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Stochastic thermodynamics of an electron spin resonance quantum dot system
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We present a stochastic thermodynamics analysis of an electron spin resonance pumped quantum dot device
in the Coulomb-blocked regime, where a pure spin current is generated without an accompanying net charge
current. Based on a generalized quantum master equation beyond secular approximation, quantum coherences are
accounted for in terms of an average spin in the Floquet basis. Elegantly, this average spin undergoes a precession
about an effective magnetic field, which originates from the nonsecular treatment and energy renormalization. It
is shown that the interaction between average spin and effective magnetic field may have the dominant roles to
play in both energy transport and irreversible entropy production. In the stationary limit, the energy and entropy
balance relations are also established based on the theory of counting statistics.
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I. INTRODUCTION

The state-of-the-art nanofabrication is able to create small
systems far from the thermodynamic limit, where both ther-
mal and quantum mechanical fluctuations have essential roles
to play. This opens up opportunities to create new func-
tional devices but also poses great challenges to manipulate
nanoscale systems, which interact with their environments
and exchange energy in a random manner [1]. Understanding
thermodynamics from quantum mechanics [2–11] is thus of
fundamental significance to characterize energy fluctuations
at the microscopic level and also of technological importance
for the design of efficient quantum heat engines [12–20] and
exploration of information processing capabilities [21–30].

In comparison with a soft-matter system, where fluctuation
relations were first measured experimentally [31], a solid-state
device is considered to be an ideal testbed to investigate
thermodynamics of open quantum systems due to a number
of intriguing advantages [32,33]. For instance, solid-state
systems are robust such that experiments can be repeated
normally up to a million times under the same conditions.
Moreover, the particles and quantum states, as well as their
couplings to the environments, can be manipulated in a precise
way. Measurement of the statistics of the dissipated energy has
been proven to satisfy the Jarzynski equality and Crooks fluc-
tuation relations [34]. Furthermore, the generalized Jarzynski
equality has also been validated in a double-dot Szilard engine
under feedback control [35]. So far, experimentalists have
been able to implement a quantum Maxwell demon either in
a superconducting circuit [36,37] or in a single electron box
[38], where the intimate relation between work and informa-
tion is unambiguously revealed.

Recent progress in solid-state engineering has made it
possible to control spin coherence to the timescale of seconds
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[39,40], thus ushering in a new era of ultracoherent spintronics
[41,42]. This provides an exciting opportunity to incorporate
spintronics into thermodynamics and evaluate both energetic
and entropic costs to manipulate spin information. In contrast
to a conventional electronic setup, where information and
energy are transmitted via charge, in a spintronic device it is
the spin that will work as a vehicle for energy and information
transduction. However, different from the charge, which is
conserved as an electron moves from one place to another,
the orientation of the spin, as an intrinsic angular momentum,
is not invariant in transport [41]. It is therefore essential to
explore the energy and entropy balance relations in terms of a
pure spin current without accompanying a charge current and
understand what kind of roles the dynamics of spin will play
in these processes.

This work is devoted to unveil the underlying mechanisms
by analyzing the stochastic thermodynamics of an electron
spin resonance (ESR) pumped quantum dot (QD) system in
the Coulomb-blockaded regime, where a pure spin current is
generated without a net charge flow. Based on a generalized
quantum master equation (GQME) beyond secular approxi-
mation, the effect of coherences is taken into account via an
average spin, which builds up and decays due to tunnel cou-
pling to an electrode. Remarkably, the nonsecular treatment
and energy renormalization give rise to an effective magnetic
field, about which the average spin undergoes precession. It
is revealed that, under the circumstance of strong asymmetry
in spin tunneling, the interaction between average spin and
effective magnetic field play the dominant roles in energy flow
as well as in the irreversible entropy production.

This paper is organized as follows. We begin in Sec. II with
an introduction of the ESR pumped QD system, where a pure
spin current is generated without accompanying a net charge
current. The GQME is derived in Sec. III, with special atten-
tion paid to the unique influence of nonsecular treatment on
the spin dynamics and spin current. In particular, the quantum
coherences are revealed to have vital roles to play in energy
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FIG. 1. A schematic of an ESR pumped QD system, where a
single QD is tunnel coupled to a side electron reservoir characterized
by the Fermi function f (ω), with inverse temperature β = (kBT )−1

and chemical potential μ0 located in the middle of the spin-up (μ0 −
�

2 ) and spin-down (μ0 + �

2 ) levels. The ESR pumping produces a
pure spin current in the absence of a net charge current.

current. Section IV is devoted to the analysis of stochastic
thermodynamics based on the counting statistics, where both
energy balance and entropy balance relations are established.
Furthermore, the influence of the interaction between average
spin and magnetic field on irreversible entropy production is
revealed. Finally, we summarize the work in Sec. V.

II. MODEL DESCRIPTION

We investigate an ESR pumped system closely related to
experiments [43,44]. The system is comprised of a Coulomb-
blockaded single QD, tunnel coupled to a side electron reser-
voir (Fig. 1). The QD is exposed to a local external rotating
magnetic field

B = {B‖ cos �t, B‖ sin �t, B⊥}, (1)

where its z component leads to the Zeeman splitting of the
single level � = gzμBB⊥, with gz the electron g factor in the z
direction and μB the Bohr magneton. The x and y components
of the magnetic field are oscillating in time, where the fre-
quency � is tuned very close to �, resulting in the well-known
ESR and spin flipping in QD. The electron spin is further
tunnel coupled to a side reservoir, whose chemical potential
μ0 is set in the middle of the split spin-up and spin-down
levels. A spin-up electron may tunnel into QD, where it is
pumped to the higher level with its spin orientation flipped
and finally tunnels out to the side reservoir. At sufficiently
low temperatures, this generates an ESR-pumped spin current
without accompanying a net charge current. The Hamiltonian
of the total (T) system reads

HT(t ) = HS(t ) + HB + V. (2)

The first term describes the QD with ESR pumping

HS(t ) =�

2
(d†

↓d↓ − d†
↑d↑) + UCd†

↑d↑d†
↓d↓

+ γRF (d†
↑d↓ei�t + d†

↓d↑e−i�t ), (3)

where d†
σ and dσ are the creation and annihilation operators

of an electron with spin σ = {↑,↓} in the QD. Spin-up
and spin-down states are coupled to each other due to the
rotating magnetic field, with the ESR Rabi frequency given by

γRF = g‖μBB‖ and g‖ the electron g factor perpendicular to z.
We stress that in the following we will consider the Coulomb-
blockaded limit UC → ∞, thus effectively forbidding the
double occupancy of the QD.

The second term in Eq. (2) depicts the side electron
reservoir, which is modeled as a collection of noninteracting
electrons

HB =
∑

σ

H (σ )
B =

∑
σ

{∑
k

εkσ c†
kσ

ckσ

}
, (4)

where H (σ )
B is defined implicitly, with c†

kσ
(ckσ ) the creation

(annihilation) operator for an electron with momentum k and
spin σ . For later use, we also introduce the operator for the
number of spin-σ electrons in the electron reservoir

N (σ )
B =

∑
k

c†
kσ

ckσ , (5)

such that the operator for the total number of electrons in
the reservoir is NB = ∑

σ N (σ )
B . The electrode is assumed

to be in equilibrium, so that it can be characterized by the
Fermi distribution f (ω) = {1 + eβ(ω−μ0 )}−1, with the inverse
temperature β = (kBT )−1 and the chemical potential μ0 set in
the middle of spin-up and spin-down levels.

