP

I means the
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FIG. 3. The spin transfer from site i to site j in different pairs of
sites. On the left-hand side of the figure, the site i is spin polarized
and site j is not. On the right-hand side of the figure (after the hop),
the site j acquires spin polarization in the direction of the initial
polarization of site i.

changing rate of cP
I due to the hops between sites i and j

of the set. (d/dt )ikcP
I stands for the transitions between site i

from the set and outer site k. (d/dt )icP
I describes the changing

rate of cP
I due to the internal spin dynamics (spin rotation and

phenomenological spin relaxation) related to site i.
The term (d/dt )ik describes the transition of correlations

between sets of sites. It can be expressed as follows:(
d

dt

)
ik

cp
i cP′

I ′ = T (p)
ik cp

k cP′
I ′ − T (p)

ki cp
i cP′

I ′ . (10)

Here, T (p)
ik is the rate of charge or spin transition from site k to

site i. cP′
I ′ describes the part of correlation that is not related to

site i and is conserved during i ↔ k hops. I ′ = I\{i} where the
notation \ stands for the set difference. P′ is the set of indices
from P other than the index p related to the site i:

T (0)
ik = Wik p(ik)

sp

(
1 − n(0)

i

) + Wki p
(ki)
sp n(0)

i . (11)

T (0)
ik describes the rate of transition of small perturbation of

charge density from site k to site i [25].
T (α)

ik describes the process of spin-polarization transfer
between sites. This process is different for different types of
sites, as shown in Fig. 3. In a pair of A-type sites, the spin
transfer is achieved due to hops of spin-polarized electrons.
In a pair of B-type sites, the hops of spin-polarized holes are
responsible for the spin transfer. In a mixed AB pair the spin
transfer occurs because electron with one spin projection can
hop from the A-type site to the B-type site while the electron
with other spin projection cannot. It leads to the following
expressions for spin-transfer rates in different pairs of sites
(see [21] for details):

T (α)
ik =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Wik (1 − n(0)

i ), AA

Wkin
(0)
i , BB

Wkin
(0)
i /2, AB

Wik (1 − n(0)
i )/2, BA.

(12)

The term (d/dt )i j for charge correlations is derived in [25]
using the fact that joint occupation of sites i and j cannot be
changed due to i ↔ j hops, (d/dt )i jnin j = 0. This argument
should be generalized to include spin and different types of
sites. When both the sites i and j have the same type, the hops
between them are impossible when both of them are single
occupied. It leads to the expression (d/dt )i j s

p
i sq

j s
P′
I ′ = 0 for

AA and BB pairs of sites i, j. When the sites i and j have
different types, the hop between them is possible when both
are single occupied. Actually, it is the process that relates spin
correlations and charge transport in bipolaron mechanism of
OMAR . Rate equations for this process when i is A-type site
and j is B-type site are derived in the Appendix with quantum-
mechanical approach:(

d

dt

)
i j

s0
i s0

j s
P′
I ′ = 2Wi jn j↑n j↓(1 − ni↑)(1 − ni↓)sP′

I ′

− Wji

2

(
s0

i s0
j −

∑
α

sα
i sα

j

)
sP′

I ′ , (13)(
d

dt

)
i j

s0
i sα

j sP′
I ′ = Wji

2

(
sα

i s0
j − s0

i sα
j

)
sP′

I ′ , (14)(
d

dt

)
i j

sα
i s0

j s
P′
I ′ = Wji

2

(
s0

i sα
j − sα

i s0
j

)
sP′

I ′ , (15)(
d

dt

)
i j

sα
i sβ

j sP′
I ′ = −2Wi jδαβn j↑n j↓(1 − ni↑)(1 − ni↓)sP′

I ′

+ Wji

2
δαβ

(
s0

i s0
j −

∑
α

sγ

i sγ

j

)
sP′

I ′

− Wji

2

(
sα

i sβ
j − sβ

i sα
j

)
sP′

I ′ . (16)

Here, Greek indexes α, β, and γ stand for spin polarizations
along Cartesian axes.

The physical meaning of Eqs. (13)–(16) is as follows.
Equation (13) and the first two terms in the right-hand side
of Eq. (16) show that the hop from site i to site j is pos-
sible only when both sites are single occupied and electron
spins on these sites are in the singlet state. It decreases the
probability of single occupation of both sites. The backward
hop from j to i leads to the single occupation of sites with
electrons in the singlet state. The third term in Eq. (16) leads

to relaxation of the antisymmetric combinations sα
i sβ

j − sβ
i sα

j .
It can be shown that these combinations are related to a
coherent combination of singlet and triplet states of the two
electrons. When the electrons are either in the singlet or in a

triplet state sα
i sβ

j − sβ
i sα

j = 0. However, when their state is a

coherent combination of singlet and triplet sα
i sβ

j − sβ
i sα

j �= 0.
Even if due to some reason the probabilities of singlet and
triplet states are conserved, their coherent combinations relax
because the hopping i ↔ j can occur in the singlet state
and cannot occur in a triplet state. Similar term appears in
spin dynamic of a double quantum dot [34]. Equations (14)
and (15) show that the spin-transfer process in AB pairs of
sites is correlated with occupation numbers.

The known relations between cP
I and sP

I allow to obtain the
expressions for (d/dt )i jcP

I similar to Eqs. (13)–(16). These
expressions are not provided here because they are quite
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cumbersome but can be given in a much more compact form
when the correlation potentials are introduced.

