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The potential of zero charge (pzc), a fundamental concept in interfacial electrochemistry, is revisited using
a jellium-Poisson-Boltzmann model. Under constant-potential description of the metal-solution interphase, this
model is able to calculate the surface charging relation (surface free charge density as a function of the electrode
potential) and then to determine the pzc therefrom. The potential corresponding to the minimum of differential
double-layer capacitance curve is shown to be lower than the pzc determined from surface charging relation,
which is caused by free metal electrons entering the solution phase. The model further reveals that the pzc
decreases when the vacuum gap between the solution phase and the metal surface, d , becomes narrower. This is
consistent with the common observation that the pzc of metal-solution interphase is lower than that calculated
from the work function of metal-vacuum interphase (the latter corresponds to d = ∞). Multifaceted roles played
by the solvent, including electrostatic screening, polaron effect, and orthogonalizational repulsion, are analyzed.
Also discussed are the effects of specific adsorption of ions and potential-dependent d on the surface charging
relation.
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I. INTRODUCTION

The potential of zero charge (pzc), also termed as point of
zero charge, is defined as the potential, usually referenced to
the standard hydrogen electrode (SHE), at which there is no
free-electrode charge, defined as the net charge of free metal
electrons and metal ions, to be mathematically expressed in
Eq. (12) [1]. For a metal-solution interphase, pzc plays a role
similar to that of work function for a metal-vacuum inter-
phase; it is a basic property containing substantial microscopic
information of the metal, the solution, and the interphase
with complex interactions in between [2]. When the electrode
potential deviates from the pzc, the metal-solution interphase
becomes electrified, attracting counterions into the interphase
and forming a diffuse layer where potential and concentration
vary greatly and electrochemical reactions, if any, occur. As a
result, the pzc is of fundamental significance in understanding
electrode kinetics [3–6].

Coined by Frumkin in 1928 [7], the pzc attracts unabated
interests in both experimental and theoretical electrochem-
istry [2,8–11]. As regards simple metals in a nonspecifically
adsorbing electrolyte, such as mercury in NaF solutions, the
pzc can be derived from experimental differential double-
layer capacitance curves using the Gouy-Chapman ansatz [1].
When specific adsorption and/or chemisorption comes into
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play, new complexities emerge, necessitating the distinction
between the potential of zero free charge (pzfc) and the
potential of zero total charge (pztc) [9,12,13]. To put it simply,
the pzfc considers exclusively the free electrode charge, which
is tuned by adding or removing free metal electrons and which
is compensated by counterions in solution, while the pztc
extends to all electrons entering or exiting from the electrode,
including those hopping into/from the electron orbitals of par-
ticles (ions or molecules) in solution. The pztc, corresponding
to the total current density measured, can be experimentally
determined, for example, from voltammetry [13,14]. How-
ever, it is difficult to do the same for the pzfc, corresponding
to the pure double-layer charging current density, because
there is no reliable way to separate double-layer charging
current density from total current density. As regards the
impedance approach, the overlap between differential double-
layer capacitance and pseudocapacitance of adsorption makes
it difficult, if not impossible, to determine pzfc from differ-
ential double-layer capacitance curves [15]. Several remedies
have been developed [11–13]. The CO displacement method
measures total surface charge at Pt electrodes, from which the
pzfc can be estimated by a linear extrapolation [11–14,16].
Apart from errors introduced in the linear extrapolation, the
CO displacement method is inapplicable at high potentials
(say >0.5 VRHE where RHE refers to the reversible hydrogen
electrode), due to CO oxidation. In its stead, the laser-induced
temperature-jump method circumvents the extrapolation of
total electrode charge curve and directly reflects the pzfc
[12,17]. Recently, N2O and peroxodisulfate reduction reaction
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of which the reactivity is sensitive to free electrode charge
are developed to probe the pzfc [12,14,18,19]. The Alicante
group led by Feliu is the major propellant of this research field
[12,13,19].

