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Elastic waves are complex mixtures of transverse and longitudinal oscillations even in isotropic and
homogeneous media, in contrast to the quantum, electromagnetic, or acoustic waves which could share the
same formalism of Hamiltonian and application techniques. Here, we reformulate the elastic wave equation into
a set of polarization-dependent decoupled Hamiltonians, to enable the quantum analogous techniques for higher
functionalities. As an application example, we adopt the supersymmetric transformation from particle physics
and apply it to elastic Hamiltonians, for the demonstration of spatial- and polarization-selective separation of
guided elastic waves. Enabling the application of quantum-analogous techniques under the established elastic
Hamiltonian formulation, our approach provides a pathway for controlling elastic waves, not limited to the
control of an individual guided mode for arbitrary elastic waves, demonstrated here with supersymmetric
technique.
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I. INTRODUCTION

The similarity between governing equations in different
physical systems has repeatedly provided novel perspectives
and applications distinct from traditional viewpoints. For
example, the reformulation of classical systems in terms of
eigenvalue equations sharing the same mathematical form of
the Schrödinger equation, often referred to as the quantum-
classical analogy [1,2], enables not only the classical simu-
lation of unstable quantum phenomena [3,4] but also quan-
tized wave dynamics and applications in electromagnetics,
acoustics, circuitry, etc. Varieties of quantum phenomena and
techniques, for example, have been applied toward electro-
magnetic systems, by reinterpreting the Helmholtz equation
in the notion of the Schrödinger equation and then further
including the quantum Hall effect and topological theory
[5–8], parity-time symmetry and non-Hermitian degeneracy
[9], Anderson localization [10], Bloch oscillations [11,12],
and supersymmetry (SUSY) [13–17]. In the classical real-
ization of quantum phenomena, the core philosophy lies in
the parallelism between a classical governing equation and
the quantum mechanical one, e.g., the mathematical equiv-
alence between classical paraxial wave equations and the
Schrödinger equation, as demonstrated in electromagnetic
[5–7,9–11,13–17] or acoustic [8,12] platforms with simple
polarization components.

In the context of classical wave physics, elastic waves hold
a unique position due to their tensorial nature, while covering
a wide range of length scales from seismic to ultrasonic and to
phononic waves [18–25]. One of the critical peculiarities and
associated difficulties of elastic waves is in the coexistence
of longitudinal (L) and shear (S, or transverse) polarizations,
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which is in sharp contrast to electromagnetic and acoustic
waves having solely transverse or longitudinal polarizations.
This coexistence of elastic polarizations (L and S) could
offer a wider pathway for increased information delivery.
For example, access to the scattering information of both
polarizations along with intricate time-domain signal process-
ing enables the acquisition of more accurate information on
structural landscapes. To make use of polarization diversity
of elastic waves, polarization control techniques for plane
waves, such as oblique diffraction [26,27], modes interaction
via anisotropic media [28], transmodal coupling [29], shear
wave splitting [30], and double zero indices [31], have been
demonstrated.

Nevertheless, in terms of sharing analogies and techniques
between classical and quantum wave systems, the tensorial
complexity of the elastic wave equation has hindered its
transformation toward the scalar equations analogous to the
Schrödinger equation. While it is known that the classical
wave equation can be mapped to the Schrödinger equation
form [2], this reformulation especially for spatially guided
elastic waves with separation of L and S polarizations has
not been elaborated before, prohibiting the elastic-regime
application of quantum-inspired physics and functionalities.

In this paper, we reformulate elastic wave equations to
have the same form of the Schrödinger equation, and develop
the concept of polarization-dependent elastic Hamiltonians—
paving a route toward the application of quantum derived
techniques for the elastic wave. As an example, out of vast
application scenarios of quantum-analogous techniques to
elastic waves, we then apply the SUSY ladder [13,14] to
elastic Hamiltonians. The control of an individual guided
mode for an arbitrary elastic wave input is archived, with
perfect (spatial and polarization) modal selectivity, where the
spatial-mode annihilation and polarization filtering are inde-
pendently realized. For the material realization of the SUSY
ladder, L- and S-polarization-dependent elastic potentials are
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constructed using the simplest template of a perforated elastic
metamaterial. A scalar elastic Hamiltonian based theoreti-
cal design providing perfect agreement with the tensorial
full-wave numerical verification, our formalism of quantum-
analogous elastic Hamiltonians will provide a pathway for
handling elastic waves, enabling a quantum-elastic analogy
[32] not limited to extended modal control based on SUSY
ladders.