The last term in Eq. (2) stands for tunnel coupling between
the single QD and side reservoir

V =
∑

σ

( f †
σ dσ + d†

σ fσ ), (6)

where fσ ≡ ∑
k tkσ ckσ , with tkσ the spin-dependent tunneling

amplitude. The corresponding tunneling rate for an elec-
tron with spin σ is characterized by the intrinsic linewidth
	σ (ω) = 2π

∑
k |tkσ |2δ(ω − εkσ ).

Hereafter, we assume wide band limit in the electrodes,
which leads to energy independent tunneling rates 	σ (ω) =
	σ . In what follows, we set the unit of h̄ = e = 1 for the
Planck constant and electron charge, unless stated otherwise.

III. GQME AND SPIN DYNAMICS

The entire system (reduced system-plus-environment) is
closed and its evolution is generated by the entire Hamiltonian
in Eq. (2):

ρT(t ) = U (t )ρT(0)U †(t ), (7a)

U (t ) = exp+

(
−i

∫ t

0
dτHT(τ )

)
, (7b)

where ρT(t ) is the density matrix of the entire system at time
t and U (t ) is the time-ordered evolution operator. In fact, we
are not interested in tracking the dynamical evolution of the
entire system. Instead, we would like to describe the reduced
system by a dynamical equation that accounts for (usually
approximately) the influence of the environment on the system
state, while removing the need to track the full environment
evolution. This is described by a reduced density matrix ρ(t ),
which, in principle, can be obtained by tracing the density
matrix of the entire system over the environment degrees of
freedom, i.e., ρ(t ) = trB[ρT(t )], where trB[· · · ] stands for the
trace over the environment degrees of freedom.
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In this work, we are not only interested in the dynamics
of the reduced system but also energy and particle transport
between the QD and side reservoir. One thus has to relate the
reduced dynamics to the output of the system. The key quan-
tity is the joint probability distribution P(n↑, n↓, ε↑, ε↓, t ), for
observing an amount of spin-σ (σ =↑,↓) dependent particles
nσ and energy εσ flowing out of reservoir between time
0 and time t . The statistical properties of the energy and
particle currents are completely characterized by the cumulant
generating function (CGF) F (χ, t ),

eF (χ,t ) =
∑

n↑,n↓,ε↑,ε↓

P(n↑, n↓, ε↑, ε↓, t )

× ei(n↑χ1↑+n↓χ1↓+ε↑χ2↑+ε↓χ2↓ ), (8)

where we have introduced χ = {χ1↑, χ1↓, χ2↑, χ2↓}, with χ1σ

the counting field related to the tunneling of spin σ electron
and χ2σ for energy transmission associated with σ spin. The
statistics of particle and energy currents can be evaluated
by simply taking derivatives of the CGF with corresponding
counting fields.

It was shown that the relation between reduced dynamics
and the output statistics is simply given by [22]

eF (χ,t ) = tr[ρT(χ, t )], (9)

where tr[· · · ] denotes the trace over the degrees of free-
dom of the entire system (reduced system-plus-environment),
and ρT(χ, t ) is the χ-dependent density matrix of the entire
system. Assuming that the counting starts at t = 0, then
ρT(χ, 0) = ρT(0), ρT(χ, t ) satisfies [22,45,46]

ρT(χ, t ) = U (χ, t )ρT(0)U †(−χ, t ), (10a)

U (χ, t ) = exp+

(
−i

∫ t

0
dτHT(χ, τ )

)
. (10b)

It is now clear that the evolution of ρT(χ, t ) obeys a similar
equation as ρT(t ) in Eq. (7), with the only crucial difference

that the entire Hamiltonian in Eq. (2) now becomes χ-dressed

HT(χ, t ) = exp

{
i

2

∑
σ

(
χ1σ N (σ )

B + χ2σ H (σ )
B

)}
HT(t )

× exp

{
− i

2

∑
σ

(
χ1σ N (σ )

B + χ2σ H (σ )
B

)}
, (11)

with H (σ )
B and N (σ )

B defined in Eqs. (4) and (5), respec-
tively. Since the operators for the QD and reservoir commute,
Eq. (11) can be readily expressed as

HT(χ, t ) = HS(t ) + HB + V (χ), (12)

where HS(t ) and HB remain unchanged. It is only the tunnel-
coupling Hamiltonian that becomes counting fields dependent

V (χ) =
∑

σ

{ fσ (χ)d†
σ + H.c.}, (13)

with fσ (χ) = ∑
k tkσ ckσ e− i

2 (χ1σ +χ2σ εkσ ).
If one were given ρT(χ, t ) in Eq. (10), the χ-dependent

reduced density matrix can be readily obtained via ρ(χ, t ) =
trB{ρT(χ, t )}. The CGF in the steady state can be readily
obtained as

F (χ) = lim
t→∞

1

t
ln{trS[ρ(χ, t )]}, (14)

where trS[· · · ] means trace over the degrees of freedom of the
reduced system. The central task thus is to obtain the GQME
that the χ-dependent reduced density matrix ρ(χ, t ) satisfies.

Here, we assume that the system and reservoir are weakly
coupled and perform a second-order perturbation expansion
in terms of the coupling Hamiltonian. It is then followed
by the conventional Born-Markov approximation but without
invoking the widely used secular approximation [47]. To deal
with the time-dependent system Hamiltonian, we work in the
Floquet basis [48–51]. The GQME finally reads (a detailed
derivation is referred to Appendix)

ρ̇(χ, t ) = −i[HS(t ), ρ(χ, t )] + R(χ)ρ(χ, t ), (15)

where the first term describes the free evolution. The second
term stands for dissipation

R(χ)ρ(χ, t ) =
{
	0,+(χ)J [|u0(t )〉〈u+(t )|] − 1

2
	0,+A[|u0(t )〉〈u+(t )|] − i

2
κ0,+C[|u0(t )〉〈u+(t )|]

}
ρ(χ, t )

+
{
	0,−(χ)J [|u0(t )〉〈u−(t )|] − 1

2
	0,−A[|u0(t )〉〈u−(t )|] − i

2
κ0,−C[|u0(t )〉〈u−(t )|]

}
ρ(χ, t )

+
{
	+,0(χ)J [|u+(t )〉〈u0(t )|] − 1

2
	+,0A[|u+(t )〉〈u0(t )|] − i

2
κ+,0C[|u+(t )〉〈u0(t )|]

}
ρ(χ, t )

+
{
	−,0(χ)J [|u−(t )〉〈u0(t )|] − 1

2
	−,0A[|u−(t )〉〈u0(t )|] − i

2
κ−,0C[|u−(t )〉〈u0(t )|]

}
ρ(χ, t )

