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Dual Majorana universality in thermally induced nonequilibrium
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We demonstrate that nonequilibrium nanoscopic systems with Majorana zero modes admit a special kind
of universality which cannot be classified as strictly transport or strictly thermodynamic in nature. To reveal
such a type of Majorana universality we explore purely thermal nonequilibrium states of a quantum dot whose
low-energy degrees of freedom are governed by Majorana zero modes. Specifically, the quantum dot is coupled
to a topological superconductor, supporting Majorana zero modes, as well as to two normal metallic contacts
with the same chemical potentials but different temperatures. It is shown that the Majorana universality in this
setup is dual: it is stored inside both the response of the electric current, excited exclusively by the temperature
difference, and the quantum dot compressibility. The latter is defined as the derivative of the quantum dot particle
number with respect to the chemical potential and forms a universal Majorana ratio with a proper derivative of
the electric current that flows in nonequilibrium states of a purely thermal nature.
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I. INTRODUCTION

Nanoscopic systems based on topological superconductors
provide novel low-energy degrees of freedom as key players
determining their universal physical properties. In particu-
lar, as suggested by experimental measurements [1–3] of
the differential conductance, universality of nonequilibrium
quantum transport through such systems is to a large extent
governed by low-energy quasiparticles known as Majorana
zero modes. These non-Abelian modes are often termed “Ma-
jorana fermions” since they represent their own antiquasi-
particles, as happens for Abelian Majorana fermions [4] in
quantum field theory [5]. In the context of condensed-matter
physics, Majorana zero modes are predicted to arise in the
topological phase of the Kitaev tight-binding chain model [6].
The latter has become of extreme practical importance due
to its various appealing mappings [7–11] onto experimentally
feasible models such as setups combining superconductors
with topological insulators [12,13] and semiconductors whose
low-energy spectra result from an interplay between spin-orbit
interactions and an induced superconducting order parameter
[14,15].

An alternative to transport experiments measuring mean
quantities is to access Majorana universality via fluctuations
of transport quantities. For example, noise of the electric
current offers unique Majorana behavior both in the static
limit [16–19] and at finite frequencies [20,21]. In particular,
fluctuation universality of Majorana zero modes is revealed
in zero-frequency noise via universal effective charges [22]
and in finite-frequency quantum noise via universal plateaus,
resonances, and antiresonances located at specific frequencies
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[23]. Moreover, current shot noise allows one to reveal also
the nonlocality of Majorana zero modes [24].

Advanced experiments [25] on nanoscopic systems have
set the stage for a very original access to Majorana uni-
versality via thermodynamic measurements, as proposed in
Ref. [26]. This approach is fundamentally different from
quantum transport experiments and allows one to describe the
thermodynamics of Kitaev chains, in particular, its Majorana
universal fractional entropy [27].

Setups where nonequilibrium is simultaneously induced by
a bias voltage V and a temperature difference �T uncover
even more unique physics of Majorana zero modes which
manifests, e.g., in a violation of the Wiedemann-Franz law
[28] and in thermoelectric fluctuations having a high degree of
universality. Indeed, in nanoscopic Majorana setups not only
linear but also nonlinear zero-frequency thermoelectric noise
turns out to be universal [29] while finite-frequency thermo-
electric quantum noise reveals universal symmetry and dy-
namic resonances with universal maxima [30]. Recently, it has
been proposed that one obtains the entropy of a nanoscopic
system from thermoelectric transport experiments [31] which
incorporate measurements of the differential conductance of
the nanoscopic system and measurements of its thermopower.
This shows that thermoelectric transport may also become
an effective experimental tool able to detect the Majorana
universal fractional entropy [27] of a Kitaev chain.