The term (d/dt )icP
I is responsible for the internal spin

dynamics. It is present only when the index p corresponding
to site i is a spin index:(

d

dt

)
i

cα,P′
i,I ′ = εαβγ �i,βcγ ,P′

i,I ′ − 1

τs
cα,P′

i,I ′ . (17)

Here, �i,β is the projection of spin-rotation frequency vector
on site i to the axis β. τs is a phenomenological onsite spin-
relaxation time. εαβγ is Levi-Civita symbol.

In the linear response regime it is useful to introduce
effective correlation potentials ϕP

I :

ϕ0
i = c0

i /
(
1 − n(0)

i

)
n(0)

i , ϕα
i = cα

i /(s0
i )eq. (18)

Here, (s0
i )eq is the equilibrium probability of single occupation

of site i. It is equal to n(0)
i if site i has type A and to 1 − n(0)

i if
site i has type B. There is no averaging in the definition (18).
ϕ

p
i should be ensemble averaged in some combination to have

the meaning of potential. For example, ϕ
0xy
i jk = ϕ0

i ϕ
x
j ϕ

y
k can be

considered as a potential of correlation c0xy
i jk .

In these notations, (d/dt )ikcp,P′
i,I ′ corresponds to a “correla-

tion flow” J p;P′
ik;I ′ between correlations cp,P′

i,I ′ and cp,P′
k,I ′ :(

d

dt

)
ik

cp,P′
i,I ′ = −

(
d

dt

)
ik

cp,P′
k,I ′ = J p;P′

ik;I ′ . (19)

When I ′ is the empty set, J0
ik is the particle flow from site k to

site i. The flow J p;P′
ik;I ′ is expressed as follows:

J p;P′
ik;I ′ = �ik�

P′
I ′
(
ϕ

p,P′
k,I ′ − ϕ

p,P′
i,I ′ + Sp

ik,I ′ + �qq′
p (ik)ϕqq′,P′

ik,I ′
)
.

(20)

Here, �ik is the average number of electrons that hop from site
k to site i in unit time in equilibrium (2). �P′

I ′ is the coefficient
related to sites of I that do not participate in transition i ↔ k:

�
p j ,pl ,pm,...

j,l,m,...
= θ

p j

j θ
pl

l θ pm
m . . . , (21)

θ0
j = n(0)

j

(
1 − n(0)

j

)
, θα

j = (
s0

j

)
eq

. (22)

Sp
ik,I ′ is the source term related to the external electrical field

E. It is not equal to zero only when I ′ is empty set and p = 0.
In this case, S0

ik,∅ = eErik where e is electron charge, rik is
vector of distance between i and k.

The term �
qq′
p (ik)ϕqq′,P′

ik,I ′ describes the effect of higher-
order correlations to the flow of lower-order correlations. For
different indexes p, q, and q′, the coefficients �

qq′
p (ik) are

�00
0 (ik) = n(0)

k − n(0)
i ,

�αα
0 (ik) = τk − τi,

�α0
α (ik) = (1 − τi )n

(0)
k − τi

(
1 − n(0)

k

)
,

�0α
α (ik) = τk

(
1 − n(0)

i

) − (
1 − τk

)
n(0)

i .

(23)

Here, τi = 0 for A-type site i and τi = 1 if site i has type B.
All the coefficients �

qq′
p not listed in (23) are equal to zero.

For example, when all the three indices p, q, and q′ are spin
indexes �

qq′
p = �

βγ
α = 0.

The term (d/dt )i jc
pq,P′
i j,I ′ is closely related to the correlation

flow between correlations cq′,P′
i,I ′ and cq′,P′

k,I ′ :(
d

dt

)
i j

cpq,P′
i j,I ′ = −�

pq
q′ (i j)Jq′;P′

i j;I ′

−ϒ
pq
i j �

pq,P′
i j,I ′

(
ϕ

pq,P′
i j,I ′ − ϕ

qp,P′
i j,I ′

)
. (24)

Note that the same coefficients �
qq′
p enter Eqs. (20) and (24).

The second term in the right-hand side of Eq. (24) is related
to the relaxation of coherent singlet-triplet combinations. It
contains the coefficient ϒ

pq
i j that is equal to unity when sites

i and j have different types and p and q are spin indexes.
Otherwise, ϒ

pq
i j = 0.

The term (d/dt )ic
α,P′
i,I ′ related to the spin rotation and

relaxation should also be expressed in terms of potentials(
d

dt

)
i

cα,P′
i,I ′ = �α,P′

i,I ′

(
εαβγ �i,βϕ

γ ,P′
i,I ′ − ϕα,P′

i,I ′

τs

)
. (25)

In a stationary system, the derivatives dcP
I /dt are equal to

zero. Therefore, Eqs. (9), (19), (20), (24), and (25) compose
a closed system of linear equations for the correlation poten-
tials. It includes all the charge and spin correlations. The total
number of these correlations is extremely large, 4N , where N
is the number of sites. However, one can hope that correlations
between sites at very large distances and the correlations of
very high order are not relevant for the electron transport and
can be neglected. Actually, to treat reasonably large systems,
some of the correlations should be neglected to make the
system of equations solvable. The idea of CKE approach is
to write the equations in general form relevant for arbitrary
correlations and make the cutoff at the “final step,” taking
into account the structure of considered system (that defines
the correlations that are really relevant) and the possibility
to numerically solve the system of equations of the desired
size. When some correlations are neglected in this way, the
potentials ϕP

I of these correlations are considered to be equal
to zero in all the equations.

