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Conductivity of a two-dimensional HgTe layer near the critical width:
The role of developed edge states network and random mixture of p- and n-domains
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The conductivity of a two-dimensional HgTe quantum well with a width ∼6.3 nm, close to the transition from
ordinary to topological insulating phases, is studied. The Fermi level is supposed to get to the overall energy
gap. The consideration is based on the percolation theory. We have found that the width fluctuations convert the
system to a random mixture of domains with positive and negative energy gaps with internal edge states formed
near zero gap lines. In the case with no potential fluctuations, the conductance of a finite sample is provided
by a random edge states network. The zero-temperature conductivity of an infinite sample is determined by
the free motion of electrons along the zero-gap lines and tunneling between them. The conductance of a single
p-n junction, which is crossed by the edge state, is found. The result is applied to the situation when potential
fluctuations transform the system to a mixture of p- and n-domains. It is stated that the tunneling across p-n
junctions forbids the low-temperature conductivity of a random system, but the latter is restored due to the
random edge states crossing the junctions.
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I. INTRODUCTION

Topological insulators (TIs) have attracted a great deal of
attention in the past decade [1–15] (more references can be
found in [1,14]). Like ordinary insulators (OIs), TIs have an
energy gap between occupied valence and empty conduc-
tion bands. However, unlike ordinary insulators, they have
a negative energy gap sign. Due to topological reasons, this
inevitably leads to conductive TI borders. The edge state
energies cover the entire energy gap.

The idea of TIs is similar to the classification of electron
states in the quantum Hall effect [2,3] based on topological
order. The edge states in the quantum Hall effect are charac-
terized by the topological phase, which produces the gapless
boundary modes that are insensitive to smooth changes in
material parameters. In TIs, the role of the magnetic field is
transferred to the spin-orbit interaction.

The most widely known representative of a TI is a two-
dimensional (2D) HgTe quantum layer [14–18]. In two di-
mensions, the backscattering processes in the edge states
are strongly forbidden by the time reversibility. In such a
case, the electron transport should be one-dimensional, spin-
conserving, and nonlocal. However, experimental observa-
tions show that many aspects of this picture contradict the
ideal picture [17]. In particular, this concerns the absence of
2D transport and the backscattering on the edge states.

The edge states in a 2D TI are often considered based on
the six-band Bernevig-Hughes-Zhang [15] model with zero
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boundary conditions on the external border. Less known is
the minimal Dirac-like two-band model by Volkov-Pankratov
(VP) [16], which was first invented for the 3D case and was
later used for the 2D case [19–23].

In the VP model, the gap in the system continuously
changes its value passing through zero, and it provides elec-
tron states localized near the zero gap line (ZGL). Different
aspects of this model have been studied recently. The VP
model specificity is the linearity of the edge-state spectrum
[19], which is symmetric around the gap center. The linearity
leads to the suppression of the electron-electron interaction
[20,21]. The edge states on the curved edges were also studied
[22]. It was found that the microwave absorption in the
insulating phase is a result of the transitions from the edge
state to 2D states or between the edge states with the opposite
direction of motion with virtual participation of the 2D states
[23].

The 2D TI with potential disorder was investigated in [24].
Unlike [24], we study the system with a disordered energy
gap. The difference between the approaches in the present
paper and [24] is schematically demonstrated in Fig. 1.

Note that the edge transport model in the TI has some
similarity to the adiabatic transport in the quantum Hall effect
(QHE) with a random potential [25,26]. In the last problem,
electrons in a strong magnetic field move along the lines of
constant potential, while in the random-gap TI, the edge states
appear with propagating electrons along the ZGLs.

The purpose of the present paper is to study 2D low-
temperature stationary electron conductivity in a 2D TI. Our
specific interest is focused on the system with a near-critical
thickness w ∼ 6.3 nm, where the energy gap changes its
sign. In this situation, the gap relief randomness leads to
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FIG. 1. Left: The narrow-gap semiconductor with developed po-
tential fluctuations. The energy gap is marked in light red. The Fermi
level is located in the mean gap center. If the hybridization of states in
electron and hole lakes is weak, the system is insulating. The strong
hybridization of these states converts the system to a metal. Right:
The narrow-gap semiconductor with developed gap fluctuations. The
edge states appear near ZGLs. The electron density on the edge states
is plotted at the top of the figure.

the edge states network formation [see Figs. 1 (right), 2,
and 3].

II. PROBLEM FORMULATION

The remainder of this paper is organized as follows. First,
we shall formulate the random VP model (Sec. III), which
is utilized here for the internal edge states consideration.
Then, we shall study the conductance of the p-n junction with
a crossing edge state. This state produces a channel short-
circuiting the insulating p-n junction (Sec. IV). Then, the
conductance of the finite sample with the fluctuating gap sign
and without potential fluctuations will be studied (Sec. V). We
shall describe the edge states in the framework of percolation
theory (Sec. V A). The random edge states network is formed
in such a system. The problem can be reformulated as a
motion with a constant velocity of particles along ZGLs of
a random function �(r). In such an approach, the problem
of electron transport converts to the study of geometrical
properties of ZGLs (Sec. V B).