− {[ϒ0,− + iξ0,−]|u+(t )〉〈u−(t )|ρ(χ, t ) + [ϒ0,+ − iξ0,+]ρ(χ, t )|u+(t )〉〈u−(t )|}
− {[ϒ0,+ + iξ0,+]|u−(t )〉〈u+(t )|ρ(χ, t ) + [ϒ0,− − iξ0,−]ρ(χ, t )|u−(t )〉〈u+(t )|}
+ [ϒ+,0(χ) + iξ+,0(χ) + ϒ−,0(χ) − iξ−,0(χ)]|u+(t )〉〈u0(t )|ρ(χ, t )|u0(t )〉〈u−(t )|
+ [ϒ0,+(χ) − iξ0,+(χ) + ϒ0,−(χ) + iξ0,−(χ)]|u0(t )〉〈u−(t )|ρ(χ, t )|u+(t )〉〈u0(t )|
+ [ϒ+,0(χ) − iξ+,0(χ) + ϒ−,0(χ) + iξ−,0(χ)]|u−(t )〉〈u0(t )|ρ(χ, t )|u0(t )〉〈u+(t )|
+ [ϒ0,+(χ) + iξ0,+(χ) + ϒ0,−(χ) − iξ0,−(χ)]|u0(t )〉〈u+(t )|ρ(χ, t )|u−(t )〉〈u0(t )|, (16)
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which is expressed in the Floquet basis |u0(t )〉, |u±(t )〉〉
[see Eq. (A10)]. The involved superoperators are defined as
J [r]ρ = rρr†, A[r]ρ = r†rρ + ρr†r, and C[r]ρ = [r†r, ρ].
The first four lines describe the tunneling between QD and
side reservoir in the Lindblad-like form, with 	0,± the rate for
an electron in Floquet state |u+(t )〉 or |u−(t )〉 to tunnel out of
QD and 	±,0 for the opposite process. Their connections to
the tunneling rates in the original reference 	(±)

σ (σ =↑,↓)
are given by Eqs. (A24) and (A25). The coefficients κ0,±
and κ±,0 arise purely from the energy renormalization [see
Eq. (A26)].

The last six lines in Eq. (16) originate from the nonsecular
treatment. This can be easily verified in Eq. (A23), where all
these terms are oscillating in the interaction picture. In the
case of fast oscillations, the effects of these terms will very
quickly average to zero and can thus be neglected. Equation
(16) then reduces to a Lindblad master equation, such that
the populations and coherences of the density matrix are
dynamically decoupled. In this work, we will go beyond the
secular approximation and reveal its essential influence. The
involved coefficients ϒ and ξ , defined in Eqs. (A27) and
(A28), are going to have important roles to play in an effective
magnetic field, leading to prominent effects on the energy
current.

Investigation of spin dynamics can be achieved by propa-
gating Eq. (15) with χ = 0. This can be done, for instance, in
the Floquet basis with the diagonal density matrix elements
ρ00(t ) = 〈u0(t )|ρ(t )|u0(t )〉, ρ++(t ) = 〈u+(t )|ρ(t )|u+(t )〉,
and ρ−−(t ) = 〈u−(t )|ρ(t )|u−(t )〉 describing populations,
and off-diagonal density matrix elements ρ+−(t ) =
〈u+(t )|ρ(t )|u−(t )〉 and ρ−+(t ) = 〈u−(t )|ρ(t )|u+(t )〉 standing
for coherences. Alternatively, in this work we reexpress them
in terms of the probabilities and an average spin. We use ρ00

and ρ11 = ρ++ + ρ−− to represent the probabilities to find
an empty and occupied QD, respectively. We furthermore
introduce the vector of average spin S = {Sx, Sy, Sz}, where
the individual components are given by

Sx = ρ+− + ρ−+
2

, Sy = i
ρ+− − ρ−+

2
, Sz = ρ++−ρ−−

2
.

(17)

Therefore, the dot state is characterized by ρ(χ) =
{ρ00, ρ11, Sx, Sy, Sz}. According to GQME (15) and (16),
it satisfies

ρ̇(χ) = L(χ)ρ(χ, t ), (18)

where L(χ) is a 5 × 5 matrix. Among these five equations,
two are for the occupations probabilities and three are for the
average spin. The first two read

d

dt

(
ρ00

ρ11

)
=

(
−	+,0 − 	−,0

1
2 {	0,+(χ) + 	0,−(χ)}

	+,0(χ) + 	−,0(χ) − 1
2 (	0,+ + 	0,−)

)(
ρ00

ρ11

)

+ 2

(
ϒ0,+(χ) + ϒ0,−(χ)

−ϒ0,+ − ϒ0,−

)
Sx + 2

(
ξ0,+(χ) − ξ0,−(χ)

−ξ0,+ + ξ0,−

)
Sy +

(
	0,+(χ) − 	0,−(χ)

−	0,+ + 	0,−

)
Sz. (19)

Unambiguously, the occupation probabilities are coupled
to the average spin in the QD, which is described by the
remaining three equations

dS
dt

=
(

dS
dt

)
acc

+
(

dS
dt

)
dec

+
(

dS
dt

)
pre

. (20)

The first term describes the spin accumulation due to
tunneling between the electrode and QD

(
dS
dt

)
acc

=

⎛
⎜⎝

ϒ−,0(χ) + ϒ+,0(χ), − 1
2 (ϒ0,−+ ϒ0,+)

ξ−,0(χ) − ξ+,0(χ), − 1
2 (ξ−,0 − ξ+,0)

1
2 {	+,0(χ) − 	−,0(χ)}, − 1

2 (	+,0 − 	−,0)

⎞
⎟⎠

·
(

ρ00

ρ11

)
. (21)

This is the source term responsible for the building up of a spin
polarization in the QD. The second term depicts the opposite
mechanism—decay of the spin via tunneling out of spin

(
dS
dt

)
dec

= −1

2
(	0,+ + 	0,−)S. (22)

Both spin accumulation and decay depend on the spin
orientation, which is described by the third equation(

dS
dt

)
pre

= S × B. (23)

Interestingly, this term describes the precession of the average
spin about an effective magnetic field

B = {Bx,By,Bz}
= {−(ξ0,+ + ξ0,−), (ϒ0,+ − ϒ0,−), ε̃}, (24)

with ε̃ = ε− − ε+ + 1
2 (κ0,− − κ0,+).

The x and y components of the effective magnetic field,
i.e., Bx and By, arise from the nonsecular treatment. In case
the terms in the last six lines of Eq. (A23) experience fast
oscillations, the effects of these terms will very rapidly aver-
age to zero. Then Bx and By have negligible contribution, and
Eq. (16) reduces to the usual Born-Markov-Secular (BMS)
master equation if χ = 0. The z component of the effective
magnetic field Bz originates from the energy renormalization;
see the last term in the first two lines of Eq. (16). Note that
this effective magnetic field should not be confused with the
real magnetic field B in Eq. (1). Without this real magnetic
field B, it will not have the Zeeman splitting of the single
level, ESR, as well as the spin pumping process. In this case,

125410-4



STOCHASTIC THERMODYNAMICS OF AN ELECTRON SPIN … PHYSICAL REVIEW B 101, 125410 (2020)

FIG. 2. Stationary occupation of the QD (ρst
11) and accumulation of average spin (Sst

x , Sst
y , Sst

z ) in the basis of Floquet states versus
Rabi frequency for different configurations of asymmetry in spin tunneling. We set 	 = 	↑ + 	↓ as the reference of energy. Other plotting
parameters are δ = 0, �/	 = 3.0, β	 = 0.1, and a wide bandwidth w/	 = 100. The inset in Fig. 2(b) shows the y component of the effective
magnetic field vs Rabi frequency.

the single level is in equilibrium with the bath, no net spin
current flows, and thus spin accumulation in the quantum dot
vanishes, S = 0.