V. MAGNETORESISTANCE DUE TO THE RELAXATION
OF SPIN CORRELATIONS

In this section, the discussed approach to the theory of
hopping transport with spin correlations is applied to the
bipolaron mechanism of OMAR. As it was discussed in
the previous section, it is necessary to cut the system of
kinetic equations at some point. The most simple cutoff is the
model when only the correlations in close pairs of sites are
considered. In this case, it is possible to reduce the problem
to a network of modified Miller-Abrahams resistors. This
approach was used in [22,24] with the semiclassical model of
spins up and down. However, in this study, the quantum nature
of spin correlations is taken into account and the expressions
for resistors are different from [22]. This approximation is
discussed in Sec. V A. It allows the analytical solution in the
limiting cases of fast and slow hopping.

The long-range and high-order correlations can be taken
into account with the numerical solution of kinetic equations.
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Such solutions are provided in Sec. V B and are compared
with analytical results.

A. Modified resistor model

When the long-range spin correlations are neglected, the
rate equation for spin correlations cαβ

i j includes only the gen-
eration of spin correlations due to the electron flow Ji j and
the internal spin dynamics. The effect of other sites is reduced
to spin relaxation. When the correlation i − j is considered in
this model the spins on other sites are assumed to be in thermal
equilibrium. The transition of correlation i − j to other sites
can be formally included into internal spin dynamics as an
additional source of relaxation:

d

dt
cαβ

i j = −R(i j)
αβ;α′β ′c

α′β ′
i j + δαβ (τi − τ j )J

0
i j . (26)

Here, R(i j)
αβ;α′β ′ is a matrix that describes the dynamics and

relaxation of correlations:

R(i j)
αβ;α′β ′ = γi jδαα′δββ ′ − εαγα′δββ ′�i,γ − εβγβ ′δαα′� j,γ

+ �i j(
s0

i

)
eq

(
s0

j

)
eq

(δαα′δββ ′ − δαβ ′δβα′ ). (27)

γi j is the effective rate of relaxation of spin correlations either
due to phenomenological onsite spin relaxation mechanism or
due to electron transition to or from other sites:

γi j = 1

τs
+

∑
k �=i, j

(
T (α)

ki + T (α)
k j

)
. (28)

Note that spin transition rates T α
ki do not depend on the value

of spin index α = x, y, z. The index is kept only to show
that it is a spin index, not the charge index 0. It is assumed
in the present section that i − j is the resistor that controls
the resistivity of some mesoscopic part of the sample. It
happens when the rate of hopping inside the pair i − j is slow
compared to the hopping between this pair and other sites. It
allows to assume that �i j � γi j . Therefore, �i j and the last
term in the right-hand side of Eq. (27) is neglected in this
section.

It is possible to give a closed expression for J0
i j with

account to short-range pair correlations in terms of inverse
matrix (R(i j) )−1:

J0
i j = ϕ0

j − ϕ0
i

�−1
i j + Fs(i j) + Fc(i j)

, (29)

Fs(i j) = δαβδα′β ′ (R(i j) )−1
αβ;α′β ′ (τi − τ j )2(

s0
i

)
eq

(
s0

j

)
eq

, (30)

Fc(i j) =
(
n(0)

i − n(0)
j

)2(∑
k �=i, j T (0)

ki + T (0)
k j

)−1

n(0)
i n(0)

j

(
1 − n(0)

i

)(
1 − n(0)

j

) . (31)

Here, �−1
i j corresponds to ordinary Miller-Abrahams resis-

tance. Fs and Fc describe the additional resistance that ap-
pears due to spin and charge correlations, correspondingly.

The effect of the external magnetic field on the conduc-
tivity is incorporated in Fs. As shown in Eqs. (27) and (30),
it depends on the vectors of onsite rotation frequencies �i

and � j that are proportional to the sum of hyperfine field

and applied external magnetic field �i = μbg(H + H(i)
hf )/h̄.

However, even if the system is composed from only one resis-
tor, the averaging over �i and � j is required. The hyperfine
fields are slowly changed due to the nuclear spin dynamics.
Although this dynamics is considered to be slow compared
to electron hops and electron spin rotation, it is usually fast
compared to the current measurement procedures. Therefore,
the final expression for dc resistivity should be averaged over
hyperfine fields.

I assume that hyperfine fields have normal distribution

p
(
H (i)

hf,α

) = 1√
2πHhf

exp

[
−

(
H (i)

hf,α

)2

2H2
hf

]
. (32)

Here, Hhf is the typical value of hyperfine fields. The different
components of the hyperfine field on a given site and the fields
on different sites are considered not to be correlated.

The spin correlation part of resistance is related to
the reverse relaxation function R(γi j, H, Hhf ): Fs = (τi −
τ j )2R/(s0

i )eq(s0
j )eq,

R = 〈δαβδα′β ′ (R(i j) )−1
αβ;α′β ′ 〉hf . (33)

Here, 〈. . . 〉hf means the averaging over the hyperfine fields.
R can be thought of as the time of relaxation of probabilities
for the two spins to be in singlet or triplet state. In the general
case, R(γi j, H, Hhf ) can be found numerically. However, it is
possible to find it analytically in the limiting cases of slow and
fast hops.