FIG. 2. Relief of the random function �(r) near the critical
width. The domains of �(r) < 0 are blue and those of �(r) > 0 are
white.
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FIG. 3. The lines of �(r) = 0, corresponding to Fig. 2, along
which the edge states are located. The electron motion direction at
a fixed spin projection is shown by arrows. In a square sample there
is one ZGL AA, percolating in the x-direction, and no percolation in
the y-direction. In the sample elongated in the y-direction (separated
by a dashed line from the square), there are two edge lines crossing
the sample in the x-direction (AA and BB) and no such ZGLs in the
y-direction.

Near the sample threshold width, the conductance experi-
ences strong fluctuations and depends on the sample shape.
We shall find the conductance of wide or long samples. The
percolation consideration shows that the conductivity of an
infinite sample tends to zero, unless the interedge transitions
are taken into account (Sec. V B). The problem solution is
given by taking into account the finiteness of the edge state
width that provides the interedge transitions resulting in the
2D conductivity at zero temperature (Sec. VI).

The other studied approach is the conductivity near the
conduction- and valence-band thresholds in the presence of
an energy gap and potential fluctuations (Sec. VII).

Furthermore, we consider the case in which the system,
in the presence of strong potential fluctuations, converts to a
mixture of p- and n-domains (Sec. VIII). These domains have
the same proportions at the charge-neutrality point (CNP). If
the Fermi level deviates from the CNP, the electron or hole
liquids form connected domains covering the entire sample.
In this case, the current flows through the n- or p-domain,
while the opposite phase is insulated from the current by p-n
junctions. The conductivity vanishes near the thresholds of the
connectivity of these domains.

In the CNP the p-n junctions block the overall conduc-
tivity. However, the edge states can produce short-circuits of
p-n junctions that restore the zero-temperature conductivity.
This situation will be considered using the conductance of a
single p-n junction with a crossing edge state. The channel
conductance will be found using a single-mode approxima-
tion (as half of the conductance quantum). Then the fractal
geometry of the edges will be applied to estimate the char-
acteristic conductances and 2D conductivity. This picture is
valid if the p-n junction widths are large enough to block the
tunneling. In the next section, we shall consider the model
problem of a single planar p-n junction, which is crossed by a
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short-circuiting edge state. All the obtained results will be
reviewed in Sec. IX.

The experiment of [17] shows 2D TI resistivity growth
with the critical width near the neutrality point at a low tem-
perature. The resistivity maximum reaches the value of some
resistivity quanta, while apart from this point, the resistivity is
much lower. This experimental observation is important for a
suitable theory.

III. RANDOM VOLKOV-PANKRATOV MODEL

A basic assumption of this paper is that the HgTe layer ex-
periences the transition between ordinary (with a positive gap)
and inverted (with a negative gap) insulating phases (OI and
TI), accordingly, when the mean well width w changes from
zero to infinity at w = w0 = 6.3 nm. We suppose that the en-
ergy gap 2� has the linear dependence on the well width w(r)
[r = (x, y)]: �(w) = α(w − w0), α = ∂�(w)/∂w|w=w0 .
Using the data from [14], we obtain α ≈ −8.75 meV nm−1.

Near the critical width w0, the inevitable fluctuation of
w(r) leads to the separation of a sample to OI and TI domains.
The borders between them, where the gap 2�(r) = 0, should
form the edge states [19–23,27].

Electrons are described by the 2D Volkov-Pankratov
Hamiltonian (VP)

H =
(

V (r) + �(r) vσp
vσp V (r) − �(r)

)
, (1)

where V (r) is the potential, p = (px, py) is the 2D momentum
operator, and σi are the Pauli matrices.

If V (r) and �(r) are constants, the Hamiltonian (1) has
the energy spectrum ±

√
�2 + v2 p2 with the gap 2�. If the

system has one straight edge, V (r) = 0, �(r) = �(y), �(y <

0) > 0, �(y > 0) < 0, the VP Hamiltonian yields the edge
states with a wave function

�σ =

⎛⎜⎝1 + σ

1 − σ

σ − 1
1 + σ

⎞⎟⎠ exp

(
ipx + σ

v

∫ y

0
�(y′)dy′

)
, (2)

where σ = ±1 is a spin quantum number (here and in what
follows, h̄ = 1; in the final equations we restore the dimen-
sionalities).