II. RESULTS

A. Quantum analogous elastic Hamiltonians

A small-amplitude elastic wave in an inhomogeneous
medium is described by the linearized equation [33]

ρ
∂2u
∂t2

= (λ + μ)∇(∇ · u) + μ∇2u + ∇λ (∇ · u)

+ ∇μ × (∇× u) + 2(∇μ · ∇ )u, (1)

where u is the particle displacement vector, ρ is medium
density, and λ and μ are Lamé’s first and second param-
eters, respectively. To develop the elastic Hamiltonian for-
malism for the elastic wave, by following [1,2], we consider
a wave of frequency ω propagating along the z axis, in a
medium allowing the one-dimensional material variations of
ρ = ρ(x), λ = λ(x), and μ = μ(x). Expanding Helmholtz’s
theorem to an inhomogeneous elastic medium [34,35], the
in-plane elastic wave then is decomposed into the irrotational
L-polarization mode uL = [uLx(x)x + uLz(x)z]ei(ωt−kz) with
∇ × uL = 0 and the solenoidal S-polarization mode uS =
[uSx(x)x + uSz(x)z]ei(ωt−kz) with ∇ · uS = 0. Each polariza-
tion mode then satisfies

−ρω2uL = (λ + μ)∇(∇ · uL) + μ∇2uL

+ dλ

dx
(∇ · uL) x + 2

dμ

dx
(x · ∇ )uL, (2)

−ρω2uS = μ∇2uS + dμ

dx
x × (∇ × uS)

+ 2
dμ

dx
(x · ∇ )uS, (3)

where vectorial Eqs. (2) and (3) provide the self-contained,
decoupled scalar equations for uLz(x) and uSx(x):

−ρω2uLz = (λ + 2μ)

[
d2uLz

dx2
− k2uLz

]
+ 2

dμ

dx

duLz

dx
, (4)

−ρω2uSx = μ

[
d2uSx

dx2
− k2uSx

]
+ 2

dμ

dx

duSx

dx
. (5)

From Eqs. (4) and (5), the transformations of uLz(x) =
ψL(x)/exp[∫(dμ/dx)(λ + 2μ)−1dx] and uSx(x) = ψS(x)/μ
for the removal of the first-order derivative terms then lead

FIG. 1. Quantum-analogous potential description of elastic ma-
terials and application of the SUSY transformations. (a) Inhomoge-
neous elastic media defined by three wave parameters (ρ, λ, and μ)
and their elastic potential landscape representation (V L, V S) each for
L and S polarizations. (b) Illustration of SUSY-transformed elastic
potentials and their successive ground-state annihilations for each L-
and S-polarization axis. These SUSY transformations on V L and V S

are independent of each other.

to the polarization-dependent elastic eigenvalue equations
[−d2/dx2 + V L,S(x)]ψL,S = −k2ψL,S, each for the L and
S waves. Comparing these equations to Schrödinger equa-
tions, we now define the elastic Hamiltonian operators
HL,S = −d2/dx2 + V L,S(x) with elastic potentials V L,S(x):

V L(x) = − ω2n2
L(x) − μ′(λ + μ)′

(λ + 2μ)2 + μ′′

λ + 2μ
, (6)

V S(x) = − ω2n2
S(x) + μ′′

μ
, (7)

where nL(x) = [ρ/(λ + 2μ)]1/2 and nS(x) = (ρ/μ)1/2 are the
refractive indices for L and S modes, respectively, and f ′(x)
denotes the x derivative of f (x). It is noted that the remaining
components of uL and uS, i.e., uLx(x) and uSz(x), also can
be derived from uLz(x) and uSx(x) using Eqs. (2) and (3),
respectively. See also note S1 in Supplemental Material [36]
for the derivation of the elastic potential V F(x) for the flexural
polarization mode uF = [uFy(x)y]ei(ωt−kz).