In the limit of fast hops the rate of relaxation γi j due to
electron transition to other sites is fast compared to the typical
rate of rotation in hyperfine fields hhf = μbgHhf/h̄. The rate
of rotation in the external magnetic field hext = μbgH/h̄ is ar-
bitrary. In this case relaxation matrix R(i j) can be divided into
R(i j)

1 related to hopping and rotation in the external magnetic
field R(i j)

1 = γi jδαα′δββ ′ − μbgH (εαzα′δββ ′ + εβzβ ′δαα′ )/h̄ and
R(i j)

2 related to the rotation in hyperfine fields. The first of
the matrices R(i j)

1 can be inverted analytically. The second
one can be considered as a small perturbation. The total
inverse relaxation matrix averaged over hyperfine fields can
be approximately expressed as

〈(R(i j) )−1〉hf = (
R(i j)

1

)−1 + 〈(
R(i j)

1

)−1
R(i j)

2

× (
R(i j)

1

)−1
R(i j)

2

(
R(i j)

1

)−1〉
hf . (34)

In principle, the expression for (R(i j) )−1 also includes the first-
order term (R(i j)

1 )−1R(i j)
2 (R(i j)

1 )−1, however, it becomes equal
to zero after the averaging over hyperfine fields.

With straightforward calculations, Eq. (34) leads to explicit
expression for the function R:

R = 1

γi j

[
3 − 4

h2
hf

γ 2
i j

(
1 + 2

1 + h2
ext/γ

2
i j

)]
. (35)

The dependence of resistance on the magnetic field corre-
sponding to Eq. (35) is described by Lorentz function. Note
that its width is controlled not by the relation of external
magnetic and hyperfine fields hext/hhf , but by the relation
of hopping rate and the rate of rotation in the external field
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FIG. 4. Reverse relaxation function R(hext/hhf ) corresponding to different relations γi j/hhf . Solid blue curve in all the figures is numeric
calculation of R. Yellow dashed-dotted curve in (a) and (b) is approximation with Eq. (37). Red dashed curve in (b) is the non-Lorentz fit
described in text. Red dashed curve on (c) and (d) is the Lorentzian fit. Yellow dashed-dotted curve in (d)–(f) is approximation with Eq. (35).
Inset in (c) shows the curves at small magnetic fields.

hext/γi j . The magnetoresistance is relatively weak due to the
small prefactor h2

hf/γ
2
i j .

The opposite limit is the situation of slow hopping, γi j �
hhf . In this case, it is possible to use the random phase
approximation. It is assumed that the component of electron
spin on site i normal to the onsite effective magnetic field
H + H(i)

hf relaxes very fast due to the rotation around this field.
However, the component along H + H(i)

hf is conserved until
the electron is transferred to some other site. In this case, R
is proportional to the averaged squared cosine of the angle
between onsite fields

R = 〈cos2(H(i), H( j) )〉hf/γi j . (36)

Here, H(i) = H + H(i)
hf . The averaging in (36) can be done

analytically in terms of special functions

R = 1

3γi j
+ 12

γi jH6

×
[√

2

6
H
(
H2 − 3H2

hf

) + H3
hf D+

(
H√
2Hhf

)]2

. (37)

Here, D+(x) is the Dawson function D+(x) = e−x2 ∫ x
0 et2

dt .
Equation (37) shows that in the slow hopping limit the depen-
dence of resistance on magnetic field has non-Lorentz shape.
It saturates when applied magnetic field is much larger than
hyperfine fields, while γi j controls its overall strength.

In Fig. 4, I compare the approximate expressions (35)
and (37) with the function R calculated numerically. It can be
seen that Eq. (35) can quantitatively describe R only for quite
large values of hopping rate γi j � 30hhf . However, the depen-
dence of R on the applied magnetic field can be described
by the Lorentzian R = A + B/(h2

ext + γ̃ 2) for significantly
smaller γi j � 3hhf . Here A, B, and γ̃ are fitting parameters. At

smaller hopping rates γi j � 0.3hhf , the function R becomes
non-Lorentzian. It is most clearly seen when comparing the
numeric results for R with its Lorentzian fit at small magnetic
fields as shown on the inset in Fig. 4(c).

For small hopping rates γi j � 0.05hhf , the non-Lorentzian
fit related to Eq. (37) becomes relevant. It is the fit R = A +
BR̃(H, Hhf , γi j ) where R̃ is described with Eq. (37). For γi j �
0.01hhf , Eq. (37) can describe the reverse relaxation function
quantitatively.

It is interesting to compare the results of this section with
results of [22] where the correlations in close pairs of sites
were considered with semiclassical model of spin. In [22]
OMAR was related to spin-relaxation time τs(H ) that had
a phenomenological dependence on the applied magnetic
field. The approach of this section can describe quantum
spin correlations with the same relaxation time. When the
spin relaxation is reduced to a single time τs(H ), the reverse
relaxation function can be found analytically and the spin
part of resistance is equal to Fs = 3(τi − τ j )2τs(H )/{[1 +
γi jτs(H )](s0

i )eq(s0
j )eq}. It is exactly three times larger than the

correction to Miller-Abrahams resistor due to spin correla-
tions obtained in [22]. Note that Fc quantitatively agree with
the correction to Miller-Abrahams resistor due to charge cor-
relations obtained in [22]. The difference between the results
is related to the quantum nature of spin correlations taken into
account in this paper. It appears that the semiclassical model
of spin cannot quantitatively describe OMAR even if the spin
relaxation is reduced to a single time τs(H ).

B. Numerical results

This section includes the results of the numerical solution
of correlation kinetic equations for several disordered sys-
tems. The calculation is made with some of the long-range
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FIG. 5. The dependence of conductivity on the applied magnetic
field in mesoscopic numeric sample. (a) The structure of the sample.
The color bar stands for site energies. (b) Conductivity calculated
with different approximations as described in the text.

and high-order correlations taken into account. The results are
compared with the model described in Sec. V A to show when
the theory that includes only the correlations in close pairs of
sites is applicable and when it is not.