The edge states have a linear spectrum:

ε = σvp. (3)

Here v plays the role of the edge-state electron velocity.
Below we deal with a smooth dependence of �(r) on r. In
a particular case of �(y), assuming that �(0) = 0 and ex-
panding �(y) ≈ −εy, ε = −d�(y)/dy|y=0, we obtain ψσ ∝
exp(−εy2/2v), which, at ε > 0, yields the wave function
localized near y = 0 with the edge-state width led = √

8v/ε.
The edge-state spectrum overlaps the band gap of the infinite
system.

The paper deals with V (r) and �(r) randomly depending
on both coordinates. We will study the edge states in a
quasiclassical system, where the characteristic planar sizes
of potential b and gap a are large, as compared with led [for
�(r) depending on both coordinates led ∼ √

8v/|∇�|]. The
functions V (r) ± �(r) represent the conduction-band bottom

Eс
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p

n

( )+ ( )r rV

( )+ ( )r rV

xy

FIG. 4. The p-n junction with an alternating gap. The blue (upper
in the right section) and brown (lower) surfaces depict the position of
the band extrema. The central horizontal plane represents the Fermi
level; the color on it corresponds to the edge state density.

and the valence-band top, correspondingly. Below we assume
that V (r) and �(r) are independent random functions with
Gaussian distributions. The first one results from the random
distribution of charge impurities, and the second one results
from quantum-well width fluctuations.

The quantity �(r) is characterized by its mean value
�(r) = α(w − w0) and mean-squared fluctuations �2 ≡√

δ�2 = |α|w2 ≡ |α|
√

w2 − w2; the overline stands for the
spatial mean. The mean spatial sizes of �(r) and V (r), a and
b, are a2 = w2

2/(∇w)2 and b2 = δV 2/(∇V )2.
In the quasiclassical approximation, the ZGLs �(r) = 0

can be considered as locally straight. In such a case, one can
apply Eq. (2).

An additional simplification can be done if we assume that
wavelength h̄/p is less than the ZGL characteristic length.
This permits a quasiclassical description of the electron mo-
tion along the edges. Such particles have the Hamiltonian
function σvp + V (r(u)), where u is a coordinate along the
ZGL and p is a conjugated momentum. In accordance with
this Hamiltonian, independently from the potential, electrons
move along the edge with constant velocity σv. If necessary,
the electron motion along the edge can be quantized [20].

IV. CONDUCTANCE OF A PLANAR p-n JUNCTION
WITH A CROSSING EDGE STATE

Consider a potential in the planar p-n junction with the
impurity charge-density distribution as en tanh(x/b), where e
is the electron charge, and n is the carrier density at infinity.
Planar charge carriers screen this distribution. That determines
the potential across the p-n junction (see Fig. 4). The potential
caused by the 2D charge distribution is

V =
∫

d2r′ e[n(r′) − ne(r′)]
κ|r − r′| , (4)

where κ is the dielectric constant. In the other form,

V = 1

κ

∫
dx′e[n(x′) − ne(x)] ln |x − x′|. (5)
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If the 2D screening length is small enough, the p and n
domains are neutral, and the potential is formed by the charge
in the insulating domain −ld/2 < x < ld/2. This gives the
potential difference

V = 1

κ

∫ ld /2

−ld /2
dx′en(x′) ln |x − x′| (6)

and the boundary condition for the insulating domain width

2�0 = e2n

κ

∫ ld /2

−ld /2
dx tanh

(x

b

)
ln |x|. (7)

Here 2�0 is the gap on infinity. If b � ld ,

ld ≈ 2�0κ

ne2 ln(�0κ/ne2b)
.

The characteristic decrement for the tunneling is �0/v,
and if ld�0/v 	 1, the p-n junction is impermeable.
The parameter ld�0/v can be rewritten as ld�0/v ∼
(�0/EF )(vF /e2)(v/vF ), where EF and vF are the Fermi en-
ergy and velocity. All three factors in the right part are greater
than 1: (�0/EF ) 	 1 if electrons (holes) fill the extrema of
the spectrum, which is an ordinary situation, vF /e2 	 1 for a
weakly interacting electronic liquid, and vF > v always.

Then we consider the edge state that crosses the straight
p-n junction. Let the potential profile have the form of
Eq. (5), let the gap be 2�(y) = 2�0 tanh(y/a), let the po-
tential V (x) = �0 tanh(x/ld ), and let the parameters satisfy
inequalities �0 − V0 < μ < V0 − �0 (see Fig. 4). The gap
goes to constants ±�0 at y → ∓∞. The potential goes to
±�0 at x → ∓∞. In such a system, the x → ∓∞ domains
belong to n and p, correspondingly. In that case, the electron
gas in p- and n-domains is degenerate. Apart from the y = 0
line, the conductivity across the edge at a low temperature
vanishes. The line y = 0, where �(y) = 0, crosses the p-n
junction. Only this place is responsible for the p-n junction
conductance.

Let there be a single edge state along this line. Indepen-
dently from the potential, the edge-state conductance is e2/h,
where h = 2π h̄. Hence, this value will determine the total
conductance of the p-n junction junc. The edge y = 0 plays
the role of the p-n junction short circuit.