In this paper we focus on nonequilibrium states of purely
thermal nature induced solely by a temperature difference �T
assuming V = 0. Remarkably, this type of nonequilibrium
reveals the existence of Majorana universality, which is clas-
sified as neither strictly transport nor strictly thermodynamic,
i.e., neither of the only two known in Majorana experi-
ments. We show that combining transport measurements of
the electric current in a quantum dot with measurements of
the quantum dot compressibility allows one to access such a
type of Majorana universality. Although compressibility itself
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FIG. 1. A basic outline of a nanoscopic physical system where
nonequilibrium quantum transport may be implemented experimen-
tally by purely thermal means. The system is composed of a quantum
dot interacting via tunneling mechanisms with left (L) and right (R)
contacts as well as with a grounded one-dimensional topological
superconductor hosting two Majorana zero modes at its ends, spec-
ified as γ1 and γ2 (green circles), of which the first one interacts
with the quantum dot (arced arrows). In particular, there is no bias
voltage in this system, i.e., the chemical potentials μL and μR of
the left and right contacts, respectively, coincide, μL = μR = μ = 0.
The temperatures of the left and right contacts are, respectively,
TL = T + �T and TR = T with the temperature difference �T � 0
and the temperature T � 0.

may be used to probe quantum phase transitions leading to
the formation of Majorana zero modes [32], it has never been
employed in conjunction with low-energy quantum transport
governed by non-Abelian Majorana quasiparticles.

The paper is organized as follows: In Sec. II we present
a theoretical model of a nanoscopic system where Majorana
zero modes are involved in nonequilibrium states of a purely
thermal nature. Section III shows that the current induced
in such nonequilibrium states does not allow one to access
Majorana universal behavior. We demonstrate in Sec. IV that,
in order to reveal Majorana universality in purely thermal
nonequilibrium, it is necessary to combine the transport re-
sponse stored in the induced current with the thermodynamic
response stored in the quantum dot compressibility. Finally, in
Sec. V we conclude the paper.

II. MAJORANA NANOSCOPIC SETUP
IN THERMAL NONEQUILIBRIUM

To reveal a special type of Majorana universality which
cannot be accessed via pure transport or pure thermody-
namic experiments it is enough to resort to the simple model
schematically shown in Fig. 1. It includes a quantum dot with
a nondegenerate single-particle energy level εd as measured
with reference to the chemical potential μ. The left and right
normal metals represent the contacts which are linked to the
quantum dot. These links provide a quasiparticle exchange be-
tween the quantum dot and contacts via quantum-mechanical
tunneling. The one-dimensional topological superconductor is
grounded and supports a pair of Majorana zero modes at its
ends. One of these ends is linked to the quantum dot. This link
establishes a special channel for Majorana tunneling between
the quantum dot and topological superconductor. We assume
that the left and right contacts are described by equilibrium

Fermi-Dirac distributions with the chemical potentials μL, μR

and temperatures TL, TR,

fL(ε) =
[

exp

(
ε − μL

kBTL

)
+ 1

]−1

,

fR(ε) =
[

exp

(
ε − μR

kBTR

)
+ 1

]−1

. (1)

Since no bias voltage is applied, V = 0, we have μL = μR =
μ = 0. Nonequilibrium states arise only due to finite �T or
thermal voltage eVT ≡ kB�T .

For quantitative analysis of the quantum transport in
the above system we represent its Hamiltonian as the sum
Ĥ = Ĥd + Ĥc + Ĥts + Ĥd−c + Ĥd−ts. The Hamiltonians of
the quantum dot, contacts, and topological superconductor are
Ĥd = εd d†d , Ĥc = ∑

l=L,R

∑
k εkc†

lkclk , and Ĥts = iξγ2γ1/2.

The tunneling Hamiltonians, Ĥd−c = ∑
l=L,R

∑
k Tlkc†

lkd +
H.c. and Ĥd−ts = η∗d†γ1 + H.c., describe, respectively, the
interactions of the quantum dot with the contacts and with the
topological superconductor. The contacts are massive normal
metals with a continuous energy spectrum εk . For simplic-
ity, we use the traditional approximation assuming that the
contacts density of states ν(ε) varies sufficiently weakly over
the energies involved in the quantum transport that is in fact
energy independent, ν(ε) ≈ νc/2. The Majorana operators
γ1,2 are self-adjoint, γ

†
1,2 = γ1,2, and their anticommutator

is {γi, γ j} = 2δi j . The energy ξ characterizes the overlap of
the Majorana modes so that perfectly separated Majoranas
correspond to ξ = 0. Another conventional assumption is
that the tunneling between the quantum dot and contacts is
independent of the quantum numbers l, k, that is Tlk = T .
Then the coupling of the quantum dot and the left or right
contact is expressed in terms of the quantity 	 = 2πνc|T |2.
The coupling between the quantum dot and topological super-
conductor is specified by the quantity |η|.