I start from a single numerical sample consisting of 25
sites. The sample is shown in Fig. 5(a). The sites are placed
on a square lattice with the same overlap integrals ti j between
neighbor sites. The site energies are selected independently
with normal distribution with the standard deviation �E . The
temperature is T = �E . Some sites are randomly selected
to have type B. They are marked with crosses in Fig. 5(a).
Other sites have type A. Each site is ascribed with a random
hyperfine field. The typical rate of rotation in random fields is
equal to the preexponential term in the hopping rate between
neighbors hhf = w0. Here I define the preexponential term
in the hopping rates as w0 = W0|ti j |2. The periodic boundary
conditions are applied.

In Fig. 5(b) the calculated conductivity of this sample is
presented. The conductivity is calculated in four different
approximations. The blue dashed curve corresponds to (1,2)
approximation where pair correlations between sites i and j
are included in the theory when the distance between sites
i and j along the lattice bonds is 1. It is the approximation
used in Sec. V A. In general, the notation (p, q) stands for
the approximation when correlations up to the order q are
considered, provided that the distance between sites in the

correlations along lattice bonds is no longer than p. The yel-
low dashed-dotted curve corresponds to (3,2) approximation
when most pair correlations are taken into account. Green
solid curve corresponds to joint (3,2) and (2,4) approxima-
tions when most of pair correlations and correlations up to the
fourth order in close complexes of sites are considered. The
red dots stand for joint (3,3) and (2,5) approximations where
most of the correlations of the third order and the correlations
up to the fifth order in close complexes are included in the
theory.

The introduction of new correlations into the theory de-
creases the calculated conductivity and increases its calcu-
lated dependence on the applied magnetic field. However, the
difference between (3, 2) + (2, 4) and (3, 3) + (2, 5) approx-
imations is rather small and one can hope that the (3, 2) +
(2, 4) approximation adequately describes the system. In the
following analysis of larger numerical samples, the correla-
tions of order q > 2 will be considered only for the distance
between sites p � 2. The pair correlations will be considered
at slightly larger distances. Unfortunately, the number of spin
correlations grows extremely fast with the correlation order
and it was technically impossible to go beyond the (3, 3) +
(2, 5) approximation even for the quite small 5 × 5 sample.

Note that the magnetic field dependence of conductivity
shown in Fig. 5(b) is not symmetric with respect to the
inversion of the sign of the magnetic field. It is related to
the mesoscopic nature of the considered numerical sample.
There are a finite number of sites and each site is ascribed
with the well-defined onsite hyperfine field. It breaks the time-
reversal symmetry of the calculated system. In real samples
(even in mesoscopic ones) the hyperfine fields slowly change
in time. It restores the time-reversal symmetry. Therefore, the
dependence σ (H ) for real samples is symmetric even if they
are mesoscopic.

In Fig. 6, I show results for larger 10 × 10 samples.
The results are averaged over 30 disorder configurations. The
properties of the numerical samples (except their size) are the
same as in Fig. 5. Figure 6(a) shows the structure of one of
these samples. Figures 6(b) and 6(c) show the magnetoresis-
tance [R(H ) − R(0)]/R(0) in different scales. Here, R(H ) is
the sample resistance in the external magnetic field H . The
blue points stand for the magnetoresistance calculated with
the numeric solution of CKE. The pair correlations at the
distance no longer than 4 and fourth-order correlations with
the distance 2 were taken into account [(4, 2) + (2, 4) approx-
imation]. The green dashed curve is the fit with Lorentzian.
The yellow solid curve is the fit with function R described in
Sec. V A. It means that the expression

R(H ) − R(0)

R(0)
= A × R(γ̃ , H, Hhf ) − R(γ̃ , 0, Hhf )

R(γ̃ , 0, Hhf )
(38)

was used for fitting. Here, A and γ̃ are the fitting parameters.
γ̃ can be considered as the effective rate for a correlation to
leave the pair of sites where it appeared. The results shown in
Fig. 6(b) correspond to γ̃ ≈ 2.3hhf . A is the general amplitude
of magnetoresistance; it describes the relative part of sample
resistance that is related to spin correlations.

The shape of resistance dependence on the magnetic field
significantly deviates from Lorentzian. It can be easily seen
in Fig. 6(c) where the results for small magnetic fields are
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FIG. 6. Results of CKE solution for random 10 × 10 numerical samples. (a) The structure of a single sample. (b), (c) Calculated
magnetoresistance in different scales averaged over 10 random samples.

shown on a close scale. The fitting (38) has better agreement
with numerical simulation.

In Fig. 7 the similar analysis is provided for similar
numeric samples with different rates of hopping between
neighbors w0 = 0.1hhf and 5hhf . Other characteristics of the
samples are the same as in the previous numeric experiment
including the averaging over 30 disorder configurations. Fig-
ures 7(a) and 7(b) show the results for the samples where the
hopping is slow, w0 = 0.1hhf . The blue points correspond to
the numeric solution of CKE. The yellow solid curve corre-
sponds to the fit with Eq. (38), the fitting parameter γ̃ was
γ̃ = 1.1hhf . The green dashed curve corresponds to fit with
Eq. (38), where function R is described by Eq. (37) (that is
valid in the limit γ̃ � hhf ) but the strength of hyperfine fields
was artificially increased hhf → 1.08hhf to achieve better fit
with numerical results.