Concomitant with continual activities from the experimen-
tal side are ongoing attempts of predicting the pzfc using
first-principles calculations. In this vein, two key issues are
encountered: description of the solvent environment, and the
potential reference. As regards the former issue, Jinnouchi and
Anderson employed a modified Poisson-Boltzmann to treat
the solvent in an implicit manner [20], while Tripkovic et al.
introduced several water layers explicitly into the simulation
system [21], and, as a step further, Sakong et al. performed
large-scale ab initio molecular-dynamics simulations which
better simulate the liquid water [22]. As regards the latter
issue, an experimental SHE scale is commonly used to convert
the calculated work function into the pzc by a simple subtrac-
tion. Recently, Le et al. removed the need for an experimental
SHE [23], and adopted a computational SHE method which
was developed earlier by Cheng and Sprik [24]. Despite diver-
sity in the computational methods, these computational works
unravel that the work function and pzc of the metal covered
by a water film are lowered due to two effects. On one hand,
interfacial water molecules reorient and/or polarize, leading
to a net dipole moment at the surface. On the other hand, free
metal electrons redistribute upon addition of surface water.
However, which effect dominates is a question open to dispute
still [22,23].

Notwithstanding substantial progresses discussed above,
understanding of the pzc is incomplete yet. Firstly, it is unclear
how electrostatic interactions in the double layer influence
the pzc, because most first-principles calculations to date
are conducted in an ion-free environment under constant
charge condition [25,26]. There are, indeed, several constant-
potential schemes combining density-functional theory (DFT)
and modified Poisson-Boltzmann theory [20,27,28]. However,
emphasis has been put on calculating the pzc of different
metals, while the influence of the solution side on the pzc
is marginally discussed. Secondly, it is known that specific
adsorption and chemisorption bring about dramatic influence
on the surface charging relation of metal-solution interphases
[9,18,29,30]. Nevertheless, existing theories rarely consider
these factors. Last but not least, first-principles calculations
are usually computationally expensive and case specific.
There is a clear need for a simple and general theoretical
description of metal-solution interphases including essential
electronic and double-layer effects. In tackling these chal-
lenges, the continuum approach, able to describe the dou-
ble layer under constant potential and to incorporate vari-
ous short-range interactions between ions and metal elec-
tron in a phenomenological way, may complement quantum-
mechanical approaches.

Herein, a continuum model, in which metal electronic
effects are described by a jellium model and the solution
side by a modified Poisson-Boltzmann model, is developed
for conceptual understanding of the pzc. The model features
a constant-potential description of the metal-solution inter-

FIG. 1. Model schematic. The model describes the metal side
by the jellium model, and the solution side by a modified Poisson-
Boltzmann model. Short-range correlations between metal electrons
and solvents as well as ions are included. Given the free-electron
density in metal bulk, n0, and the electrical potential in metal bulk,
φM, the model gives out continuous distributions of the free-electron
density and the electric potential from the metal bulk to the solution
bulk.

phase with a position-dependent dielectric constant, rendering
calculation of the surface charging relation and then the
determination of the pzc. Armed with this model, we dis-
sect multifaceted effects of solvent on the pzc, scrutinize
the definition of pzc, reexamine the correspondence between
the pzc and the Gouy-Chapman minimum of the differen-
tial double-layer capacitance curve, and explore the effects
of specific adsorption on the pzc. Albeit being unable to
accurately describe a specific metal-solution interphase, this
simple model contains essential parameters important to the
pzc and identifies key problems for future first-principles
investigations.

II. THE MODEL

The model consists of a “free-electron-like” metal and
a monovalent symmetric electrolyte solution in a one-
dimensional x coordinate, as schematically shown in Fig. 1.
The jellium edge is denoted as x = 0, the metal bulk as
x = −∞, and the solution bulk as x = ∞. The closest plane
that solution species can approach the metal surface is denoted
x = d . The electrical potential in the solution bulk is used as
the potential reference.

The overarching task of calculating the pzc is transformed
to the task of calculating the distribution of free metal electron
density, ne, spanning from the metal bulk to the solution bulk
as a function of the electrode potential and solution properties.
We start with writing the free-energy density functional of the
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metal-solution interphase,
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The first line in Eq. (1) represents the metal electronic
energy density using the jellium model, which was based on
the density-functional formulism of Kohn et al. [31,32] that
has been widely used in the theory of metal surface by Lang
and Kohn [33,34] and introduced to the theory of double
layer by Badiali et al. [35,36] and Schmickler [37] in 1980s.
The jellium model treats the metal ionic charge as a positive
background which ends at the jellium edge (x = 0), and free
electrons as an inhomogeneous electron gas. The first three
terms correspond to kinetic, exchange, and correlation energy
densities of a homogeneous electron gas of density ne, respec-
tively. Inhomogeneity effects are represented by the fourth
term. The constants, ck = 2.87, ce = −0.74, cc = −0.056,
and cg = 0.014, are respective interaction coefficients [38].
According to Kornyshev et al., exchange-correlation inter-
actions are screened by the fast part of the dielectric polar-
ization, characterized by the optical dielectric constant εopt

[39,40]. Note that the electronic dielectric constant is given
by ε0(1 + (εopt − 1)θ (x − d )), which is reduced back to ε0

when x < d . ξ = 27.2 eV is the atomic energy, a coefficient
transforming from atomic units (a.u.) to SI units.