In the literature, effective magnetic fields (sometimes also
called pseudomagnetic fields [52,53]) due to energy renormal-
ization have been investigated, for example, in the singular
coupling limit (SCL) [54–56]. Yet, the SCL normally implies
a flat spectral density and high temperature limit kBT → ∞,
such that the system energy splitting can be hardly resolved. In
this work, we employ the GQME with great importance in the
following two aspects. First, the GQME is derived under the
second order Born-Markov approximation and thus is valid as
long as the temperature kBT � 	. That means our GQME
is valid in a wider temperature regime in comparison with
the SCL. The preservation of positivity is guaranteed, which
we have checked numerically throughout this work. Second,
it is found from our GQME that the effective magnetic field
originates not only from the energy renormalization (cf. Bz),
but also from the nonsecular treatment (see Bx and By). Later,
it will be demonstrated that, under the condition of strong
asymmetry in spin tunneling, the components of the effective
magnetic fields due to nonsecular treatment have even more
important roles to play in energy flow through the system.

Figure 2 shows the stationary occupation of the QD (ρst
11)

and average spin accumulation {Sst
x , Sst

y , Sst
z } versus Rabi

frequency for different configurations of asymmetry in spin
tunneling. The probability of finding an empty QD (ρst

00) is
not displayed as it simply satisfies the probability conser-
vation ρst

00 + ρst
11 = 1. The occupation of the QD (ρst

11) first
decreases, reaches a local minimum, and then grows rapidly
towards unity with increasing Rabi frequency, cf. Fig. 2(a). In
comparison, the results by using a BMS master equation [i.e.,
by neglecting the last six lines in Eq. (16)] is displayed in
Fig. 3. The results using two approaches are consistent in the
regime of large Rabi frequencies, as seen from the curves in
Fig. 3. Yet, noticeable differences are observed for small γRF ,
particularly in the case of a large asymmetry in spin tunneling.

The nonmonotonic behavior of ρst
11 can be interpreted as

follows. In the regime of small Rabi frequency, the terms

in the last six lines of Eq. (A23) do not experience fast
oscillations, therefore do not average to zero. It produces
finite effective magnetic fields and causes the precession of
the average spin. This increases the probability for an electron
to tunnel out of the QD, resulting thus in a reduction of the
occupation ρst

11. As γRF increases, the spin flipping process
dominates. The electron is thus inclined to stay in the QD,
leading to the increase of ρst

11 with rising Rabi frequency. This
explains the nonmonotonic behavior of the ρst

11. Our results
also show unambiguously that it is not justified to use the sec-
ular approximation in the regime of small Rabi frequencies.

In the limit of large Rabi frequency, an electron tunneled
into the QD will be almost localized in the Floquet state
“|u−(t )〉” as indicated in Sst

z , cf. Fig. 2(d). The y component
of the average spin decays fast to zero, regardless of the
asymmetry in spin tunneling, as shown in Fig. 2(c). It seems

FIG. 3. Comparison of stationary occupation in QD (ρst
11) using

GQME (curves) and BMS master equation (symbols) in the basis
of the Floquet states for various asymmetries in spin tunneling. All
other plotting parameters are the same as those in Fig. 2.
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FIG. 4. Individual stationary spin currents Jst
↓ and Jst

↑ vs Rabi
frequency for various configurations of spin tunneling asymmetry.
All other plotting parameters are the same as those in Fig. 2.

to be consistent with the usual secular treatment. However, the
x component of the average spin may survive for a wide range
of Rabi frequency, depending on asymmetry in spin tunneling,
see Fig. 2(b). We therefore emphasize that the use of a
simple BMS master equation may overlook some important
dynamics of the reduced system. We will further reveal later
that the finite spin accumulation in the QD would have a
significant influence on the energy flow through the system.

In the long time limit, Eq. (14) reduces to

F (χ) = z0(χ), (25)

where z0(χ) is the dominant eigenvalue with smallest magni-
tude of L(χ) defined in Eq. (18) and satisfies z0(χ → 0) = 0
[57]. The individual stationary spin-σ current can be simply
obtained as

Jst
σ = (−i)

∂

∂χ1σ

z0(χ)|χ→0. (26)

Throughout this work, the superscript “st” is used to represent
stationary values. One straightforwardly gets the stationary
spin up and spin down currents, respectively, as

Jst
↑ = 1

2 (	(↑)
0,+ + 	

(↑)
0,−)ρst

11 − [	(↑)
+,0 + 	

(↑)
−,0]ρst

00

− 2[ϒ (↑)
0,+ + ϒ

(↑)
0,−]Sst

x − 2[ξ (↑)
0,+ − ξ

(↑)
0,−]Sst

y

+(	(↑)
0,+ − 	

(↑)
0,−)Sst

z , (27a)

Jst
↓ = 1

2 (	(↓)
0,+ + 	

(↓)
0,−)ρst

11 − [	(↓)
+,0 + 	

(↓)
−,0]ρst

00

+ 2[ϒ (↓)
0,+ + ϒ

(↓)
0,−]Sst

x + 2[ξ (↓)
0,+ − ξ

(↓)
0,−]Sst

y

+ (	(↓)
0,+ − 	

(↓)
0,−)Sst

z , (27b)

where ρst
j j ( j = 0, 1) and Sst

ζ (ζ = x, y, z) are, respectively, the
stationary solutions of Eqs. (19) and (20) in the limit χ → 0.

Figure 4 shows the individual spin currents versus Rabi
frequency for various configurations of spin tunneling asym-
metry. The spin down current (Jst

↓ ) is positive as it flows out
of the QD, while the spin up current (Jst

↑ ) is negative as it goes

into the QD. Whenever an electron tunnels into QD, it will
flow out of it. The stationary charge current is thus zero due
to charge conservation:

Jst
ch = Jst

↑ + Jst
↓ = 0. (28)

This is also confirmed by using Eq. (19). It is worthwhile
to mention that this result holds regardless of the degree of
asymmetry in spin tunneling.

As the Rabi frequency increases, the ESR and spin flipping
process start to take place. This opens the possibility for a
spin up electron tunnel into QD and a spin down electron
tunnel out of the QD. The magnitude of either spin-up or
spin-down current thus increases rapidly with Rabi frequency.
In the opposite regime of large Rabi frequency, both fall
off gradually towards zero with rising γRF . It is due to the
fact that the electron is inclined to stay in the Floquet state
“|u−(t )〉” as the Rabi frequency increases, cf. Fig. 2(b). A so-
called dynamical spin blockade mechanism develops [58–62],
which leads eventually to a strong suppression of the spin
currents. This explains the nonmonotonic behavior as shown
in Fig. 4. Furthermore, the dynamical spin blockade is more
pronounced for a large asymmetry in spin tunneling. That
is the reason that an increase in spin tunneling asymmetry
results in an overall inhibition of both spin-up and spin-down
currents, see Fig. 4.

With the knowledge of individual spin up and spin down
currents, we define the net spin current in close connection
to real experiments [63,64], where a pure spin current is gen-
erated without an accompanying charge current by pushing
spin-up electrons to move in one direction and an equal num-
ber of spin-down electrons to move in the opposite direction.
Thereby the net charge current vanishes in the stationary limit
Jch = Jst

↑ + Jst
↓ = 0, see also Eq. (28). Yet, the net spin current

defined as

Jst
sp ≡ Jst

↑ − Jst
↓ = 2Jst

↑ (29)

is nonzero. Here we have used the charge conservation, i.e.,
Eq. (28).