Note that the model from Sec. V A does not take into
account long-range and high-order correlations. Therefore,
the possibility of the description of numerical results with
this model could not be taken for granted. However, for the
considered numerical samples, this description is possible
and the effect of the simplifications made in Sec. V A is
reduced to small modification of hhf and to some changes
in the amplitude of magnetoresistance (described with fitting
parameter A).

In Figs. 7(c) and 7(d) the results for numeric samples
with fast hopping w0 = 5hhf are shown. The results of the
simulation (blue dots) agree with fitting with Eq. (38) (yel-
low solid curve), where the value of fitting parameter γ̃ is
8.7hhf . At this γ̃ the function R can be described by the
Lorentzian, as shown with green dashed curve in Figs. 7(c)
and 7(d).

FIG. 7. Magnetoresistance in numerical samples with slow w0 = 0.1hhf and fast w0 = 5hhf hopping rates. Blue dots on all subplots
correspond to results of numerical solution of CKE. Yellow solid curves correspond to Eq. (38). Green dashed curves in (a) and (b) are
the fit with Eq. (38) where function R is described by Eq. (37) and fitting hyperfine fields are artificially increased hhf → 1.08hhf . Green
dashed curves in (c) and (d) are the fit with Lorentzian.
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FIG. 8. Results for the numeric samples constructed with 3 × 3 blocks. (a) The structure of a numeric sample. (b) Magnetoresistance in
(1,2) approximation. (c) Magnetoresistance in (7,2) approximation.

The provided numeric results show that in some cases
the theory from Sec. V A can be used as a toy model for
understanding more complex situations when long-range and
high-order correlations are required to quantitatively calculate
the magnetoresistance. However, not all the line shapes that
appear in numeric experiments can be described with this toy
model. Let us consider the numeric sample shown in Fig. 8.
It is constructed from 3 × 3 blocks: inside a block the sites
have the same type and the hopping between them is fast
w0 = 3hhf . The blocks are connected with links with slow
hopping w0 = 0.3hhf . The energies of sites are random with
normal distribution with the standard deviation �E = T . The
average energy of sites in A-type block is 1.5T and in B-type
block it is −1.5T . The idea behind this sample is as follows.
The conductivity of the sample is controlled by the process
of generation and recombination of electron-hole pairs in AB
pairs of sites. The structure of the sample ensures that the
generated electron and hole will stay near the pair of sites
where they are generated for quite a long time. However,
they are trapped not on a single site, but on a cluster of
nine sites, therefore, their spins not only rotate around local
hyperfine fields, but also relax due to hops between sites
with different hyperfine fields. The positive average energy
of A-type sites and the negative one of B-type sites ensures
that A-type clusters contain a small number of electrons and
B-type clusters contain a small number of holes. Physically,
this situation can correspond to small polymer molecules
where the hopping between monomers of a single polymer
is fast while the hops between different molecules are slow.
Note that for the relaxation of spin correlation in the discussed
electron-hole pair, all the 18 hyperfine fields in two neighbor
blocks are relevant. It cannot be captured with the toy model
from Sec. V A.

The structure of the described sample is shown in Fig. 8(a).
Figure 8(b) shows the magnetoresistance of such samples
calculated in the (1,2) approximation that corresponds to the
model of modified Miller-Abrahams resistor. In Fig. 8(c)

the magnetoresistance calculated in (7,2) approximation is
shown. In both of the cases, the magnetoresistance is averaged
over 30 random disorder configurations (i.e., the random
hyperfine fields and site energies).

The magnetoresistance calculated in (1,2) approximation
is quite weak ∼2% and its line shape is Lorentzian. However,
(1,2) approximation is not adequate for the description of the
magnetoresistance in these samples because the correlations
can easily leave the initial sites but are trapped in the clusters.
To take this trapping into account, it is required to consider
the correlations at the intersite distance equal to 7. When
these correlations are taken into account, the estimated mag-
netoresistance increases ∼4 times and its line shape becomes
non-Lorentzian. It can be described with the expression

R(H ) − R(0)

R(0)
∝ H2

(|H | + H0)2
, (39)

where H0 is a fitting parameter. The expression (39) was
used to describe the line shape of OMAR in a number of
experimental works [6–10].

I want to stress that the statistics of hyperfine fields is
exactly the same in all the considered numerical samples.
However, the obtained OMAR line shapes are different in-
cluding the two shapes most commonly obtained in experi-
ments: H2/(H2 + H2

0 ) and H2/(|H | + H0)2. What is different
in the numerical samples is the statistics of electron hops. One
can conclude that the shape of OMAR contains information
about short-range transport in organic materials.

VI. DISCUSSION

Up to the recent time, the most known method for the cal-
culation of hopping transport with the account to correlations
of filling numbers was the numeric Monte Carlo simulation.
When only the charge correlations are important, it leads to
the correct description of transport provided that the time
of simulation is enough to achieve the averaging. In [25]
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the Monte Carlo simulation was used to prove that the CKE
approach also leads to correct results when a sufficient number
of correlations are taken into account. Therefore, the Monte
Carlo simulation was considered to be “an arbiter” for CKE
approximations.

However, the situation is different when the spin correla-
tions are relevant. In [13] the Monte Carlo simulation with the
semiclassical description of electron spins in terms of “spin
up” and “down” was used to show the possibility of bipolaron
mechanism of OMAR. However, this simplified description
cannot include spin rotation around hyperfine onsite fields.
Naturally, “up” and “down” spins cannot rotate. Therefore, the
spin relaxation in [13] was described by a single relaxation
time τs with phenomenological dependence on the applied
magnetic field.