The quasiparticle current, induced by �T , may be derived
by means of the Keldysh field integral [33] written in terms of
the Keldysh action SK with sources Jl (t ),

Z[Jl (t )] =
∫

D[θ (t )]e
i
h̄ SK [θ (t );Jl (t )],

SK = Ssys + Sscr, (2)

where {θ (t )} = {ψ (t ), φlk (t ), ζ (t )} are the Grassmann fields
of the quantum dot, ψ (t ), contacts, φlk (t ), and topological
superconductor, ζ (t ), defined on the forward (q = +) and
backward (q = −) branches of the Keldysh contour, Ssys is
the system action having the conventional form [23] in the
retarded-advanced space, and Sscr is the source action involv-
ing the current operator,

Sscr[Jl (t )] = −
∫ ∞

−∞
dt

∑
l=L,R

∑
q=+,−

Jlq(t )Îlq(t ),

Îlq(t ) = ie

h̄

∑
k

[T φ̄lkq(t )ψq(t ) − T ∗ψ̄q(t )φlkq(t )]. (3)

The current in contact l is obtained via the functional
derivative over the source field taken at Jlq(t ) = 0 and
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FIG. 2. The first and second derivatives of the electric cur-
rent with respect to the thermal voltage, ∂I (VT , εd , |η|)/∂VT ,
∂2I (VT , εd , |η|)/∂V 2

T , are shown as functions of the thermal voltage
VT . Here εd/	 = 10, kBT/	 = 10−12, |η|/	 = 103, ξ/	 = 10−8.

arbitrary q,

Il = 〈Îlq(t )〉 = ih̄
δZ[Jl (t )]

δJlq(t )

∣∣∣∣
Jlq (t )=0

. (4)

Below we focus on the quasiparticle current I in the hot, i.e.,
left, contact, I ≡ IL, as a function of VT , εd , and |η|. From
Eq. (4) one finds the following expression [34]:

I (VT , εd , |η|)

= −e	

h̄2

∫ ∞

−∞

dε

2π

{
Im

[
GR(ε)

]
fL(ε) − i

2
G<(ε)

}
, (5)

where the quantum dot retarded (lesser) Green’s function GR

(G<) follows from the inverse kernel of Ssys.

III. THERMALLY INDUCED MAJORANA CURRENT

In Fig. 2 we show the results obtained for the first and
the second derivatives of the electric current with respect
to the thermal voltage. At small values of the thermal voltage
eVT the first derivative (upper panel) has a linear dependence
on eVT . As a consequence, at small values of eVT the sec-
ond derivative (lower panel) is independent of the thermal
voltage. As one can see, it saturates at a certain value, the
coefficient in the linear dependence of the first derivative
∂I (VT , εd , |η|)/∂VT on eVT . This coefficient is a function
of the quantum dot energy level εd (or, equivalently, the
chemical potential μ) controlled by a gate voltage as well as
a function of the energy |η| characterizing the strength of the
Majorana tunneling between the quantum dot and topological
superconductor.

Note that, although for the present setup it is not crucial
whether εd > 0 or εd < 0, we nevertheless prefer to use
positive values of εd to disentangle Majorana universality
from Kondo universality in more general interacting setups
[35,36]. As it is known [37], Kondo universality may arise
when εd < 0.
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FIG. 3. The second derivative ∂2I (VT , εd , |η|)/∂V 2
T is shown for

a small value of the thermal voltage, specifically, for eVT /	 = 10−5.
The other parameters have the same values as in Fig. 2.