Now, consider the case when width a is large enough.
Then, electrons are not quantized by the conducting channel
width. Considering the tunneling in any point y in an indepen-
dent manner, we can find the probability of tunneling across
the junction at a coordinate y,

Pt (y) = exp

(
−2

v

∫ √
�2 − V 2(x)dx

)
= e− 2π ld

h̄v
�0| tanh y

a |.

The ballistic motion channels are determined by Pt ∼ 1.
This yields the characteristic width lt ∼ va/ld�0. The number
of quantum channels for ballistic tunneling is determined by
this width ratio to the edge state width: lt/ld = √

va/8�0.
The p-n junction conductance  is lt/ld e2/h. This approach is
valid if lt 	 ld ; otherwise, the approach with a single channel
holds. Summarizing this, we have

junc = e2

h
f

(
lt
ld

)
, (8)

where f (0) = 1, f (x) = x at x → ∞.
Note that the conductance does not change if to apply a

finite voltage to the p-n junction (less than 2�0).
Hence, the conductance across the p-n junction is deter-

mined by the edge states crossing it. The results of the present
section are applicable to the case when the p-n junction width
is less than a characteristic spatial size of gap a or has the
same order.

The p-n barriers can block the overall conductivity in a
system with a random potential. This conductivity is restored
by the edge-state inclusion.

V. EDGE-STATES CONDUCTANCE WITHOUT
POTENTIAL FLUCTUATIONS

A. Proximity to the percolation threshold

As the properties of our system are determined by
quantum-well width fluctuations, we should introduce their
distribution and ruling parameters. The proximities to the
percolation threshold of OI or TI phases are described by the
portions of the area belonging to the TI or OI, ξ and 1 − ξ ,
correspondingly. The proximity of these parameters ξ − ξc to
the threshold ξc is a dimensionless quantity that determines all
critical exponents. We shall set ξc = 1/2 in accordance with
the 2D site percolation model.

For the Gaussian distribution of widths, the corresponding
probability is

ξ = 1√
2πw2

∫ ∞

w0

e
− (w−w)2

2w2
2 dw = 1

2
erfc

w0 − w√
2w2

, (9)

where erfc(x) is a complementary error function.
At the percolation threshold, if w0 − w � √

2w2, ξ −
1/2 = (w − w0)/

√
2πw2.

B. Quantized conductance

First, we should specify what we mean by the word “sam-
ple.” The source and drain contacts are metallic. The edge-
state electrons coming into these contacts are quickly mixed
with the electron sea due to elastic scattering. The simplest is
the case of a sample without side boundaries. For example,
one can consider the ring sample (the “Corbino” disk) with
metallic inner and outer parts. Another example is an infinite
strip across the current direction.

The other situation is with the lateral faces of the rectangu-
lar sample. One cannot use the limitation due to the potential:
edge-state electrons freely come through this p-n junction
(see the previous section). Instead of this, the limitation of
the electron motion in the side direction can be done by
the contact with a large-gap OI situated outside the sample.
However, this procedure inevitably produces the edge states
on the side border.

We shall assume that the sample sizes exceed a. Let the
Fermi level in a ring sample fall inside the forbidden band.
At the same time, fluctuations in the gap sign create the
edge states on ZGLs. Depending on the percolation threshold
proximity, the ZGLs turn out to be closed at |ξ − ξc| ∼ 1/2,
or open lines appear at |ξ − ξc| � 1/2. In the first case, the
conductance of a large sample vanishes, with the exception of

125415-4



CONDUCTIVITY OF A TWO-DIMENSIONAL HgTe … PHYSICAL REVIEW B 101, 125415 (2020)

the external edge contribution. In the case |ξ − ξc| � 1/2, the
conductance appears at zero temperature (see Fig. 3).

If they also exceed the correlation length, the edge channels
at ξ = ξc are the close lines that do not cross all of the sample.
If ξ → ξc, the ZGLs begin to cross the sample; that provides
the conductance  = N0e2/h, where 2N0 is the number of
lines �(r) = 0 crossing the sample in the field direction
(radius for the ring case), and 2e2/h is the conductance
quantum. As the ZGL has no branching, the presence of
conductance in the radial direction means no conductance
in the angular direction and vice versa. So, the conductance
fluctuates between 0 and a value of the order of e2/h.

The conductance along the external edges e2/h appears in
a square sample. Besides, the additional inner ZGLs crossing
the sample in the field direction can exist. So,  = (N0 +
1)e2/h.

C. Consideration based on the percolation theory

Here we shall consider a finite rectangular sample based
on the percolation theory. We shall start from a square sample.
Assume that the ZGL is absolutely random and starts from the
right edge of a square. Then it has approximately equal oppor-
tunities to cross any other square edges, and the probability of
crossing the sample in the field direction is 1/4.