Even when the spin relaxation is reduced to a single time
τs, the semiclassical description of spin does not lead to the
correct qualitative estimate of the spin-correlation part of
resistance. In [22] the semiclassical spin correlations were
considered in the approximation when only pair correlations
in close pairs of sites are taken into account. It leads to
correlation corrections of Miller-Abrahams resistors. These
corrections are compared with similar corrections due to
quantum spin correlations in Sec. V A. The corrections due to
charge correlations obtained in [22] and in this study agree.
However, the corrections due to spin correlations obtained
in Sec. V A are exactly three times larger than the spin
corrections to resistances in [22]. I believe that the reason for
this difference is related to the quantum nature of spin that
was not taken into account in [22]. Note that in [22] only
the correlations in close pairs are taken into account. This
approximation is insufficient for the description of the OMAR
shape H2/(|H | + H0)2 that appears in the sample on Fig. 8
only when long-range pair correlations are included in the
theory.

The author does not know about any way to make Monte
Carlo simulations where electron spin is allowed to have
arbitrary direction (instead of only “up” and “down”) and take
into account quantum spin correlations. Any wave function of
a single spin 1

2 is the eigenfunction of some operator of spin
projection ŝα = cxŝx + cyŝy + czŝz, where c2

x + c2
y + c2

z = 1.
Therefore, it is tempting to describe the electron spins 1

2 as
classical unit vectors. However, this model cannot describe
the real quantum statistics of spins. Consider, for example,
the scalar product of two spins averaged over some ensemble
〈sis j〉 = sx

i sx
j + sy

i sy
j + sz

i s
z
j . In classical statistics of unit vec-

tors −1 � 〈sis j〉 � 1. The value 1 describes the vectors that
always have the same direction. The value −1 corresponds
to the vectors that have opposite directions. In quantum me-
chanics −3 � 〈sis j〉 � 1. The value −3 corresponds to the
singlet state of the spins. In this study operator ŝz

i was selected
to have eigenvalues 1 and −1, however, it corresponds to
the actual spin 1

2 . In quantum mechanics the eigenvalues of
the operator l̂2 of squared angular momentum are equal to
l (l + 1). In the case of the angular momentum 1

2 the only
existing eigenvalue is 3

4 . Therefore, the operator (ŝi )2 = ŝz
i ŝ

z
i +

ŝx
i ŝx

i + ŝy
i ŝy

i is always equal to 3. When two spins are in the
singlet state, their total spin is equal to zero (ŝi + ŝ j )2 = 0.
The product ŝi ŝ j in this case is well defined and is equal

to sis j = [(ŝi + ŝ j )2 − (ŝi )2 − (ŝi )2]/2 = −3. When the spins
are in a triplet state, the total momentum of the system is equal
to l = 1 and (ŝi + ŝ j )2 = 4l (l + 1) = 8. It leads to sis j = 1.
Therefore, the quantum spin statistics is different from the
statistics of classical vectors, although it can be described
with the classical values: averaged spin polarizations and their
correlations. The Monte Carlo calculations at least with a
naive description of electron spins cannot be used to quan-
titatively calculate the magnetoresistance related to the spin
correlations and act as “an arbiter” for the CKE approach.

Although the properties of transport in organic semicon-
ductors are studied for some time, they are not completely
understood. The low-field mobility in organic semiconductors
is often extremely small ∼10−8–10−6 cm2/Vs [35–37]. How-
ever, these small values can be related to the long-range cor-
relations of electrostatic potential produced by the unscreened
molecular dipoles [38–40]. There is an evidence that at small
length scales the electron mobility can be much higher [41].
The provided results show that some information about short-
range mobility can be obtained from the measurements of
OMAR. The line shape of organic magnetoresistance depends
on hopping rates. However, it is not related to the time for an
electron to cross the macroscopic sample. What is important is
the time τsep that is required for two spins to become separated
with sufficient distance that prevents their meeting before their
spin correlation relaxes.

A theoretical estimate of τsep can be possible in the frame-
work of complex numerical modeling of organic semicon-
ductors similar to the one made in [29]. However, even the
analysis of the provided simplified models can give some hints
on τsep and nature of the short-range transport. When τsep is
small compared to the period of precession in hyperfine field
τsephh f � 1, OMAR is suppressed. When τsephh f � 1 due to
overall slow rate of hopping OMAR can be relatively strong
∼10% as shown in Fig. 7 and its line shape is described by
Lorentzian or by Eq. (37). When some of the hops are fast but
τsephh f � 1 due to bottlenecks with slow hops as in the sample
shown in Fig. 8 the size of OMAR is still ∼10% but its shape
is close to H2/(|H | + H0)2.

This study deals only with the most simple model with
large Hubbard energy and small applied electric field. In
principle, it is possible to generalize CKE theory to include
other cases. In [25] the far from equilibrium CKE that can
be applied for high electric fields are derived for charge
correlations only. In [22] the situation with arbitrary Hubbard
energy is considered for close-range pair correlations with the
semiclassical spin model. It is shown in [22,25] that the dis-
cussed generalizations make the theory much more complex.
This work shows that different line shapes of OMAR appear
even in the simplest model due to the different properties of
short-range transport.