Of practical importance for the above set of polarization-
dependent elastic Hamiltonians is in the individual control
of L and S waves with the introduction of two independent
potential landscapes V L(x) and V S(x), which are mapped
from the set of three elastic parameters (ρ, λ, μ) [Fig. 1(a);
see note S2 in [36] for details]. With elastic Hamiltonian
operators and elastic scalar potentials as defined above, it is
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now straightforward to implement quantum-classical analo-
gies, such as parity-time symmetry [9], adiabatic passage [10],
Bloch oscillation [11], and Anderson localization [37] toward
elastic waves. As an example, here, we focus on the elastic
application of SUSY quantum mechanics [38] and SUSY pho-
tonics [13–17], for the control of an individual guided mode
for an arbitrary elastic wave input, which realizes spatial- and
polarization-mode selectivity.

B. SUSY transformation of elastic Hamiltonians

The formalism of the SUSY (or Darboux) transforma-
tion [38] is based on the factorization of the Hamilto-
nian operator, enabling analytic and deterministic construc-
tion of wave potentials with quasi-isospectral spectra. For
the original Hamiltonian H (0) = −d2/dx2 + V (0)(x) satis-
fying H (0)ψi

(0) = −ki
2ψi

(0), in which subscript i denotes
mode number, the Hermitian adjoint pair A(0) = −d/dx +
W (0)(x) and A(0)† = d/dx + W (0)(x) leads to the relation of
H (0) = A(0)†A(0) + E (0), where W (0) is the solution of the
Riccati equation dW (0)/dx = −W (0)2 + V (0)(x) + E (0) for an
arbitrary selection of E (0). This allows the introduction
of superpartner Hamiltonian H (1) = −d2/dx2 + V (1)(x) =
A(0)A(0)† + E (0), and corresponding superpartner potential
V (1) = V (0) − 2dW (0)/dx. For the selection of E (0) = −k0

2

[with the Ricatti solution W (0) = d (logψ0
(0))/dx where ψ0

(0)

and −k0
2 are the ground-state eigenfunction and eigenvalue

of H (0)], a spectrum of superpartner potential H (1) is identical
to that of H (0), except for the ground state (thus quasi-
isospectral; see note S3 in [36]). The sequential application
of the quasi-isospectral SUSY factorization, such as H (1) =
A(1)†A(1) + E (1) which leads to H (2) = A(1)A(1)† + E (1), then
accomplishes the sequential annihilation of the lowest eigen-
mode, which has been applied to selective modal filtering
[13,14], real spectra in complex potentials [15], random-wave
switching [16], and band-gap material design [17] in pho-
tonics (see [36] for the details of the SUSY transformation).
We also note that the SUSY transformation provides an exact
analytic and deterministic solution, involving only differenti-
ation and log operation to the original potential [36]. SUSY
transformations are also applicable to any finite potential
landscapes: some shape invariant potentials such as harmonic,
Rosen-Morse, Pöschl-Teller, and Scarf potentials [38] and any
arbitrary potential shape even with complex-valued materials
[15].

For our case of elastic Hamiltonians HL,S = −d2/dx2 +
V L,S, each governing the L and S modes [Fig. 1(a)], the
families of the potentials {V L(p)} and {V S(q)} each constitute
the SUSY potential landscapes with the annihilation of p
lower “longitudinal” spatial modes and q lower “shear” spatial
modes [Fig. 1(b)]. One of the prominent applications utilizing
the quasi-isospectrality of SUSY transformation is a SUSY
ladder [13,14]. In Fig. 2, we show an example of a three-
level elastic SUSY ladder, i.e., elastic SUSY potential wells
evanescent-coupled in series, which provides ground-state
filtering at each coupling stage, from the quasi-isospectral
ground-state annihilation. First, for an arbitrary input waveg-
uide having V L(0)(x) and V S(0)(x), the superpartner families
of elastic SUSY potentials for each polarization {V L(p)}
and {V S(q)} [regions in color in Figs. 2(a) and 2(b)] are