In a sample elongated in the applied voltage direction,
with width L2 and length L1 	 L2, the percolation probability
should qualitatively be a product of the probabilities of perco-
lation through the square samples from which it is composed
(Fig. 3). So, for an elongated sample, the percolation prob-
ability should be proportional to 1/4L1/L2 . Hence, the mean
conductance of such a sample decays exponentially with its
length.

The situation is different for a wide sample (L2 > L1).
Blocks L1 × L1 are independent of each other. Hence, the
conductances are added in a parallel manner.

The previous consideration was too qualitative. To be more
accurate, let us include the percolation theory. For conduc-
tance finiteness, ZGLs should connect the opposite sides of
the sample x = 0 and x = L1. The probability of one of the
phases in connecting the borders can be found using the
correlation function G(r) [28]. In the percolation threshold
vicinity

G(r) =
(a

r

)η

e−r/Lc ,

where Lc = a|ξ − ξc|−ν , η = 2 − γ

ν
≈ 0.22, γ ≈ 2.38, and

ν ≈ 1.34. Near the percolation threshold, the probability,
for the edge, of crossing the sample in points r1 = (0, y1),
r2 = (L1, y2), 0 < y1, and y2 < L2 has the same order as the
probability of r1 and r2 points to belong to the same cluster,
namely G(|r1 − r2|)a−2dy1dy2. The fractal dimension of the
large cluster hull is close to 1 (see [29]). This follows from the
fact that, on the threshold, exactly half of the neighboring sites
of OI belongs to an OI or a TI subset. So, the probability that a
site belongs to a cluster border has the order of 1; for example,
in the site problem on a square lattice, this probability is
15/16. As a result, we can replace the correlation function
of edge points by the correlation function of OI or TI sites.

Now, let us consider an L × L square sample. The probabil-
ity of percolation along the edge in the x-direction is collected
from the probability for two points on the sample borders
x = 0 and x = L of belonging to the same cluster G(|r1 − r2|)
and the probability exp (−Z ) that none of the other points of
the rectangle borders � to be connected with the starting point.
We should find the number of ZGLs, which cross the opposite
edges x = 0 and x = L, with the limitation that these lines
remain inside the rectangle. It is the product of the number of
points r1 and r2 belonging to the same cluster,

Nc =
∫ L

0

∫ L

0
G(|r1 − r2|)a−2dy1dy2,

where r1 = (0, y1), r2 = (L, y2), and the ZGL probability of
not crossing all borders in other points is given by a product∏

r2ε�

(1 − G(|r1 − r2|)a−1dt2) = e−Z , (10)

Z =
∫ L

0

∫
r2ε�

G(|r1 − r2|)dy1dt2
La

. (11)

Here t2 is the length along �.
The system conductance (L) is the product of the half-

conductance quantum and the probability of connection of
two opposite sample sides:

(L) ∼ e2

h
Nc exp (−Z ). (12)

In the limiting cases at L � Lc,

(L) = c1
e2

h

(
L

a

)2−η

e−c2( L
a )1−η

, (13)

and at L 	 Lc,

(L) = c3
e2

h

(
L

a

) 3
2 −η(Lc

a

) 1
2

e− L
Lc

−c4( Lc
a )1−η

. (14)

Here c3 = √
π/2 ≈ 1.25; at η = 0.22, quantities c1 ≈ 0.97,

c2 ≈ 4.56, and c4 ≈ 1.19. If L � Lc, (L) experiences a
powerlike drop with L; if L 	 Lc, (L) drops exponentially.

Consider the conductance of a rectangular sample when
L2 	 L1 or L1 	 L2. Like the approximate consideration, the
conductance of samples with L2 	 L1 and (L1, L2) is the
sum of square conductances:

(L1, L2) = (L1)L2/L1. (15)

This is valid in a very wide sample or in a ring sample. In a
sample of finite width, one should add e2/h to this value.

In the case of L1 	 L2, the percolation probability expo-
nentially decays with the length L1 at L1 	 Lc, while the
external edge conductance remains the same. This means that

(L1, L2) = 2e2/h + o[exp (−L1/Lc)]. (16)

The factor 2 accounts for the fact that the external edges
appear pairwise.

We should emphasize that Eqs. (12)–(14) give estimations
only. Besides, the conductance is strongly fluctuating for the
samples with L2 � L1, while at L2 	 L1, the conductance is
self-averaging.