The second line describes the electrostatic energy density
[41], where e0 is the elementary charge, εo the dielectric con-
stant of vacuum, φ the potential, E the electrical field, nref =
(a0)−3 the reference number density, a0 the Bohr radius, n0

normalized (with respect to nref , hereinafter) number density
of metal ionic charge, nc and na normalized number densities
of cations and anions, respectively. θ (x) is the Heaviside
function. d denotes the distance between the jellium edge and
the closest plane that solvent and ions can approach the metal
surface. As for a hydrated ion, d is the closest distance from
the jellium edge to the hydration sphere.

The first term in the third line describes the field-dependent
orientation of solvent molecules, where ns is the normalized
number density of solvent, p the dipole moment of solvent,
β = 1/kBT with kB being the Boltzmann constant, and T
the temperature. The logarithmic term for the free energy
of solvent was developed by Booth [42] and widely used
in the double-layer theory to describe dielectric saturation
in the interfacial region [43]. The second term in the third
line corresponds to the configuration entropy, calculated using
a lattice-gas approach [44,45], of cations and anions in the
solution side. nl denotes the normalized number density of
lattice sites.

The fourth line describes the short-range correlations be-
tween free metal electrons and solvents as well as ions [46].
Wi (unit: eV) characterizes the strength of short-range cor-
relations between free metal electrons and species i in the

solution (i = s for solvent, i = a for anions, and i = c for
cations). The Heaviside function θ (x − d ) implies that these
short-range correlations act on free metal electrons stretching
into the solution phase only. Herein, ne is normalized with
respect to n0 such that Wi corresponds to the interaction with
one metal electron.

Through the variational procedure, the free-energy density
functional f in Eq. (1) is submitted to two Euler-Lagrange
equations in terms of φ and ne, respectively,
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(
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Substituting Eq. (1) into Eq. (2) leads to a modified
Poisson-Boltzmann (PB) equation considering dielectric sat-
uration,

− ∂
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where X = x/λ is the dimensionless coordinate with λ =
(ε0kBT/e2

0nref )−0.5 being the reference length sharing the
same form of the Debye length, D = d/λ is the dimensionless
closest distance, U = e0φ/kBT is the dimensionless potential,
and εs is the dielectric constant, given by

εs = 1 + θ (X − D)

(
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(5)

with P = p/e0λ being the dimensionless dipole moment of
solvent, L(x) = coth(x) − 1/x is the Langevin function. Com-
pared with the conventional PB equation, the modified PB
equation in Eq. (4) has two distinct features. Firstly, it uses
a potential-dependent dielectric constant given in Eq. (5)
considering the field-dependent reorientation of solvent. Sec-
ondly, it extends to the metal phase involving metal ions and
free electrons, in addition to cations and anions in solution.

In Eq. (4), nc and na are determined by using the equilib-
rium condition that electrochemical potentials of cations and
anions in the interfacial region should be equal to their values
in the solution bulk, leading to the following identities:

∂ f

∂nc
=

(
∂ f

∂nc

)
bulk

, (6)

∂ f

∂na
=

(
∂ f

∂na

)
bulk

. (7)
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Substituting Eq. (1) into Eq. (6) and (7) obtains

nc = n0
c

exp(−U − neWc)

1 − χ + χ

2 (exp(−U − neWc) + exp(U − neWa))
,

(8)

na = n0
a

exp(U − neWa)

1 − χ + χ

2 (exp(−U − neWc) + exp(U − neWa))
,

(9)

where n0
c and n0

a are normalized number densities of cations
and anions in the solution bulk, respectively, which are equal
to each other for the current case; χ = (n0

c + n0
a)/nl represents

the occupancy of the lattice sites by ions in the solution. The
modified Boltzmann relations in Eqs. (8) and (9) are reduced
back to the conventional ones for the limiting case of χ = 0
and Wi = 0.