FIG. 2. Polarization-selective SUSY ladders for elastic waves.
(a) Longitudinal- and (b) shear-potential landscapes. (a, b) Black
lines for SUSY ladder potentials V L(�) and V S(�). Regions in color
are individual SUSY partner potentials V L(p) and V S(q) composing
SUSY ladders. Here, potentials are normalized to the negative square
of propagation constants of a plane wave. Eigenstates of each V L(p)

and V S(q) are overlaid for lowest, first higher, and second higher
modes, in red, green, and blue colors, respectively. (c) Spatial
profiles of elastic wave parameters (ρ, λ, and μ) calculated from
elastic SUSY ladder potentials V L,S(�) designed in (a) and (b). To
reduce the design freedom, ρ(x) was set to a constant ρ0. (d–
i) Wave propagations through elastic SUSY ladders for the input
of different eigenmodes ψi

L,S(0) to the input waveguide of V L,S(0)

(position centered at x = −0.2). Full coupling is achieved between
phase-matched eigenstates: (d, g) the ground state ψ0

L,S(0) trapped in
the input waveguide of V L,S(0), (e, h) the first excited state ψ1

L,S(0)

of V L,S(0) penetrating into the adjacent waveguide of first SUSY-
partner potential V L,S(1) of ψ0

L,S(1), and (f, i) the second excited
state ψ2

L,S(0) penetrating into waveguides of first and second SUSY-
partner potentials V L,S(1) and V L,S(2). It is noted that SUSY potentials
and eigenmodes here are obtained by using finite difference method
with MATLAB, and (ρ, λ, and μ) values in (c) have been normalized
to that of aluminum with a plane strain approximation [35] at the
target frequency of 200 kHz.

calculated by V (i+1) = V (i) − 2d2(logψ0
(i) )/dx2. The L- and

S-polarization SUSY ladder potentials V L,S(�)(x) [black lines
in Figs. 2(a) and 2(b)] are then constructed by sequen-
tially placing the obtained SUSY partner potentials in adja-
cent positions, e.g., V L,S(i+1) to the right side of V L,S(i), to
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FIG. 3. Elastic metamaterial template for elastic potentials. (a) An illustration of the employed elastic metamaterial, consisting of a square
lattice unit cell with a rectangular hole. The lattice constant a = 1 mm satisfies the subwavelength conditions of ∼�L/30 and ∼�S/15, where
�L and �S denote the wavelength of the L and S polarization, respectively, in the Al plate at a 200-kHz frequency. (b–e) FEM (COMSOL)
obtained elastic parameters ρL, ρS, λ, and μ for different hole widths d1 and d2. (f, g) Elastic potentials V L and V S corresponding to ρL, ρS, λ,
and μ in (b)–(e).

derive evanescent couplings between [14]. The elastic mate-
rial parameters {ρ(x), λ(x), μ(x)} [Fig. 2(c)] as a counterpart
of the L- and S-polarization SUSY ladder elastic potentials
V L,S(�)(x) can then be readily derived using analytic Eqs. (S3)
and (S4) in [36].

The operation of the SUSY ladder, which is designed
from input waveguide potentials V L,S(0)(x) and implemented
in terms of elastic parameter {ρ(x), λ(x), μ(x)}, has been
verified using finite element method (FEM) simulation and the
COMSOL Multiphysics solid mechanics module. Analogous
to the photonic SUSY ladder [14], the successful operation of
the elastic SUSY ladder, i.e., demultiplexing of guided elastic
modes, is realized for each polarization mode [Figs. 2(d)–2(f)
for L modes and Figs. 2(g)–2(i) for S modes].