VII. CONCLUSIONS

The system of correlation kinetic equations (CKE) is
derived for the spin correlations in materials with hopping
transport with large Hubbard energy for a small applied
electric field. The spins are assumed to be conserved in the
hopping process and can rotate around onsite hyperfine fields.
The spin degrees of freedom are described with quantum
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mechanics as averaged products of spin operators. The derived
CKE approach allows to describe the bipolaron mechanism
of OMAR. It is shown that the shape of the magnetic field
dependence of resistivity contains information about short-
range electron transport. Different statistics of hopping rates
lead to different OMAR line shapes including the empirical
laws H2/(H2 + H2

0 ) and H2/(|H | + H0)2 that are often used
to describe experimental data.
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APPENDIX: DERIVATION OF (d/dt )i j TERM IN
KINETIC EQUATIONS

In this Appendix, I derive the term (d/dt )i j sP
I in the kinetic

equation. It is supposed that sites i and j are included into set
I . For definiteness, the site i is considered to be an A-type
site and j to have type B. sP

I can be expressed as quantum-
mechanical average of the operator

sP
I = 〈

ŝP
I

〉 = 〈
ŝp

i ŝq
j ŝ

P′
I ′
〉
. (A1)

Here, when the index p corresponds to x, y, and z, ŝp
i is the

spin-polarization operator ŝα
i = a+

i,n(σα )nmai,m. σα is a Pauli
matrix. a+

i,n and ai,m are the creation and destruction operators
for electron on site i. Indices n and m correspond to spin states
↑ or ↓. The operator ŝ0

i is the operator of single occupation and
can be expressed as follows:

ŝ0
i = a+

i↑ai↑ + a+
i↓ai↓ − 2a+

i↑ai↑a+
i↓ai↓. (A2)

The expression (A2) is valid for any type of site, therefore, ŝ0
j

can be expressed in a similar way.
The transitions between sites i and j can be described by

the operator Ĥi j (it is the term in Hamiltonian related to these
transitions):

Ĥi j = ti j τ̂i j�i j + t jîτ ji� ji, τi j = a+
i↑a j↑ + a+

i↓a j↓. (A3)

The operator �i j describes the interaction with phonons that
appears in the transition term of Hamiltonian Ĥi j after the
polaron transformation [42].

With the approximations corresponding to hopping trans-
port, the time derivative of operator ŝP

I can be expressed as
follows:(

d

dt

)
i j

ŝP
I = − 1

h̄2

∫ t

−∞

〈[
Ĥi j (t ),

[
Ĥi j (t

′)ŝP
I (t )

]]〉
phdt ′. (A4)

Here, square brackets denote commutator [Â, B̂] = ÂB̂ − B̂Â.
〈. . .〉ph means the averaging over phonon variables with

equilibrium distribution of phonons. Note that even with the
simplifications made, Eq. (A4) contains not only hopping
terms, but also terms corresponding to quantum-mechanical
perturbation of electron wave functions on sites i and j and
to exchange interaction between electrons that is neglected in
this study. In further calculations I keep only the terms related
to hopping process that are proportional to the hopping rates:

Wi j = 1

h̄2 |ti j |2
〈 ∫ 0

−∞
� ji(t )�i j (0)e(i/h̄)(ε j−εi )t

+� ji(0)�i j (t )e(i/h̄)(εi−ε j )t dt

〉
ph

, (A5)

Wji = 1

h̄2 |ti j |2
〈 ∫ 0

−∞
�i j (t )� ji(0)e(i/h̄)(εi−ε j )t

+�i j (0)� ji(t )e(i/h̄)(ε j−εi )t dt

〉
ph

. (A6)

The term in (d/dt )i ĵ sP
I proportional to Wji and related to

hops i → j is equal to −Wji (̂τi j τ̂ jîsP
I + sP

I τ̂i j τ̂ ji )/2. The term
related to j → i hops is Wi j τ̂ jîsP

I τ̂i j . Here, I took into account
that site i cannot be double occupied and site j cannot have
zero electrons.

The following computation is quite cumbersome but
straightforward operator algebra. There are two useful rela-
tions that make it simpler:

τ̂i j τ̂ ji = ŝ0
i ŝ0

j − ∑
α ŝα

i ŝα
j

2
, ŝα

i ŝβ
i = δαβ ŝ0

i + iεαβγ ŝγ

i , (A7)

where εαβγ is Levi-Civita symbol. The operator algebra yields(
d

dt

)
i j

ŝ0
i ŝ0

j ŝ
P′
I ′ = 2Wi jn̂ j↑n̂ j↓(1 − n̂i↑)(1 − n̂i↓)ŝP′

I ′

− Wji

2

(
ŝ0

i ŝ0
j −

∑
α

ŝα
i ŝα

j

)
ŝP′

I ′ , (A8)(
d

dt

)
i j

ŝ0
i ŝα

j ŝP′
I ′ = Wji

2

(
ŝα

i ŝ0
j − ŝ0

i ŝα
j

)
ŝP′

I ′ , (A9)(
d

dt

)
i j

ŝα
i ŝ0

j ŝ
P′
I ′ = Wji

2

(
ŝ0

i ŝα
j − ŝα

i s0
j

)
ŝP′

I ′ , (A10)(
d

dt

)
i j

ŝα
i ŝβ

j ŝP′
I ′ = −2Wi jδαβ n̂ j↑n̂ j↓(1 − n̂i↑)(1 − n̂i↓)ŝP′

I ′

+ Wji

2
δαβ

(
ŝ0

i ŝ0
j −

∑
α

ŝγ
i ŝγ

j

)
ŝP′

I ′

− Wji

2

(
ŝα

i ŝβ
j − ŝβ

i ŝα
j

)
ŝP′

I ′ . (A11)

The quantum-mechanical averaging of these equations leads
to Eqs. (13)–(16) from the main text.
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