The stationary energy currents, associated with the spin up
and spin down currents, can be obtained in an analogous way

Ist
σ = (−i)

∂

∂χ2σ

z0(χ)|χ→0. (30)

By utilizing Eq. (18), one immediately arrives at

Ist
↑ = (

ε+ − ε0 − �
2

){
	

(↑)
0,+ρst

++ − 	
(↑)
+,0ρ

st
00

−2ϒ
(↑)
0,+Sst

x − 2ξ
(↑)
0,+Sst

y

}
+(

ε− − ε0 − �
2

){
	

(↑)
0,−ρst

−− − 	
(↑)
−,0ρ

st
00

−2ϒ
(↑)
0,−Sst

x + 2ξ
(↑)
0,−Sst

y

}
, (31a)

Ist
↓ = (

ε+ − ε0 + �
2

){
	

(↓)
0,+ρst

++ − 	
(↓)
+,0ρ

st
00

+2ϒ
(↓)
0,+Sst

x + 2ξ
(↓)
0,+Sst

y

}
+(

ε− − ε0 + �
2

){
	

(↓)
0,−ρst

−− − 	
(↓)
−,0ρ

st
00

+2ϒ
(↓)
0,−Sst

x − 2ξ
(↓)
0,−Sst

y

}
. (31b)
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FIG. 5. Stationary energy current vs Rabi frequency for different configurations of spin tunneling asymmetry. For comparison, the
contributions from spin current (−�

2 Jst
sp) and spin-magnetic field interaction ( �

2 Jst
X ) are also shown in dashed and dotted curves, respectively.

All other plotting parameters are the same as those in Fig. 2.

The total energy current in the steady state is the sum of
individual energy currents and can be readily obtained as

Ist
en = Ist

↑ + Ist
↓ = −�

2
Jst

sp + �

2
Jst

X , (32)

where � =
√

δ2 + 4γ 2
rf [see also Eqs. (A10) and (A11) in

Appendix]. Unambiguously, it is made up of two components.
The first contribution comes from the pure spin current Jst

sp.
The second term originates from the interaction between the
accumulated spin and the effective magnetic field

Jst
X = 4

(
Sst

x By − Sst
y Bx

)
, (33)

where Bx and By are, respectively, the x and y components
of the effective magnetic field in Eq. (24). We emphasize
that the result in Eq. (32) is of great significance in the
following two aspects. First, an energy current can be pro-
duced even in the absence of a net matter (charge) current.
This is independent of whether the secular approximation is
made or not. Second, the interaction between the effective
magnetic field and accumulated spin is also responsible for
the production of an energy current. This contribution purely
originates from the nonsecular treatment. It will be revealed
that this term has essential roles to play in the energy flow
under the circumstance of strongly asymmetric spin tunneling
rates.

In Fig. 5 the stationary energy current (Ist
en) is plotted

against Rabi frequency (γRF ) for various configurations of spin
tunneling asymmetry. The contributions due to spin current
and spin accumulation are also exhibited by the dashed and
dotted curves, respectively. In the case of symmetric spin
tunneling (	↑ = 	↓ = 0.5	), the spin accumulation (Jst

X ) has
a negligible contribution and the energy current is dominated
by the spin current (Jst

sp), cf. Fig. 5(a). The behavior of the total
energy current is thus similar to the spin current in Fig. 4, i.e.,
it first increases rapidly with rising Rabi frequency, reaches a
maximum at approximately γRF ≈ 0.5	, and finally falls off
and approaches zero in the limit γRF → ∞.

The picture becomes drastically different under the circum-
stance of strong asymmetry in spin tunneling, where the spin
current is suppressed while the contribution from interaction
between effective magnetic field and spin accumulation has
an essential role to play. For instance, a strong asymme-
try of 	↑ = 0.2	 and 	↓ = 0.8	 gives rise to a prominent
enhancement in �

2 Jst
X at approximately γRF ≈ 5	. This is

ascribed to noticeable effective magnetic field By [inset of
Fig. 2(b)] and finite spin accumulation Sst

x [Fig. 2(b)] [Sst
y

has a vanishing contribution, cf. Fig. 2(c)]. It leads to the
emergence of a local maximum in the energy current at γRF ≈
3	, in addition to its original maximum at γRF ≈ 0.5	, see
Fig. 5(b). Remarkably, for an extremely asymmetric tunneling
rates (	↑ = 0.05	,	↓ = 0.95	) as shown in Fig. 5(d), the
Jst

X term serves as the dominant contribution. As a result,
one observes solely a single maximum in energy current at
γRF ≈ 5	. Our results show unambiguously the importance of
considering the interaction between effective magnetic field
and spin accumulation for very asymmetric spin tunneling
rates. In this case, the use of a simple BMS master equation
picture would be fundamentally insufficient.

IV. STOCHASTIC THERMODYNAMICS

Now we are in a position to discuss the stochastic ther-
modynamics, i.e., the identification of the first and second
laws at the microscopic level. Our analysis is based on the
two-measurement process theory and the method of counting
statistics [22]. We will focus on energy and entropy balance
of the ESR pumped QD system in the steady-state limit.

A. Energy balance based on statistics of work and heat

In this subsection we characterize the steady fluctuations
of work and heat by evaluating their counting statistics using
initial and final measurements of the system energy. Statistics
of work has previously been analyzed with quantum jump ap-
proach [65] or Lindblad quantum master equations [66]. Here
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we employ the two-measurement process approach [22,67]
within the framework of the GQME, thus fully accounting for
effect of the nonsecular treatment and the coherences.

Let us denote the instantaneous eigenenergies of HS(t ) as
em(t ) and those of HB as εk . Assume that at time t = 0 a
joint measurement of HS(0) and HB is performed, yielding the
outcomes em(0) and εk , respectively. At time t > 0, a second
joint measurement of HS(t ) and HB is made with outcomes
en(t ) and εk′ . The energy changes of system and bath, �e and
�ε, respectively, in a single realization of the protocol are thus
given by

�e = en(t ) − em(0), (34a)

�ε = εk′ − εk . (34b)

The change of the internal energy of the entire system is
given by the sum of the energy changes of the reduced system
and bath energies, apart from a negligible contribution due
to the system-bath interaction. On the other hand, the entire
system as a whole is isolated, with the exception of the driving
protocol, which performs work on the open system. Since no
heat enters the isolated entire system, the change of internal
energy of the entire system is only due to the energy conveyed
to the system by this driving protocol, which simply means
that

W = �e + �ε = en(t ) + εk′ − em(0) − εk . (35)

Apparently, W is a random variable due to the intrinsic
randomness in the quantum measurement processes. The sta-
tistical properties of W can be conveniently expressed in terms
of its characteristic function

GW (χW , t ) =
∫ ∞

−∞
dWeiW χW P(W, t ), (36)

where P(W, t ) is probability density function of observing
an amount of work W performed by the external driving
from time 0 to t , and χW is the corresponding counting field.
According to the theory of two-measurement process [22], the
probability density function is given by

P(W, t ) =
∑

en(t ),em (0)

∑
εk ,εk′

δ[en(t )+ εk′ − em(0) − εk − W ]

× p(en(t )+ εk′ |em(0)+ εk )p(em(0)+ εk ), (37)

where p(en(t ) + εk′ |em(0) + εk ) is the conditional probability
that a measurement of HS(t ) and HB gives en(t ) and εk′ ,
respectively, at time t given that it gave em(0) and εk at time
0, while p(em(0) + εk ) is the usual probability to have em(0)
and εk at time 0.