C. Elastic metamaterials and directional SUSY ladders
for perfect modal selectivity

For the physical implementation of the elastic SUSY lad-
der, we use the template of metamaterials. The subwave-
length arrangement of metamaterials enables the effective
parameter reproduction of continuous and inhomogeneous
elastic potential profiles V L(x) and V S(x). As the simplest
template supporting two different indices for L and S modes,
we employ a two-dimensional square aluminum lattice [in
Fig. 3(a)] having an anisotropically perforated rectangular
hole at the center. Figures 3(b)–3(e) and Figs. 3(f) and 3(g)
show the obtained elastic wave parameters (ρL, ρS, λ, μ)
and associated elastic potentials (V L, V S), respectively, for
different sets of (d1, d2). As is clear from the effective medium
theory [39], the longitudinal potential V L is mainly controlled
by the transverse hole width d2, while V S is dependent on
both d1 and d2: The mass density ρ depends on the filling
ratio, the longitudinal stiffness C11 = λ + 2μ mainly depends
on the transversal width of the rectangular hole d2, and the

shear stiffness C66 = μ symmetrically depends on d1 and d2

(see note S3 in [36] for the retrieval of effective parameters
[40,41] and the relations between the L- and S-stiffness and
Lamé parameters in anisotropic structures).

Now, with the elastic metamaterial template, the realization
of continuous SUSY potentials becomes possible for the im-
plementation of an elastic mode splitter having perfect (spatial
and polarization) selectivity. Figure 4(a) shows V L(�)(x) and
V S(�)(x) analytically designed for the polarization-diversified
SUSY ladder composed of seven waveguides. For the meta-
material realization of V L(�)(x) and V S(�)(x), these analyt-
ically designed, continuous potentials are discretized with
a 1-mm grid (∼�L/30 = �S/15), providing well-defined
eigenmodes in perfect match with those of analytical results.
Figures 4(b) and 4(c) illustrate the corresponding structural
parameters (d1, d2) and a snapshot of metamaterial structures
in the vicinity of each waveguide center.

It is emphasized that, in the design of this polarization-
diversified SUSY ladder, we assign different directions of
spatial demultiplexing for each polarization, i.e., L polar-
ization V L(p+1) positioned to the left side of V L(p), and S
polarization V S(q+1) positioned to the right side of V S(q). For
an input of randomly mixed spatial and polarization modes,
the polarization-diversified SUSY ladder then separates the L
and S polarizations for each assigned direction (−x direction
for the L mode and +x direction for the S mode), and
sequentially filters each spatial mode upon propagation. Upon
propagation, the spatial demultiplexing is achieved by mode-
dependent beating, which is determined by coupling coeffi-
cients between nearby SUSY potentials. Figure 4(d) shows the
temporal evolution of successful demultiplexing for an input
wave, obtained from the FEM simulation for the polarization-
diversified SUSY ladder employing anisotropically perforated
aluminum metamaterial. An excellent agreement has been
observed with Fig. 4(e), the finite difference method solution
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FIG. 4. Design and operation of the polarization-diversified
SUSY ladder. (a) The landscapes of elastic potentials for the
polarization-diversified SUSY ladders. (b) The structural parameters
of elastic metamaterials corresponding to the potentials in (a). (c)
Metamaterial structures in the vicinity of each waveguide center. (d)
Snapshots of mode splitting for a randomly mixed input of spatial
and polarization modes at t = 0.5, 2.0, and 3.5 ms. The input of
randomly mixed spatial and polarization modes are fed into the
input waveguide around x = 0, at t = 0 ms. For the time domain
simulation, the eigenmode expansion method has been used based on
FEM (COMSOL Multiphysics) solid mechanics simulation results.
(e) The steady-state finite difference method (MATLAB) solution
obtained from the analytical scalar elastic Hamiltonians, using the
potentials shown in (a).

obtained from the scalar elastic Hamiltonians [Eqs. (4) and
(5)] and elastic potentials defined by Eqs. (6) and (7).

It is noted that previous elastic wave control techniques
[26–31] have been limited in the polarization manipulation
of plane waves only. In contrast, we emphasize that our
application of the SUSY ladder allows perfect selectivity for
an arbitrary (linear combination of both “polarization” and
“spatial” multimode) elastic wave input, which has been an
impossibility, notably without any penalties in conversion
efficiency [14] due to the global phase-matching condition
inherited from SUSY [13].