Substituting Eq. (1) into Eq. (3) leads to a differential
equation describing the distribution of free metal electrons,

∂

∂X

(
∂ne

∂X

)
= 1

2ne

(
∂ne

∂X

)2

+ λ2

2cga0

(
ne(ϒ (ne ) − ϒ (n0)),

− ςne(U − U M ) + ςneθ (X − D)

kBT n0

∑
i=s,a,c

niWi

)
,

(10)

where ς = kBT/ξ , U M is the dimensionless electrical po-
tential applied onto the metal referenced to the potential in
solution bulk, ϒ(x) is a function derived from the jellium
model, expressed as

ϒ (x) = 5

3
ckx2/3 + 4

3

ce

εopt
x1/3 + cc

εopt

εoptx2/3 + 0.105x1/3
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Note in passing that the electron density profile was ap-
proximated by trial functions in vast majority of studies em-
ploying a “statistical” version of density-functional approach
as a viable alternative (especially for sp metals) to more
complicated quantum-mechanical density-functional calcula-
tions. In application to the models containing sharp variation
of the dielectric and charge distribution profiles (as in our
current model), it was reported that the results might be
strongly dependent on the choice of trial functions. [46,47]
This emphasizes the importance of finding electron density
profiles by solving Eq. (10) directly, and thus removing the
uncertainty introduced by trial functions.

Equations (4) and (10) are closed with following boundary
conditions: in the metal bulk, X = −∞, we have U = U M and
ne = n0, and in the solution bulk, X = ∞, we have U = 0
and ne = 0. Note that we have used the electrical potential
in the solution bulk as the potential reference. Given the
solution properties (n0

c , nl , and p), the metal property (n0), and
the microstructure of the interphase (d), the metal-electrolyte
interphase is exclusively controlled by the electrical potential
(U M).

The characteristics of the metal enter into this formulism
only through n0 which ranges between 1.33 × 10−3 to 8.42 ×

10−2 for the metals “amenable to analysis using the free-
electron model” [38] considered herein. As this model does
not intend to mimic a specific metal, we designate n0 = 10−2

for the base case. It is found that the choice of n0 does not
change the trends and conclusion obtained from this model.
As regards the solution side, a 0.1-M monovalent symmetric
electrolyte with water as the solvent is used for the base
case. Therefore, we have n0

c = n0
a = 100 NA, with NA being

Avogadro constant, nl = 3.34 × 1028 m−3, and p = 1.32 ×
10−29 C m such that the relative dielectric constant of the
bulk water is 78.5. Note that this model neglects the size
asymmetry between cations, anions, and solvent, and takes
the solvent size as the lattice size. The closest distance, d , is a
key interfacial property dictating the pzc; we take d = 1 Å as
the base value and will discuss the d effect at greater length
later. We use εopt = 1.8 according to Kornyshev et al. [39] For
the base case, we use Ws = 5 eV for the orthogonalizational
repulsion between metal electrons and solvents, and neglect
specific adsorption of cations and anions, namely, Wa =
Wc = 0 eV.

III. RESULTS AND DISCUSSION

A. Constant-potential description for double layer

Given parameters of the metal and solution, the model is
solved at each constant potential, rendering the total number
of free electrons in the system a potential-dependent vari-
able. A constant-potential description of the metal-electrolyte
interphase distinguishes our approach from the majority of
previous double-layer models accounting for the effects of
metal electrons by imposing fixed surface charge density
condition (see Refs. [48,49] for review). In addition, it has
been clearly demonstrated in Ref. [50,51] that the condition
of fixed surface charge density is in general not equivalent to
the condition of constant electrode charge because the former
additionally requires that the charge is uniformly distributed
in the plane of electrode. This requirement is not always
satisfied in equilibrium. In a broader view, the differences
between constant-potential and constant-charge descriptions
have been discussed by Feldman et al. in 1986 [52]. It has
been shown that a constant-charge description may result
in negative double-layer capacitance, signifying instabilities
and phase transitions of metal-solution interphases under
constant-potential description [51–54]. Interested readers are
referred to profound discussion in a review article written by
Partenskii et al. [50] Several constant-potential computational
schemes have been developed for electrochemical systems
[21,27,28,55], such as the recent grand-canonical density-
functional theory approach developed by Melander et al. [28]