By introducing the projectors P̂e j (t ) and P̂εk on the jth state
of the system with energy e j (t ) and kth state of the reservoir
with energy εk , one has

p(en(t ) + εk′ |em(0) + εk )p(em(0) + εk )

= tr
[
P̂en(t )P̂εk′U (t )P̂em (0)P̂εk ρT(0)

× P̂εk P̂em (0)U
†(t )P̂εk′ P̂en(t )

]
, (38)

where tr[· · · ] represents the trace over the degrees of the free-
dom of the entire system and U (t ) is given by Eq. (7). Next

we assume that the initial total density matrix can be factor-
ized to ρT(0) = e−βHS (0)

ZS(0) ⊗ e−βHB

ZB
, where ZS(0) = trS{e−βHS(0)}

is the partition function of system at time t = 0 and ZB =
trB{e−βHB} is that of the reservoir. By using P̂2

e j (t ) = P̂e j (t ) and

P̂2
εk

= P̂εk , Eq. (38) is further simplified to

p(en(t ) + εk′ |em(0) + εk )p(em(0) + εk )

= tr
[
U †(t )P̂en (t )P̂εk′U (t )P̂em (0)P̂εk ρT(0)

]
. (39)

Noticing that
∑

e j (t ) P̂e j (t )e±iχW ej (t ) = e±iχW HS(t ) and∑
εk
P̂εk e±iχW εk = e±iχW HB , the characteristic function of

work in Eq. (36) can be written as

GW (χW ,t ) = tr
{
eiχW

2 [HS(t )+HB]U (t )e−iχW
2 [HS(0)+HB]ρT(0)

× e−i χW
2 [HS(0)+HB]U †(t )ei χW

2 [HS(t )+HB]},
=

∑
en(t ),em (0)

eiχW [en(t )−em (0)]−βem (0)

ZS(0)

× 〈en(t )|�(χW , t ; em(0))|en(t )〉, (40)

where we have introduced a new density matrix of the reduced
system including the counting field of work

�(χW , t ; em(0)) = trB
{
ei χW

2 HBU (t )e−i χW
2 HB�(0; em(0))

⊗ ρB e−i χW
2 HBU †(t )ei χW

2 HB
}
, (41)

with the initial condition �(0; em(0)) = |em(0)〉〈em(0)|. By
comparing with Eqs. (10) and (11), one finds that
�(χW , t ; em(0)) satisfies the same equation as ρ(χ, t ) does,
i.e., Eq. (18), with only the crucial replacement

�(χW , t ; em(0)) = ρ(χ, t )|χ1↑=χ1↓=0,χ2↑=χ2↓=χW . (42)

It is thus expected both populations and coherences have
important roles to play in the statistics of work. Here, we are
interested in the stationary statistics, therefore, the CGF of the
mechanical power is simply given by

GW (χW , t ) = lim
t→∞

1

t
ln GW (χW , t )

= z0(χ)|χ1↑=χ1↓=0,χ2↑=χ2↓=χW , (43)

where z0(χ) is the dominant eigenvalue with the smallest
magnitude of L(χ) as shown in Eq. (25).

The average rate of mechanical work is simply obtained

Ẇ = −i
∂

∂χW
z0({0, 0, χW , χW })|χW →0

= Ist
↑ + Ist

↓ = −�

2
Jst

sp + �

2
Jst

X . (44)

It shows clearly that the work done on the system is used to
produce a spin current and a precession of an average spin
in the QD, where the latter originates purely from nonsecular
treatment.

In comparison with the conventional results where the
work done onto a system contains a contribution due to a
matter current, we provide an essential system that work
is not associated with a net charge current but a pure spin
current through the system. Furthermore, we reveal that it
is the work done onto the system that leads essentially to a
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subtle interaction between an average spin and an effective
magnetic field, generating thus the precession of the average
spin about the effective field. We further remind the following
two observations. First, the driving is important, otherwise
the single level is in equilibrium with the bath and spin
accumulation in the quantum dot is zero. Second, the nonsec-
ular treatment is also essential to this interaction. Under the
secular approximation, only the z component of the effective
magnetic Bz may survive, which, however, does not have any
contribution to the energy current, cf. Eq. (33). Our work thus
demonstrates the importance of the nonsecular treatment in
similar systems.

The statistical properties of the heat flow can be analyzed
in a similar way by using the two-measurement process theory
[22,68]. Assume at time t = 0 a measurement HB yields an
outcome εk . A little later at t > 0, a second measurement is
made with outcome εk′ . The heat flow from the reservoir to
the QD is given by

Q = −(εk′ − εk ). (45)

Analogously to Eq. (36), the characteristic function of heat
flow is defined as

GQ(χQ, t ) =
∫ ∞

−∞
dQeiQχQ P(Q, t ), (46)

where χQ is the counting field associated with heat flow, and
P(Q, t ) is the probability density function of observing an
amount of heat Q flowed in to QD from time 0 to t . It can be
determined from the two-time measurement approach [22]:

P(Q, t ) =
∑
εk ,εk′

δ[εk′ − εk + Q)]p(εk′ |εk )p(εk ), (47)

where p(εk′ |εk ) is the conditional probability for observing εk′

at time t , given that it yields εk at time 0, while p(εk ) is the
usual probability to have εk at time 0. By following similar
procedures in Eqs. (38) and (39), the characteristic function
of heat flow can be expressed as

GQ(χQ, t ) = trS[�(−χQ, t )], (48)

where �(−χQ, t ) satisfies the same equation as ρ(χ, t )
in Eq. (18), with only the replacement �(−χQ, t ) =
ρ(χ, t )|χ1↑=χ1↓=0,χ2↑=χ2↓=−χQ . In comparison with Eq. (25),
one immediately finds the CGF of the heat flow in the sta-
tionary limit

GQ(χQ) = lim
t→∞

1

t
ln GQ(χQ, t )

= z0(χ)χ1↑=χ1↓=0,χ2↑=χ2↓=−χQ , (49)

where z0(χ) is the dominant eigenvalue with the smallest
magnitude of L(χ) in Eq. (25). The average heat flowing into
QD is simply given by

Q̇ = −i
∂

∂χQ
z0({0, 0,−χQ,−χQ})|χQ→0

= −(Ist
↑ + Ist

↓ ). (50)

By comparing with Eqs. (44), one eventually arrives at
the energy balance relation in terms of the first law of

thermodynamics

Ė = Q̇ + Ẇ = 0. (51)

The work done on the system is completely converted into
heat, such that the net increase of energy in the QD is zero in
the stationary limit.