III. CONCLUSION

In summary, by transforming the elastic wave equation into
polarization-decoupled scalar elastic Hamiltonians, a direct
path for the application of quantum mechanical techniques
toward elastic waves is achieved. As a practically important
application example, we proposed an elastic SUSY ladder
providing perfect modal selectivity, including both “spatial”
and “polarization” mode controllability for an arbitrary elastic
wave input. The realization of the SUSY ladder with an
anisotropically perforated aluminum metamaterial platform
proves excellent agreements between theoretical prediction
and full-numerical verification. By providing a systematic
route to the scalar-equation-based handling of elastic waves,
our approach paves the way to direct applications of other
diverse quantum-elastic analogies, including parity-time sym-
metry for elastic modal singularities, Anderson localization
for elastic energy focusing, Dirac points for elastic waves, and
Zak phases for elastic polarization, not limited to the SUSY
transformation demonstrated here for the extended modal
capacity.
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821 (2014).

[8] C. He, X. Ni, H. Ge, X.-C. Sun, Y.-B. Chen, M.-H. Lu, X.-P.
Liu, and Y.-F. Chen, Nat. Phys. 12, 1124 (2016).

[9] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N.
Christodoulides, M. Segev, and D. Kip, Nat. Phys. 6, 192
(2010).

[10] T. Schwartz, G. Bartal, S. Fishman, and M. Segev, Nature
(London) 446, 52 (2007).

[11] M. Ben Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon,
Phys. Rev. Lett. 76, 4508 (1996).

[12] H. Sanchis-Alepuz, Y. A. Kosevich, and J. Sánchez-Dehesa,
Phys. Rev. Lett. 98, 134301 (2007).

[13] M.-A. Miri, M. Heinrich, R. El-Ganainy, and D.
N. Christodoulides, Phys. Rev. Lett. 110, 233902
(2013).

134107-5

https://doi.org/10.1103/PhysRevLett.100.113903
https://doi.org/10.1103/PhysRevLett.100.113903
https://doi.org/10.1103/PhysRevLett.100.113903
https://doi.org/10.1103/PhysRevLett.100.113903
https://doi.org/10.1103/PhysRevLett.102.123905
https://doi.org/10.1103/PhysRevLett.102.123905
https://doi.org/10.1103/PhysRevLett.102.123905
https://doi.org/10.1103/PhysRevLett.102.123905
https://doi.org/10.1103/PhysRevA.78.033834
https://doi.org/10.1103/PhysRevA.78.033834
https://doi.org/10.1103/PhysRevA.78.033834
https://doi.org/10.1103/PhysRevA.78.033834
https://doi.org/10.1103/PhysRevLett.95.136601
https://doi.org/10.1103/PhysRevLett.95.136601
https://doi.org/10.1103/PhysRevLett.95.136601
https://doi.org/10.1103/PhysRevLett.95.136601
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1038/nphys3867
https://doi.org/10.1038/nphys3867
https://doi.org/10.1038/nphys3867
https://doi.org/10.1038/nphys3867
https://doi.org/10.1038/nphys1515
https://doi.org/10.1038/nphys1515
https://doi.org/10.1038/nphys1515
https://doi.org/10.1038/nphys1515
https://doi.org/10.1038/nature05623
https://doi.org/10.1038/nature05623
https://doi.org/10.1038/nature05623
https://doi.org/10.1038/nature05623
https://doi.org/10.1103/PhysRevLett.76.4508
https://doi.org/10.1103/PhysRevLett.76.4508
https://doi.org/10.1103/PhysRevLett.76.4508
https://doi.org/10.1103/PhysRevLett.76.4508
https://doi.org/10.1103/PhysRevLett.98.134301
https://doi.org/10.1103/PhysRevLett.98.134301
https://doi.org/10.1103/PhysRevLett.98.134301
https://doi.org/10.1103/PhysRevLett.98.134301
https://doi.org/10.1103/PhysRevLett.110.233902
https://doi.org/10.1103/PhysRevLett.110.233902
https://doi.org/10.1103/PhysRevLett.110.233902
https://doi.org/10.1103/PhysRevLett.110.233902


CHOONLAE CHO, SUNKYU YU, AND NAMKYOO PARK PHYSICAL REVIEW B 101, 134107 (2020)

[14] M. Heinrich, M.-A. Miri, S. Stützer, R. El-Ganainy, S. Nolte,
A. Szameit, and D. N. Christodoulides, Nat. Commun. 5, 3698
(2014).