Figure 2 shows model results for the base case with an
electrode potential of U M = 30. Figure 2(a) portrays how U
distributes from the metal to the solution. Figure 2(b) shows
that free metal electrons extend beyond the jellium edge and
into the solution phase, a quantum-mechanical effect termed
electron spillover in the literature [34]. A steep potential
drop occurs at the jellium edge, which is caused by electron
spillover. Leaving from the metal surface to the solution
phase, U increases towards positive values and approaches
zero in the solution bulk, implying that the metal-solution
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FIG. 2. Model results at U M = 30 (with the potential reference adopted at the solution bulk) for the base case: (a) potential distribution;
(b) distribution of free-electron density referenced to its bulk value; (c) distribution of dielectric constant; (d) distributions of cation and anion
concentration referenced to its bulk value. The light gray region represents the metal, and the light yellow region represents the solution. The
closed plane is located at d = 1 Å.

interphase is negatively charged at U M = 30. Figure 2(c)
displays the distribution of static dielectric constant εs. The
high electrical field in the interfacial region results in ori-
entation saturation of solvent, namely solvent molecules are
reoriented to be more or less parallel with the electric field
[43]. Consequently, εs decreases to ∼10 at the interface.
Figure 2(d) shows that cations are attracted by the negative
electrode charge to the interfacial region while anions are
repelled.

B. Calculation of pzc and differential double-layer capacitance

The model is run at a series of electrode potential ranging
from 30 to 90 (every 2), with the potential distribution shown
in Fig. 3(a). The surface free-charge density of the metal-
solution interphase is defined as

σ M =
∫ ∞

−∞
(n0θ (−x) − ne)nref e0dx. (12)

Figure 3(b) shows σ M as a function of U M, from which the
differential double-layer capacitance, Cdl = ∂σ M/∂φM (φM is
the dimensional counterpart of U M), is obtained and exhibited
in Fig. 3(d). Cdl is further divided into an inner-layer part,
Cinner = ∂σ M/∂ (φM − φ0), with φ0 being the potential at x =
d , and an outer-layer part, Couter = ∂σ M/∂ (φ0), correlated
through (Cdl )−1 = (Cinner )−1 + (Couter )−1.

As regards the σ M ∼ U M curve, σ M increases monoton-
ically from negative values at low U M to positive values at

high U M, resulting in a pzc of Upzc = 67 at which σ M = 0.
More details of the σ M ∼ U M curve are displayed in the
Cdl ∼ U M curve in Fig. 3(d). A minimal Cdl is obtained at
UminCdl = 60. Deviating from UminCdl in both directions, Cdl

grows due to the increased Couter and levels off due to the
limitation of Cinner. A close examination reveals that Cdl is
not strictly symmetric around UminCdl . As size symmetry is
assumed, this asymmetry has its origin in the metal electronic
effect. Specifically, Cinner slightly decreases with increasing U,
implying that it becomes more difficult to pack electrons into
the metal at high potentials.

The deviation between Upzc and UminCdl contradicts the
conventional notion that these two quantities are equal, throw-
ing doubt on the common practice of obtaining the pzc
from the Cdl ∼ U M curve. UminCdl is, by definition, the po-
tential at which σ M grows slowest as U M increases. As the
whole system is electroneutral, σ M is the negative value
of net ionic charge stored in the diffuse layer, which is
given by, ∫∞

d (nc − na)nref e0dx. At the pzc, σ M = 0, we thus
have, ∫∞

d (nc − na)nref e0dx = 0. However, the total net charge
stored in the diffuse layer, given by ∫∞

d (nc − na − ne)nrefe0dx,
is negative as a portion of metal electrons enter into the
diffuse layer. As a result, the potential in the diffuse layer
is positive, U > 0. Increasing U M tends to elevate U in the
diffuse layer further, and thus shifting σ M to more positive
values in an exponential manner, as inferred from Eqs. (8) and
(9). This implies that the pzc is more positive than UminCdl and
that UminCdl should be obtained when σ M < 0, namely, at a
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FIG. 3. (a) Potential distribution at a series of electrode potential ranging from 30 to 90 (every 2) for the base case. (b) Surface charging
relation of the electrode. (c) The definition of the surface charge density of the metal-solution interphase. The electron density profile is for
a schematic illustration. (d) Differential double-layer capacitance, Cdl, inner-layer capacitance, Cinner, and outer-layer capacitance, Couter , as a
function of the electrode potential U M.

potential smaller than the pzc, as shown in Figs. 3(b) and 3(d).
Interestingly, Uematsu et al. recently found that asymmetrical
ion adsorption may also lead to the deviation between Upzc

and UminCdl [56].