There are different reasons for the inaccuracy of the ob-
tained results. First, we replaced the edge sites correlation
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FIG. 5. Edge states with a finite width (light-yellow). As com-
pared with Fig. 3, the percolation appears in both directions.

function with the TI phase correlation function (when the
OI phase prevails) or the OI phase in the opposite case. In
principle, the behavior of both correlation functions should be
similar, but the corresponding exponents can differ. We hope
that, in accordance with that mentioned above, this numerical
difference is not strong. The other inaccuracy consists in
using the percolation correlation functions for the unbounded
sample to describe the strip. This inaccuracy manifests itself
in the difference of the percolation probability along the strip
obtained by the ZGL in noncorrelated and correlated mod-
els (different probability logarithm dependence on the strip
length). Again, this difference is inessential in the sufficiently
rough approximation that is used here. This consideration
neglects the tunneling between ZGLs, which is considered in
the next section.

VI. 2D EDGE CONDUCTIVITY AT ZERO TEMPERATURE:
FINITE EDGE-STATE WIDTH

Here we discuss the consequences of the edge-state width
finiteness. It is obvious that the exaggerated picture of the
transport along ZGLs is limited by the edge width. If the
width becomes comparable with the distance between differ-
ent ZGLs or different parts of the same line, the intensive tun-
neling will destroy this picture. Instead of strictly following
ZGLs, an electron can jump from one place to another (see
Fig. 5).

The free jump distance is determined by the edge width led,
which can be estimated as

√
av/�0. At ξ � 1 or 1 − ξ � 1,

we suppose the equality of the densities of internal and edge
points of clusters. Interpolating for all ξ , we can set the
edge point density Ne = ξ (1 − ξ )/a2. Neglecting the edge
point correlation, one can estimate the threshold ξ̃c when
the transport along ZGLs converts to the two-dimensional
traveling due to jumps as πNel2

ed = Bc. Here Bc is some
number calculated in the percolation theory. Bc runs from 3.2
to 4.5 [28] in different 2D percolation models. As a result,
ξ̃c(1 − ξ̃c) = Bca�0/2πv. If ξ (1 − ξ ) < ξ̃c(1 − ξ̃c), the edge
traveling prevails; otherwise, two-dimensional jumps occur

and that means the 2D delocalization and, in such a case,
the conductivity should be determined by the Drude-like
expression.

Note that we neglected the quantization of electron mo-
tion along edges. The longitudinal quantization results in a
minimal energy needed to jump from one close edge state
to another with a characteristic quantum of the order of
ξ (1 − ξ )vh̄/a. This quantum should be less than the charac-
teristic hopping amplitude � exp ( − (�/h̄va)/Ne), where the
characteristic hopping distance lhop = 1/

√
Ne. Obviously, this

is impossible and the quantization is inessential.
The developed ZGLs near the threshold ξ → ξc are long.

There is a finite probability that, somewhere, such lines will
approach the other ZGL to a distance comparable with the
edge-state width. That results in the electron possibility of
jumping from one ZGL to another, and the 2D diffusion will
be established.

We shall find the diffusion coefficient and the conductiv-
ity based on the model of random �(r) with the Gaussian
distribution. Traveling along a ZGL, an electron meets a
different relief of random �(r). The quasiclassical edge-
state width depends on the coordinate along the edge as
led ∼ √

8v/|∇�(r)|. (The quasiclassical approach is valid if
a 	 led.)

The edge-to-edge transition occurs in places where two
ZGLs are closer to each other than led. Let us introduce
two curvilinear coordinates: t , along ZGL, �(r) = 0; and ρ,
across it. In these coordinates, �(t, ρ = 0) = 0. In addition,
in the vicinity of point t0 of a minimal distance between two
ZGLs, one can expand �(t, ρ) as

�(t, ρ) = ∂ρ�(t0, 0)ρ + ∂2
ρ�(t0, 0)

ρ2

2

+ ∂3
t,t,ρ�(t0, 0)(t − t0)2 ρ

2
. (17)

Equation (17) takes into account the need for having two
close solutions for the ZGLs:

ρ = 0, ρ = ρ0 + a1(t − t0)2,

ρ0 = −2
∂ρ�(t0, 0)

∂2
ρ�(t0, 0)

, a1 = −∂3
t,t,ρ�(t0, 0)

∂2
ρ�(t0, 0)

.

The quantity ρ0 is the minimal distance between the ZGLs
reached at the point t0. The condition for a jump between
edges is ρ0 < led. In other terms,

2h̄v[∂2
ρ�(t0, 0)]2 − |∂ρ�(t0, 0)|3 > 0. (18)

Equation (18) can be estimated as h̄v�2/a4 > �3/a3. Let us
divide the ZGL into cuts of minimal length a. The portion of
configurations, when Eq. (18) is valid, is determined by the
ratio of value � from this inequality to the mean fluctuation
of �. Hence, the portion of cuts where the jumps can occur is
h̄v/a�2 and the mean free path for a jump is lp = a2�2/h̄v.

Now we should express the Cartesian distance of travel L
via lp. This relation is given by the hull fractal dimension:
lp = a(L/a)Dh , Dh ≈ 1.74 [29].