The behavior of the second derivative ∂2I (VT , εd , |η|)/∂V 2
T

as a function of εd and |η| is analyzed in Fig. 3 at small
eVT . In the upper panel, ∂2I (VT , εd , |η|)/∂V 2

T is shown for
various values of the energy |η| as a function of the quantum
dot energy level εd (or, equivalently, the chemical poten-
tial μ) which may be controlled by a gate voltage. The
curves exhibit a linear dependence of the second derivative
∂2I (VT , εd , |η|)/∂V 2

T on the energy level εd up to εd ≈ 102|η|.
In the lower panel ∂2I (VT , εd , |η|)/∂V 2

T is shown for various
values of εd as a function of the Majorana tunneling strength
|η|. The curves exhibit an inverse quadratic dependence of the
second derivative ∂2I (VT , εd , |η|)/∂V 2

T on the energy |η| down
to |η| ≈ 10−2εd .

Using the numerical approach of Ref. [29] for obtaining
asymptotics, we find for ξ � eVT � 	 the following asymp-
totic limit:

∂I (VT , εd , |η|)
∂VT

= e2

h

π2

12

εd (eVT )

|η|2 . (6)

As in Ref. [29], the analytical expression in Eq. (6) is obtained
by inspection of numerical results which reproduce Eq. (6)
with any desired numerical precision when the correspond-
ing inequalities are satisfied as strong as necessary for that
precision.

The parameters which can be varied in an experiment are
VT and εd . Independence of these parameters is achieved via
measurements of the derivative ∂3I (VT , εd , |η|)/∂εd∂V 2

T =
e3π2/12h|η|2. The first derivative of the current with respect
to the thermal voltage may be interpreted as a special kind
of conductance which measures the current sensitivity to the
temperature inhomogeneity �T . One can call it thermoelec-
tric conductance. The second derivative of the current with
respect to the thermal voltage is therefore the first derivative of
the thermoelectric conductance. It shows how the thermoelec-
tric conductance of the quantum dot is enhanced or suppressed
by temperature inhomogeneities of the external environment
whose role is played here by the massive metallic contacts.
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FIG. 4. The quantum dot compressibility, which is the first
derivative of the quantum dot particle number with respect to the
chemical potential (or, equivalently, the quantum dot energy level),
∂N (VT , εd , |η|)/∂μ = −∂N (VT , εd , |η|)/∂εd . For all the curves the
thermal voltage is small, eVT /	 = 10−5. The other parameters have
the same values as in Fig. 2.

In contrast, the third derivative of the current with respect
to the chemical potential probes internal sensitivity of the
tunneling density of states of the quantum dot when the energy
level εd is varied by a gate voltage. Therefore, the derivative
∂3I (VT , εd , |η|)/∂εd∂V 2

T is a very comprehensive physical
quantity: it measures the transport response to the temperature
inhomogeneity of the external environment and at the same
time it provides the internal spectral response of the system.

However, the dependence of this derivative on the parame-
ter |η| still remains. This parameter is not directly controlled
in an experiment and will have in general different values for
different experimental setups. As a result, the strictly transport
response does not allow one to obtain universal properties of
the Majorana zero modes in purely thermal nonequilibrium
states induced by �T at V = 0.

IV. MAJORANA UNIVERSALITY VIA QUANTUM
DOT COMPRESSIBILITY

Nevertheless, it is possible to uncover the Majorana uni-
versality encoded in this purely thermal nonequilibrium if
in addition one turns attention to thermodynamic properties,
namely, to the quantum dot compressibility defined as ∂N/∂μ

or, equivalently, −∂N/∂εd , where N is the quantum dot parti-
cle number,

N (VT , εd , |η|) = −
∫ ∞

−∞

dε

2π ih̄
G<(ε). (7)

In Fig. 4 the quantum dot compressibility is shown as a
function of the energy |η| characterizing the strength of the
Majorana tunneling between the quantum dot and topological
superconductor. Various curves correspond to various values
of the quantum dot energy level εd (or, equivalently, the
chemical potential μ) controlled by a gate voltage. The curves
demonstrate that, down to |η| ≈ 3εd , the compressibility has
an inverse dependence on the energy |η|. More exactly, similar
to Eq. (6), we find for ξ � eVT � 	, the following asymp-