C. Multifaceted solvent effects

It is well documented that solvent decreases the work
function and pzc of metals [2,22,23]. In this vein, two solvent
effects have been unraveled in first-principles computational
studies [20–23]. On one hand, partial charge transfer from
the metal polarizes solvent molecules at the surface, forming
surface dipoles. On the other hand, the orthogonalizational re-
pulsion exerted by solvent pushes free electrons back into the
metal edge. These two effects are short-range (∼ r−k, k > 2)
electronic interactions in nature. However, long-range (∼r−2)
electrostatic effects of the solvent have not been much dis-
cussed before.

Firstly, we examine the effect of d on the pzc in Fig. 4(a).
It is found that the pzc shifts to more positive values as
d increases. We note that short-range correlations are ab-
sent in Fig. 4(a) as we set Ws = 0 eV. Consequently, the d
dependence of the pzc is exclusively caused by long-range

electrostatic effects. Specifically, the electrostatic screening
effect exerted by the solvent is stronger when d is smaller,
decreasing the magnitude of the negative potential outside the
metal when U M is lower than the pzc, and thus dragging more
electrons out from the metal, namely, σ M is more negative,
as shown in Fig. 4(a). When U M is higher than the pzc,
the magnitude of the positive potential outside the metal
decreases, repelling more electrons back into the metal, and
resulting in a more positive σ M. In other words, the σ M ∼ U M

curve gets much steeper as d decreases, namely, Cinner and
Cdl are greater. As depicted in Fig. 4(b), the metal-vacuum
interphase is mimicked by placing the solution at a distance
large enough, for example, d > 3 Å in this model, away from
the metal. Consequently, Fig. 4(a) is in line with the usual
notion that the pzc of metal-solution interphases (d of several
Å) is lower than that calculated from the work function of
metal-vacuum interphase (equivalently, d = ∞).

Secondly, the solvent changes the fast polarization model
of the dielectric medium, reflected in different εopt. The
exchange-correlation energy of electrons in Eq. (1) becomes
less negative as εopt increases, pushing free electrons back
into the metal edge and decreasing the pzc, as shown in
Fig. 4(c). This so-called “polaron effect” was first investigated
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FIG. 4. Solvent effects on the pzc: (a) effect of d; (b) mimic of the metal-vacuum interphase (d > 3 Å); (c) effect of εopt , and (d) effect of
Ws (unit, eV).

by Kornyshev et al., who used the trial-function approach to
solve the jellium model [39,40]. Figure 4(c) shows that the
polaron effect on the pzc is only marginal.

Thirdly, another important solvent effect is the orthogo-
nalizational repulsion between solvent and metal electrons,
as a consequence of the Pauli repulsion principle [46,47,57].
This orthogonalizational repulsion effect is characterized by a
positive Ws. Figure 4(d) compares the σ M ∼ U M curve for the
cases of Ws = 0 and Ws = 5 eV. In the presence of orthogo-
nalizational repulsion (Ws = 5 eV), electrons are pushed back
into the metal edge, resulting in a more positive σ M and thus
a lower pzc. As the orthogonalizational repulsion becomes
stronger when d is smaller, the decrease in the pzc is greater
at smaller d .

D. Specific adsorption of ions

By introducing short-range correlations between ions and
solvent into Eq. (1), this model is able to describe specific
adsorption of ions and its effect on the surface charging be-
havior of the metal-solution interphase. As shown in Fig. 5(a),
specific adsorption, described by negative Wi (i = a, c) in
Eq. (1), shifts σ M to more negative values at potentials
far from the pzc, and the pzc changes little though. This
is expected as counterions, be they cations or anions, pull
free electrons out from the metal, and the concentration of
counterions increases dramatically in the interfacial region
when the potential deviates from the pzc. For example, at
U M = 90, Figs. 5(b) and 5(c) show that anion adsorption
results in higher ne and na near the interface (x = 1 Å) due to
the anion-electron attraction, compared with the case without
adsorption. The two curves in Fig. 5(c) intersect as σ M has a
lower magnitude for the case with anion adsorption.