[15] M.-A. Miri, M. Heinrich, and D. N. Christodoulides, Phys. Rev.
A 87, 043819 (2013).

[16] S. Yu, X. Piao, and N. Park, Phys. Rev. Appl. 8, 054010
(2017).

[17] S. Yu, X. Piao, J. Hong, and N. Park, Nat. Commun. 6, 8269
(2015).

[18] M. Maldovan, Nat. Mater. 14, 667 (2015).
[19] J.-K. Yu, S. Mitrovic, D. Tham, J. Varghese, and J. R. Heath,

Nat. Nanotechnol. 5, 718 (2010).
[20] M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O.

Painter, Nature (London) 462, 78 (2009).
[21] D. Mirlin, in Modern Problems in Condensed Matter Sciences

(Elsevier, Amsterdam, 1982), p. 3.
[22] M. Maldovan, Nature (London) 503, 209 (2013).
[23] M. J. Lowe, D. N. Alleyne, and P. Cawley, Ultrasonics 36, 147

(1998).
[24] R. Muthupillai, D. Lomas, P. Rossman, J. F. Greenleaf, A.

Manduca, and R. Ehman, Science 269, 1854 (1995).
[25] J. Virieux and S. Operto, Geophysics 74, WCC1 (2009).
[26] J. L. Rose, Ultrasonic Guided Waves in Solid Media (Cambridge

University, Cambridge, England, 2014).
[27] Y. Cho, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47,

591 (2000).
[28] A. H. Nayfeh, Wave Propagation in Layered Anisotropic Me-

dia with Applications to Composites (Elsevier, Amsterdam,
1995).

[29] J. M. Kweun, H. J. Lee, J. H. Oh, H. M. Seung, and Y. Y. Kim,
Phys. Rev. Lett. 118, 205901 (2017).

[30] Z. Chang, H.-Y. Guo, B. Li, and X.-Q. Feng, Appl. Phys. Lett.
106, 161903 (2015).

[31] F. Liu and Z. Liu, Phys. Rev. Lett. 115, 175502 (2015).
[32] D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature

(London) 424, 817 (2003).
[33] F. C. Karal, Jr. and J. B. Keller, J. Acous. Soc. Am. 31, 694

(1959).
[34] K. Aki and P. G. Richards, Quantitative Seismology, 2nd ed.

(University Science Books, Sausalito, 2002).
[35] K. F. Graff, Wave Motion in Elastic Solids (Courier, New York,

2012).
[36] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.101.134107 for the derivation of the elastic
potentials for the flexural polarization mode, details of the
SUSY transformation, and Lamé parameters in anisotropic
structures.

[37] J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan,
D. Clément, L. Sanchez-Palencia, P. Bouyer, and A. Aspect,
Nature (London) 453, 891 (2008).

[38] F. Cooper, A. Khare, and U. Sukhatme, Phys. Rep. 251, 267
(1995).

[39] Y. Wu, Y. Lai, and Z.-Q. Zhang, Phys. Rev. B 76, 205313
(2007).

[40] H. J. Lee, H. S. Lee, P. S. Ma, and Y. Y. Kim, J. Appl. Phys.
120, 104902 (2016).

[41] Y. Lai, Y. Wu, P. Sheng, and Z.-Q. Zhang, Nat. Mater. 10, 620
(2011).