FIG. 5. The ratio between the derivative of the electric current,
∂3I/∂μ∂V 2

T = −∂3I/∂εd∂V 2
T , and the square of the quantum dot

compressibility, [∂N/∂μ]2 = [∂N/∂εd ]2. Upper panel shows the ra-
tio as a function of the thermal voltage VT . Lower panel shows the
ratio as a function of the quantum dot energy level εd for various
values of the Majorana tunneling strength |η|.

totic limit:

−∂N (VT , εd , |η|)
∂εd

= 1

4|η| . (8)

From Eqs. (6) and (8) there follows the dual (that is, having
both transport and thermodynamic nature) universal ratio:

−∂3I (VT , εd , |η|)/∂εd∂V 2
T

[∂N (VT , εd , |η|)/∂εd ]2
= −4π2

3

e3

h
. (9)

In the upper panel of Fig. 5 this ratio is shown as a function
of the thermal voltage eVT with all the other parameters
having the same values as in Fig. 2. The curve demonstrates
that the ratio does not depend on the thermal voltage when
eVT /	 � 10−2. In this regime the ratio reaches the universal
Majorana value −4π2e3/3h. In the lower panel of Fig. 5
this ratio is shown for a small value of the thermal voltage,
specifically, for eVT /	 = 10−5, as a function of the quantum
dot energy level εd which may be controlled by a gate voltage.
The other parameters have the same values as in Fig. 2.
The curves demonstrate that, as soon as εd � 10−1|η|, the
ratio does not depend on both the quantum dot energy level
εd and the energy |η| which characterizes the strength of
the Majorana tunneling. In this regime the ratio reaches the
universal Majorana value −4π2e3/3h.

When the two Majorana modes start to significantly over-
lap, they form a partially separated Andreev bound state. In
many respects this situation may be adequately analyzed by
using the energy ξ while, for a more complete analysis, a
measure for spatial separation [38] of the two Majorana modes
could be introduced. Here for simplicity we focus on purely
energetic arguments. Thus, when ξ is large enough, our model
describes a quantum dot coupled to one end of a topologi-
cal superconductor supporting a partially separated Andreev
bound state localized at that end [39]. Below we assume
weak overlaps of the Majorana zero modes. This means that,
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FIG. 6. The ratio between the derivative of the electric current
−∂3I/∂μ∂V 2

T = ∂3I/∂εd∂V 2
T and the square of the quantum dot

compressibility [∂N/∂μ]2 = [∂N/∂εd ]2. Because of the logarithmic
scale we invert the ratio’s sign as compared with Fig. 5. The ratio
is shown as a function of the Majorana overlap energy ξ for various
values of the thermal voltage VT . The other parameters have the same
values as in Fig. 2.

in the partially separated Andreev bound state, composed of
γ1 and γ2, the second Majorana mode γ2 is still far enough
so that the quantum dot does not directly couple to γ2. A
more complicated analysis of a model with additional direct
coupling between the quantum dot and γ2 will be performed
in another work. In pure electric transport (�T = 0) the
differential conductance (G = ∂I/∂V ) may behave similarly
[40] for both Majorana zero modes and partially separated
Andreev bound states. It is thus reasonable to explore what
happens with the ratio [∂3I/∂μ∂V 2

T ]/[∂N/∂μ]2 when ξ is
large enough. In the present context it is clear physically that
large ξ means ξ > eVT . In this case the coupling between
the two Majorana zero modes is so strong that the second
Majorana mode γ2 quickly adjusts to the dynamics of the first
Majorana mode γ1 directly reacting to variations of VT . So
that in response to the thermal voltage VT the two Majoranas
behave together as a single state which represents a partially
separated Andreev bound state. In contrast, if ξ < eVT , the
second Majorana mode γ2 does not follow γ1 involved in the
dynamics induced by variations of the thermal voltage VT

and the nonequilibrium states emerging in this case are of
unique Majorana nature. This is, indeed, what we see in Fig. 6,
which shows the ratio [∂3I/∂μ∂V 2

T ]/[∂N/∂μ]2 as a function
of the Majorana overlap energy ξ for three different values
of the thermal voltage eVT . As one can see, when ξ < eVT

and nonequilibrium states result from fully unpaired Majo-
rana zero modes, the ratio is independent of ξ and is equal
to the universal Majorana value, [∂3I/∂μ∂V 2