FIG. 5. (a) Effect of specific ionic adsorption on the surface
charging curves, σ M ∼ U M, for three cases: without specific adsorp-
tion (Wa = Wc = 0, circles), with cation adsorption (Wa = 0,Wc =
−5 eV, blue line), and with anion adsorption (Wa = −5 eV,Wc =
0, red line). (b) and (c) compare free electron (ne) and anion
(na) density profiles at U M = 90, respectively. Herein, we have
neglected solvent-electron orthogonalizational repulsion by setting
Ws = 0.
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FIG. 6. (a) The system free energy and (b) the metal surface
charge density as a function of d , the distance of the closest approach
of solution species to the electrode. The electrode potential is U M =
30. No short-range correlation is considered, namely, Ws = Wa =
Wc = 0.

E. Structure breathing: The end of idyll

From the above analysis, it becomes clear that the structure
parameter, d , is of primary importance to the pzc, which
has been kept constant regardless of the electrode potential
in the above discussion. The approximations in this treat-
ment are at least threefold. Firstly, the first solvent layer is
hardly coplanar but inevitably corrugated; specifically, the
through-plane distance between different water molecules in
the first layer can reach 1 Å in the simulation of Sakong
and Groß [58]. Secondly, the value of d is usually not static
but oscillates all the time. Thirdly, the interfacial structure
varies as a function of the electrode potential, termed structure
breathing hereinafter. Regarding the third point, Kornyshev
et al. [59] and Badiali and co-workers [60] developed different
approaches to self-consistently determine d for each σ M. The
essential idea behind the intricate treatment is as follows.
The metal and the solution can be roughly regarded as two
plates with opposite charge in a capacitor. The attractive
electrostatic interactions, together with short-ranged attractive
van de Waals forces described in an empirical manner in
Ref. [59], in between intend to bring them closer, resulting
in a smaller d . On the contrary, decreasing d pushes more free
electrons back into the metal edge, exacerbating the repulsion
between metal electrons. Combined, there exists an optimal d
at which the total energy of the metal-solution interphase is
minimum.

Figure 6(a) shows how the system free energy (with a con-
stant offset), calculated using Eq. (1), varies as a function of
d , at U M = 30 for the base case with Ws = Wa = Wc = 0 and
without introducing more parameters to describe the van de
Waals forces. As d increases, the system free energy decreases
first due to suppressed repulsion between metal electrons, and
then grows, overall speaking, due to attractive electrostatic in-
teractions. Figure 6(b) shows that σ M generally increases with
a decreased magnitude as d increases. The erratic changes in
σ M, marked with arrows, cause nonmonotonic variations in
the system free energy. If the system free energy is identical
at two d values, the interfacial structure can transition from
one to the other, resulting in structural instability similar to
that discussed by Partenskii et al. [51,53,54]

A key message delivered in Fig. 6 is that d exerts a
dramatic influence on the interfacial properties; specifically,
σ M varies by ∼0.1 Cm−2 when d changes by ∼1 Å. Recently,
Fernandez-Alvarez and Eikerling developed a hybrid DFT-
solvation model for a partially oxidized Pt(111) surface, and
also emphasized the importance of d . [61] It is an important
future step to consider equilibrium values and spatiotemporal
statistics of d .

IV. CONCLUDING REMARKS

A jellium-Poisson-Boltzmann model has been developed
for metal-solution interphases under constant-potential con-
dition. The model reveals that free metal electrons entering
the solution phase cause the deviation between the pzc de-
termined from σ M ∼ U M curves and the potential of Gouy-
Chapman minimum extracted from Cdl ∼ U M curves. Mul-
tifaceted effects of solvent on the pzc are analyzed, notably
that the electrostatic screening effect of solvent leads to a
higher pzc when the vacuum gap between the metal surface
and the solution phase is larger. The solvent lowers the pzc
through two additional effects, viz., the polaron effect and the
orthogonalizational repulsion. We further unravel that specific
adsorption of ions exerts nontrivial impact on the surface
charging behavior, and that d , the distance of the closest
approach of solution species to the electrode, exerts a dramatic
influence on the interfacial properties

Before closing, we reiterate that the pzc is a basic prop-
erty of the metal-solution interphase, rather than the metal
alone. In addition to metal properties that are oft emphasized,
solution properties, especially the size, dipole moment, and
interfacial arrangement of solvent molecules and specific ad-
sorption of ions, are of equal importance to the pzc. Therefore,
the common phrase such as “the pzc of a certain electrode”
is not accurate as it does not define the electrolytic solution;
given the same metal, the pzc can be dramatically different
when it is paired with different electrolytic solutions.
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