134107-6

https://doi.org/10.1038/ncomms4698
https://doi.org/10.1038/ncomms4698
https://doi.org/10.1038/ncomms4698
https://doi.org/10.1038/ncomms4698
https://doi.org/10.1103/PhysRevA.87.043819
https://doi.org/10.1103/PhysRevA.87.043819
https://doi.org/10.1103/PhysRevA.87.043819
https://doi.org/10.1103/PhysRevA.87.043819
https://doi.org/10.1103/PhysRevApplied.8.054010
https://doi.org/10.1103/PhysRevApplied.8.054010
https://doi.org/10.1103/PhysRevApplied.8.054010
https://doi.org/10.1103/PhysRevApplied.8.054010
https://doi.org/10.1038/ncomms9269
https://doi.org/10.1038/ncomms9269
https://doi.org/10.1038/ncomms9269
https://doi.org/10.1038/ncomms9269
https://doi.org/10.1038/nmat4308
https://doi.org/10.1038/nmat4308
https://doi.org/10.1038/nmat4308
https://doi.org/10.1038/nmat4308
https://doi.org/10.1038/nnano.2010.149
https://doi.org/10.1038/nnano.2010.149
https://doi.org/10.1038/nnano.2010.149
https://doi.org/10.1038/nnano.2010.149
https://doi.org/10.1038/nature08524
https://doi.org/10.1038/nature08524
https://doi.org/10.1038/nature08524
https://doi.org/10.1038/nature08524
https://doi.org/10.1038/nature12608
https://doi.org/10.1038/nature12608
https://doi.org/10.1038/nature12608
https://doi.org/10.1038/nature12608
https://doi.org/10.1016/S0041-624X(97)00038-3
https://doi.org/10.1016/S0041-624X(97)00038-3
https://doi.org/10.1016/S0041-624X(97)00038-3
https://doi.org/10.1016/S0041-624X(97)00038-3
https://doi.org/10.1126/science.7569924
https://doi.org/10.1126/science.7569924
https://doi.org/10.1126/science.7569924
https://doi.org/10.1126/science.7569924
https://doi.org/10.1190/1.3238367
https://doi.org/10.1190/1.3238367
https://doi.org/10.1190/1.3238367
https://doi.org/10.1190/1.3238367
https://doi.org/10.1109/58.842046
https://doi.org/10.1109/58.842046
https://doi.org/10.1109/58.842046
https://doi.org/10.1109/58.842046
https://doi.org/10.1103/PhysRevLett.118.205901
https://doi.org/10.1103/PhysRevLett.118.205901
https://doi.org/10.1103/PhysRevLett.118.205901
https://doi.org/10.1103/PhysRevLett.118.205901
https://doi.org/10.1063/1.4918787
https://doi.org/10.1063/1.4918787
https://doi.org/10.1063/1.4918787
https://doi.org/10.1063/1.4918787
https://doi.org/10.1103/PhysRevLett.115.175502
https://doi.org/10.1103/PhysRevLett.115.175502
https://doi.org/10.1103/PhysRevLett.115.175502
https://doi.org/10.1103/PhysRevLett.115.175502
https://doi.org/10.1038/nature01936
https://doi.org/10.1038/nature01936
https://doi.org/10.1038/nature01936
https://doi.org/10.1038/nature01936
https://doi.org/10.1121/1.1907775
https://doi.org/10.1121/1.1907775
https://doi.org/10.1121/1.1907775
https://doi.org/10.1121/1.1907775
http://link.aps.org/supplemental/10.1103/PhysRevB.101.134107
https://doi.org/10.1038/nature07000
https://doi.org/10.1038/nature07000
https://doi.org/10.1038/nature07000
https://doi.org/10.1038/nature07000
https://doi.org/10.1016/0370-1573(94)00080-M
https://doi.org/10.1016/0370-1573(94)00080-M
https://doi.org/10.1016/0370-1573(94)00080-M
https://doi.org/10.1016/0370-1573(94)00080-M
https://doi.org/10.1103/PhysRevB.76.205313
https://doi.org/10.1103/PhysRevB.76.205313
https://doi.org/10.1103/PhysRevB.76.205313
https://doi.org/10.1103/PhysRevB.76.205313
https://doi.org/10.1063/1.4962274
https://doi.org/10.1063/1.4962274
https://doi.org/10.1063/1.4962274
https://doi.org/10.1063/1.4962274
https://doi.org/10.1038/nmat3043
https://doi.org/10.1038/nmat3043
https://doi.org/10.1038/nmat3043
https://doi.org/10.1038/nmat3043