B. Entropy balance

We start with the von Neumann entropy

S(t ) = −trS[ρ(t ) ln ρ(t )], (52)

where ρ(t ) is the density matrix of the reduced system. The
change in von Neumann entropy �S can be decomposed into
an entropy production �Si and an entropy flow �Se [69–72],
where the latter is given by the heat exchanged with the
reservoir multiplied by the inverse temperature

�Se = β�Q. (53)

The rate of change of the entropy production then is given by

Ṡi = Ṡ − βQ̇, (54)

where Ṡ = −trS[ρ̇(t ) ln ρ(t )] due to trS[ρ̇(t )] = 0. On the
other hand, the internal energy of the reduced system is given
by E = trS[HS(t )ρ(t )]. Its rate of change can be decomposed
into the contribution from work Ẇ = trS[ḢS(t )ρ(t )] and that
from heat flow Q̇ = trS[HS(t )ρ̇(t )], verifying thus the the first
law of thermodynamics Ė = Q̇ + Ẇ . The entropy production
in Eq. (54) can be reexpressed as

Ṡi = −trS{ρ̇(t )[ln ρ(t ) − ln ρG(t )]}, (55)

where we have defined an instantaneous density matrix repre-
senting an ideal Gibbs’ state at time t

ρG(t ) = e−βHS(t )

ZG(t )
, (56)

with ZG(t ) = trS[e−βHS(t )]. According to Eq. (18), the entropy
production can also be rewritten as

Ṡi = −trS{L(χ = 0)ρ(t )[ln ρ(t ) − ln ρG(t )]}. (57)

In the stationary limit, the rate of entropy change in the system
vanishes, i.e., Ṡ = 0, so that

Ṡi = −Ṡe = −βQ̇ = βIst
en � 0. (58)

Our analysis thus shows the validity of Eq. (58) beyond a
Lindblad description.

In Fig. 6, the entropy production rate is plotted for different
configurations of spin tunneling asymmetry. For a small Rabi
frequency γRF/	 = 0.5, the entropy production rate falls off
rapidly to the stationary value given by Eq. (58), see Fig. 6(a).
As the symmetry of spin tunneling increases, the stationary
value decreases, consistent with the energy current in Fig. 5.
In the case of a large Rabi frequency (γRF/	 = 5.0), the
entropy production rate undergoes fast oscillations before it
reaches its steady state, as shown in Fig. 6(b). Its stationary
value, however, grows as the symmetry of spin tunneling
enhances. This is also consistent with the energy current for
a large Rabi frequency. For a wide valid parameter regime, we
do not observe negative entropy production. Our results thus
shows numerically the second law to be respected.
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FIG. 6. Entropy production rate for different configurations of
spin tunneling asymmetry with (a) γRF /	 = 0.5 and (b) γRF /	 = 5.0.
All other plotting parameters are the same as those in Fig. 2.

Finally, we investigate the difference between the station-
ary entropy production rate evaluated by our GQME approach
and BMS master equation. As mentioned in Sec. III, the BMS
master equation can be obtained by neglecting the last six
lines of Eq. (16), which is justified when the terms in the
last six lines of Eq. (A23) experience fast oscillations and
very rapidly average to zero. The entropy associated with the
reduced density matrix in the BMS master equation ρBMS(t )
simply reads

SBMS(t ) = −trS[ρBMS ln ρBMS] = SBMS
i + SBMS

e , (59)

where SBMS
i is entropy production and SBMS

e = βQBMS is the
entropy flow, with QBMS the heat flow evaluated based in
the BMS master equation. Following a similar procedure in
Sec. IV A, the average heat flow in the stationary limit can be
readily evaluated as

Q̇BMS = �

2
JBMS

sp = �

2
(JBMS

↑ − JBMS
↓ ), (60)

where JBMS
sp is the stationary net spin current obtained using

BMS master equation, with individual spin-σ (σ =↑,↓) com-
ponent given by

JBMS
σ =	

(σ )
0,+ρBMS

++ +	
(σ )
0,−ρBMS

−− − [
	

(σ )
+,0+	

(σ )
−,0

]
ρBMS

00 . (61)

Here, ρBMS
j j = 〈u j (t )|ρBMS(t )|u j (t )〉 ( j ∈ {0,+,−}) are the

matrix elements of the BMS master equation in the Floquet
basis.

In the stationary limit, the rate of entropy change in the
system vanishes (ṠBMS = 0); the corresponding entropy pro-
duction rate reads

ṠBMS
i = −βQ̇MBS = −β�

2
JBMS

sp . (62)

Eventually, one obtains the difference between the stationary
entropy production rate evaluated by our GQME approach and
BMS master equation

Ṡi − ṠBMS
i = −β�

2

(
Jst

sp − JBMS
sp

) + β�

2
Jst

X . (63)

Apparently, the difference comes from two contributions. The
first one is due to the difference of the net spin currents for

FIG. 7. The difference between the stationary entropy production
rate evaluated by our GQME approach Ṡi and that by BMS master
equation ṠBMS

i , versus Rabi frequency for different configurations of
spin tunneling asymmetry. All other plotting parameters are the same
as those in Fig. 2.

the two cases. The second contribution originates from the
interaction between the accumulated average spin and the
effective magnetic field.

To clearly demonstrate this difference, in Fig. 7 we plot
(Ṡi − ṠBMS

i ) versus Rabi frequency for different configurations
of spin tunneling asymmetry. For symmetric tunneling (	↑ =
	↓ = 0.5	), the occupation of the QD obtained from the two
approaches is very close to each other, see Fig. 3. Further-
more, the contribution from the second term in Eq. (63) is
negligible, cf. Fig. 4(a). This leads to an almost vanishing
difference between Ṡi and ṠBMS

i , as indicated by the solid
curve in Fig. 7. As the asymmetry grows, the contribution
from the interaction between the average spin and the effective
magnetic field will have an increasing role to play. For a very
asymmetric spin tunneling (	↑ = 0.05	, 	↓ = 0.95	), one
observes a noticeable difference, which could be close to the
magnitude of Ṡi itself by comparing with the energy current in
Fig. 4(d). (Note we take β	 = 0.1 in plotting Fig. 7.) A further
investigation reveals that the major contribution to the differ-
ence arises from the interaction between the average spin and
the effective magnetic field. At this point, we thus emphasize
the importance of using a GQME, especially for the case of
very asymmetric spin tunneling rates, as the using of a BMS
master equation may lead to an underestimation of the entropy
production. Finally, we remark that the contribution from Jst

X is
of the first order in tunnel-coupling strength and thus could be
detected in experiment. We highly anticipate this to be verified
in the near future.

V. CONCLUSION

In summary, we have performed a stochastic thermody-
namics analysis of an ESR pumped quantum dot system
in the presence of a pure spin current only. The state of
the system can be described by populations and an average
spin in the Floquet basis. In particular, this average spin
undergoes a precession about an effective magnetic field,
which originates from the nonsecular treatment and energy
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renormalization. Unambiguously, an energy current could be
generated, not due to a charge current, but entailed by a pure
spin current and the interaction between average spin and
effective magnetic field, where the latter have the dominant
role to play in the case of strong asymmetry in spin tunneling.
In the stationary limit, energy balance and entropy balance
relations are established based on the theory of counting
statistics. Furthermore, we revealed a mechanism that the
irreversible entropy production is found to be intimately re-
lated to the interaction between average spin and magnetic
field.
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APPENDIX: DERIVATION OF THE GQME

First, we transform from the Schrödinger’s picture to the
interaction picture

ρ̃T(χ, t ) = U †
0 (t )ρT(χ, t )U0(t ), (A1)

where

U0(t ) ≡ exp+

{
−i

∫ t

0
dτHS(τ )

}
e−iHBt . (A2)

In what follows, the tilde is used to indicate a quantity in the
interaction picture. The equation of motion of ρ̃T(χ, t ) then
reads

d

dt
ρ̃T(χ, t ) = −i{Ṽ (χ, t )ρ̃T(χ, t ) − ρ̃T(χ, t )Ṽ (−χ, t )},

(A3)
with

Ṽ (χ, t ) = U †
0 (t )V (χ)U0(t ). (A4)