Thus, an electron randomly shifts at distance L at the mean
free time lp/v. This yields the 2D conductivity σ expressed via
the diffusion coefficient D = L2v/lp ∼ av(�2a/h̄v)2/Dh−1.
The diffusion coefficient is connected with the conductivity
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and the density of edge states g. For a linear spectrum, g does
not depend on the energy and is determined by the number of
edge nodes per unit area 1/2a:

σ = e2D

2π h̄va
∼ e2

h

(
�2a

h̄v

) 2
Dh

−1

. (19)

That explains how the 2D diffusion and 2D conductivity ap-
pear. The power 2/Dh − 1 ≈ 0.15 is small but positive; hence,
the conductivity slightly exceeds the conductance quantum.

The threshold for the appearance of 2D conductivity is
determined by the requirement that the gap fluctuation cor-
relation length Lc exceeds L = a(lp/a)1/Dh : Lc(ξ ′

c) = a|ξ ′
c −

ξc|−ν ∼ L or |ξ ′
c − ξc| ∼ (h̄v/a�2)1/νDh = (h̄v/a|α|w2)1/νDh .

The 2D diffusion picture is realized if |ξ − ξc| <

(h̄v/a|α|w2)1/νDh . Otherwise, the 2D diffusion and conduc-
tivity vanish.

Recounting for the HgTe width, we find that the 2D
conductivity appears if |w − w0| <

√
2πw2(h̄v/a|α|w2)1/νDh

and, on the contrary, the low-temperature conductivity is
absent. This shows the extremely unusual behavior of the con-
ductivity with w: it exists in a narrow window of widths near
w0. The origin of this phenomenon is almost a collisionless
electron propagation along the ZGLs together with the growth
of the number of contacts between ZGLs when w → w0.

The 2D conductivity is established if all sample sizes
exceed the parameter a(lp/a)1/Dh . If both L1 and L2 are less
than this quantity, one should use the results of Sec. VI.

Note that, in this approximation, the transition does not
depend on the Fermi level inside the gap. This is explained
by the spectrum linearity because all physical properties of
such a system do not depend on the electron energy.

VII. PERCOLATION IN THE SYSTEM WITH GAP AND
POTENTIAL FLUCTUATIONS NEAR p- AND n-TYPE

CONDUCTIVITY THRESHOLDS

In a pure OI or TI, the conductivity appears when the Fermi
level comes in electron or hole permitted bands. If the chaos
is weak, the band edges smear. The conductivity near thresh-
olds is realized through the electron or hole seas. The inner
part of p- and n-regions has the Drude conductivity σe,h ∼
(e2/h)EF ;e,hτe,h (for δEF ;e,hτe,h 	 1) or minimum metallic
conductivity 0.2e2/h (for δEF ;e,hτe,h ∼ 1), where EF ;e,h are the
Fermi energies of electrons and holes, and τe,h are their mean
free times.

Analogous to Sec. V A, for the Gaussian distributions of
potential, one can define the probability ξe,h for conduction
and valence bands:

ξe,h = 1√
2πδV 2

∫ ∞

�∓μ

e
− V 2

2δV 2 dV = 1

2
erfc

� ∓ μ√
2δV 2

, (20)

where μ is the chemical potential. If one takes into account
δw, the quantity δV 2 in Eq. (20) should be replaced by the
mean-squared fluctuations of the conduction- (valence-) band
edges δE2 = δV 2 + �2

2.
The probability ξe,h determines the n- and p-domains con-

nectivity (in infinite systems) by conditions ξe,h > ξc = 0.5,
correspondingly. It is known [28] that, when the Fermi level
μ approaches the band’s edge, the conductivity has the power-

FIG. 6. Conductivity (in units of e2/h) dependence on the Fermi
level at δE = 0.5�, in accordance with Eqs. (20) and (21).

law behavior ∝ |ξe,h − ξc|t with t ≈ 1.38. Thus, in the case of
δEτ ∼ 1, we have

σ ∼ e2

h
[(ξe − ξc)tθ (ξe − ξc) + (ξh − ξc)tθ (ξh − ξc)]. (21)

Equation (21) requires that the band-edge smearing be less
than the gap 2�.

The conductivity versus the Fermi level for different aver-
age HgTe layer thicknesses is shown in Fig. 6.

VIII. DEVELOPED POTENTIAL FLUCTUATIONS IN THE
PRESENCE OF RANDOM EDGE STATES

In the absence of edge states, the conductivity of an infinite
system inside the band gap with a fluctuating potential van-
ishes. Let the potential fluctuations δV be large, as compared
with the mean gap �. Then the system will consist of large
n and p metallic lakes (with size b) separated by narrow p-n
junctions. The characteristic p-n junction width is b�/δV �
b. The p-n junction isolates these regions from each other.
The ZGLs �(r) = 0 cross the p-n junctions (see Sec. III
and Fig. 4) and short-circuit the junctions. If the number of
ZGLs crossing each junction is large enough, that provides
the 2D metallic conductivity (Fig. 7). According to the weak-
localization theory, for delocalization, the characteristic con-

E

junc

h

hh

h

e

e

ee

e

FIG. 7. Left: relief of the random potential (blue, light-orange,
and light-yellow correspond to n-, i-, and p-domains, respectively).
Red lines represent the ZGLs short-circuiting p-n junctions. Right:
equivalent circuit. Squares stand for p and n lakes; lines replace the
edge states.
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ductance connecting two neighboring sites should be larger
than the conductance quantum 2e2/h.