T ]/[∂N/∂μ]2 =
−4π2e3/3h. However, when ξ ≈ eVT , the ratio starts to devi-
ate from the universal Majorana plateau −4π2e3/3h. At this
point both Majorana modes γ1 and γ2 start to feel the varia-
tions of the thermal voltage VT and respond to these variations
together as a partially separated Andreev bound state. As
a result, [∂3I/∂μ∂V 2

T ]/[∂N/∂μ]2 significantly deviates from
the universal Majorana value −4π2e3/3h when ξ is further
increased, as can be seen in Fig. 6 for ξ > eVT .
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FIG. 7. The ratio between the derivative of the electric current
−∂3I/∂μ∂V 2

T = ∂3I/∂εd∂V 2
T and the square of the quantum dot

compressibility [∂N/∂μ]2 = [∂N/∂εd ]2. As in Fig. 6, because of
the logarithmic scale we invert the ratio’s sign as compared with
Fig. 5. The ratio is shown as a function of the temperature T . The
thermal voltage is relatively large, eVT /	 = 10−2. Here εd/	 = 0.5,
|η|/	 = 60, and ξ = 10−8.

The above analysis has been done for almost zero temper-
ature, kBT/	 = 10−12. Nevertheless, below we demonstrate
that the dual Majorana universality analyzed above is robust
against high temperatures and high thermal voltages. In Fig. 7
the ratio [∂3I/∂μ∂V 2

T ]/[∂N/∂μ]2 is shown as a function
of the temperature kBT for the thermal voltage eVT /	 = 10−2.
The Majorana overlap energy here is small, ξ/	 = 10−8,
so that ξ � eVT and, as discussed above, nonequilibrium
states clearly reveal unique Majorana physics. From the curve
shown in Fig. 7 one can see that the ratio has the universal
Majorana value −4π2e3/3h for temperatures kBT � eVT . For
higher temperatures, kBT > eVT , the ratio strongly deviates
from the universal Majorana plateau. This implies that, for
very high temperatures, the Majorana zero modes are no
longer effective in formation of nonequilibrium states of
purely thermal nature. However, the temperature kBT/	 =
10−2 should be already high enough to be reached in modern
experiments. Indeed, the largest energy scale in Fig. 7 is given
by the energy |η|. This means that this energy should not
exceed the induced superconducting gap � and, for example,
one can take |η| ∼ �. Experiments in Ref. [41] demonstrate
that sufficiently high values, such as � ≈ 15 meV, have
already been achieved and may soon become regular for
generating Majorana zero modes. Since in Fig. 7 for kBT/	 =
10−2 we have kBT = 1.7 × 10−4|η| = 1.7 × 10−4�, the tem-
perature at which one observes the universal Majorana value
[∂3I/∂μ∂V 2

T ]/[∂N/∂μ]2 = −4π2e3/3h is estimated to be
T ≈ 30 mK in SI units. Such temperatures are already high
enough to be reached in modern experiments.

V. CONCLUSION

In conclusion, we have revealed Majorana universality
originating simultaneously from both transport and thermody-
namic properties emerging in nonequilibrium states of purely
thermal nature. Combining two essentially different physical
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properties of quantum dots, the current response and com-
pressibility, one may observe their universal correlation as
highly unique Majorana physics inaccessible within strictly
transport or thermodynamic experiments. Although this spe-
cial kind of Majorana universality requires measurements of
both the current and compressibility, it is exactly this combi-
nation which makes it much more unique than measurements
of only the current aiming to obtain the differential conduc-
tance. Importantly, since such measurements involve the mean
current, they are much simpler than measurements of the
current noise. Another possible benefit is that compressibility
measurements [42] involving single-electron transistors indi-
cate that this physical quantity may soon be accessed also in

quantum dot experiments and one expects that the complexity
of such experiments will not be higher than the one related
to the thermodynamic measurements [26] of the universal
Majorana entropy [27]. The above advantages and practical
accessibility of the universal range of the model parameters
demonstrate that the previously unknown Majorana univer-
sality predicted here is a feasible goal for state-of-the-art
experiments on nanoscopic Majorana setups.
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