The simplest estimation can be done if we assume that the
p-n junction has a width L1 → b�/δV and length L2 → b.
Let |ξ − ξc| be not much less than 0.5. The number of TI phase
inclusions to the OI (or OI to TI) with a size a in this rectangle
is Ncross = b2(�/δV )|ξ (1 − ξ )|/a2. Let a 	 b(�/δV ) and
Ncross 	 1. Then the conductance between two metallic lakes
Ncrosse2/h exceeds e2/h. Thus, the characteristic conductance,
apart from the threshold in ξ = ξc, is

junc ∼ e2

h

b2

a2

�

δV
|ξ (1 − ξ )|. (22)

In fact, the factor |ξV − ξc| = (�/δV ) is the proximity of
the potential to the threshold. The smallness of this quantity
leads to the lake edges fractality. The mean lake size grows
like b|ξV − ξc|−γ . Replacing L2 by this cluster perimeter, we
have a more accurate estimation for

junc ∼ e2

h

b2

a2

(
�

δV

)1−γ

|ξ (1 − ξ )|. (23)

The total conductivity σ is formed upon the series con-
nection of junc and the conductivity of p- and n-domains
σe,h ∼ e2/h (see Fig. 7, right):

1

σ
≈ 1

junc
+ h

e2
. (24)

Hence, σ is determined by the lower values of the quantities
junc and e2/h.

IX. CONCLUSIONS AND DISCUSSION

In conclusion, we have qualitatively studied the low-
temperature conductivity of the 2D narrow-gap semiconduc-
tor with gap and potential fluctuations. Our consideration is
based on the random Volkov-Pankratov model (Sec. III).

The finite system without potential fluctuations was con-
sidered in Sec. V. In the system, where the gap fluctuations
change their sign, internal edge states near zero-gap lines ap-
pear. In this section, we assumed that electrons move along the
zero gap lines neglecting the tunneling. Based on the fact that
all ZGLs are finite, we have found that the conductivity of the
infinite system tends to zero. The conductance of the square
sample is unstable and fluctuates from zero to the conductance
quantum. The conductances of wide and long samples near the
percolation threshold have been found [Eqs. (15) and (16)]. In

a sample, elongated along the electric field, the conductance
drops exponentially with the length, while in the widened
sample it is proportional to the sample width.

We have obtained the expressions for the 2D conductivity
of an infinite sample, accounting for the finite edge state width
and interedge tunneling [Sec. VI, Eq. (19)]. The conductivity
near permitted bands edges, when the fluctuations of the gap
and potential are weak, has been found [Sec. VII, Eq. (21)].

The system with strong potential fluctuations exceeding
the mean gap has been studied (Sec. VIII). These fluctuations
result in the decomposition of the sample to p- and n-domains
separated by p-n junctions. If the p-n junctions are tunneling
impenetrable ones, the conductivity between conducting p-
and n-puddles is provided by the edge states crossing p-n
junctions. The conductivity of such a system was found in
the assumption that the edge-state network is dense enough
[Eqs. (23) and (24)].

The main assumption of the present paper is the determina-
tive role of the edge states in the system with a fluctuating gap.
This differs from [30–33], which also provide the existence of
p and n puddles connected by tunneling, while in our case
(Sec. VIII) the conductance between puddles is conditioned
by the edge states.

Our model of the TI-OI mixture is somewhat reminiscent
of the Chalker-Coddington model [34] of integer QHE at a
strong potential disorder, where the system is separated on
the domains with filling factors ν = 0 and 1, on the borders
of which the 1D chiral channels are formed. This maps the
problem onto one of directed links scattering at different
nodes. In our case, the lakes of TI or OI are formed due
to the HgTe layer width fluctuation. The models are similar
in the collisionless motion of carriers along 1D channels.
However, in the adiabatic transport model of QHE, electrons
move along the equipotential lines with alternating velocity
∝ ∇V (r), while in our case the velocity is constant.

Note that narrow-gap semiconductors with strong short-
periodic potential fluctuations (see Fig. 1) can experience the
Anderson-Mott transition, which closes the energy gap [24].
When the spatial length is large enough, the energy gap can
disappear, but the states inside the mean gap are localized;
on the contrary, in the layers with the adiabatically fluctuating
width and gap considered here, the edge states are formed near
the zero gap lines covering the entire sample.
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