Now, we integrate Eq. (A3) twice, differentiate with re-
spect to time “t ,” and trace over the degrees of freedom of
the reservoir. This yields an exact equation of motion for the
χ-dependent reduced density matrix

d

dt
ρ̃(χ, t ) = −

∫ t

0
dτ trB{Ṽ (χ, t )Ṽ (χ, τ )ρ̃T(χ, τ )

− Ṽ (χ, τ )ρ̃T(χ, τ )Ṽ (−χ, t )

− Ṽ (χ, t )ρ̃T(χ, τ )Ṽ (−χ, τ )

+ ρ̃T(χ, τ )Ṽ (−χ, τ )Ṽ (−χ, t )}, (A5)

where trB{· · · } stands for the trace over the degrees of freedom
of reservoir. This equation still contains the density matrix
ρ̃T(χ, τ ) of the entire system. We thus now make the Born
approximation which assumes that the density operator fac-
torizes at all times as ρ̃T(χ, τ ) = ρ̃(χ, τ ) ⊗ ρB. It greatly
simplifies Eq. (A5). Yet, it still has a time nonlocal form: The
future evolution ρ̃(χ, t ) depends on its past history ρ̃(χ, τ ),
which makes it difficult to work with. In case of a large
separation between system and environment timescales, it is

justified to introduce the Markov approximation, i.e., replac-
ing ρ̃(χ, τ ) by ρ̃(χ, t ) and extending the upper limit of the
integral to infinity in Eq. (A5). Finally, it yields a closed
differential equation of motion for the reduced density matrix
that the future behavior of ρ̃(χ, t ) depends only on its present
state

d

dt
ρ̃(χ, t ) = −

∫ ∞

0
dτ trB{Ṽ (χ, t )Ṽ (χ, t − τ )ρB⊗ ρ̃(χ, t )

− Ṽ (χ, t − τ )ρB⊗ ρ̃(χ, t )Ṽ (−χ, t )

− Ṽ (χ, t )ρB⊗ ρ̃(χ, t )Ṽ (−χ, t − τ )

+ ρB⊗ ρ̃(χ, t )Ṽ (−χ, t − τ )Ṽ (−χ, t )}
= − {[I] − [II] − [III] + [IV]}. (A6)

This serves as an essential starting point for the following
derivation.

Each term in Eq. (A6) has to be evaluated, which requires
the explicit form of V (χ, t ) in Eq. (A4). By utilizing Eqs. (13)
and (A2), one immediately has

f̃σ (χ, t ) = U †
0 (t ) fσ (χ)U0(t )

=
∑

k

tkσ ckσ e− i
2 (χ2σ εkσ +χ1σ )e−iεkσ t . (A7)

The system operators in the interaction picture are defined
analogously

d̃σ (t ) = U †
0 (t )dσ (t )U0(t )

= exp−

{
i
∫ t

0
HS(τ )dτ

}
dσ exp+

{
−i

∫ t

0
HS(τ )dτ

}
,

(A8)

where the time ordering arises purely from the time de-
pendence of the system Hamiltonian. To explicitly evaluate
Eq. (A8), we employ Floquet theory [48–51], which states that
the unitary evolution can be represented as

exp+

{
−i

∫ t

0
HS(τ )dτ

}
=

∑
j

e−iε j t |u j (t )〉〈u j (0)|, (A9)

where |u j (t )〉 is the Floquet function inheriting the periodicity
|u j (t )〉 = |u j (t + T )〉 with T = 2π

�
, and ε j is the correspond-

ing quasienergy. The quasienergies and Floquet functions are
simply given, respectively, by

ε0 = 0, |u0(t )〉 =
⎛
⎝1

0
0

⎞
⎠, (A10a)

ε+ = � + �

2
, |u+(t )〉 =

⎛
⎜⎝

0

sin
(

�
2

)
cos

(
�
2

)
ei�t

⎞
⎟⎠, (A10b)

ε− = � − �

2
, |u−(t )〉 =

⎛
⎜⎝

0

− cos
(

�
2

)
sin

(
�
2

)
ei�t

⎞
⎟⎠, (A10c)
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where, for brevity, we have introduced

sin

(
�

2

)
=

√
� + δ

2�
, (A11a)

cos

(
�

2

)
=

√
� − δ

2�
, (A11b)

where δ = � − � is the ESR detuning and � =
√

δ2 + 4γ 2
RF

. The annihilation operators of the system in the Floquet basis can

thus be readily expressed as

d̃↑(t ) = sin

(
�

2

)
e−i(ε+−ε0− �

2 )t |u0(0)〉〈u+(0)| − cos

(
�

2

)
e−i(ε−−ε0− �

2 )t |u0(0)〉〈u−(0)|, (A12a)

d̃↓(t ) = cos

(
�

2

)
e−i(ε+−ε0+ �

2 )t |u0(0)〉〈u+(0)| + sin

(
�

2

)
e−i(ε−−ε0+ �

2 )t |u0(0)〉〈u−(0)|. (A12b)

Their corresponding creation operators can be obtained by simply taking the Hermitian conjugate.
The following procedure relies on the substituting of Eqs. (A7) and (A12) into Eq. (A6). For instance, the first term [I] in

Eq. (A6) is obtained as

[I] =
{
γ

(+)
↓

(
ε+ − ε0 + �

2

)
cos2

(
�

2

)
+ γ

(+)
↑

(
ε+ − ε0 − �

2

)
sin2

(
�

2

)}
|u0(0)〉 〈u0(0)| ρ̃(χ, t )

+
{
γ

(+)
↓

(
ε− − ε0 + �

2

)
sin2

(
�

2

)
+ γ

(+)
↑

(
ε− − ε0 − �

2

)
cos2

(
�

2

)}
|u0(0)〉 〈u0(0)| ρ̃(χ, t )

+
{
γ

(−)
↓

(
ε+ − ε0 + �

2

)
cos2

(
�

2

)
+ γ

(−)
↑

(
ε+ − ε0 − �

2

)
sin2

(
�

2

)}
|u+(0)〉〈u+(0)|ρ̃(χ, t )

+
{
γ

(−)
↓

(
ε− − ε0 + �

2

)
sin2

(
�

2

)
+ γ

(−)
↑

(
ε− − ε0 − �

2

)
cos2

(
�

2

)}
|u−(0)〉〈u−(0)|ρ̃(χ, t )

+ 1

2
sin � e+i(ε+−ε− )t

{
γ

(−)
↓

(
ε− − ε0 + �

2

)
− γ

(−)
↑

(
ε− − ε0 − �

2

)}
|u+(0)〉〈u−(0)|ρ̃(χ, t )

+ 1

2
sin � e−i(ε+−ε− )t

{
γ

(−)
↓

(
ε+ − ε0 + �

2

)
− γ

(−)
↑

(
ε+ − ε0 − �

2

)}
|u−(0)〉〈u+(0)|ρ̃(χ, t ). (A13)

The term [IV] in Eq. (A6) can be analyzed in a similar way.
We have introduced

γ (±)
σ (ω) =

∑
k

∫ ∞

0
dτe−iωτC(±)

σ (τ ), (A14)

where C(±)
σ (τ ) are the reservoir correlation functions defined

as

C(+)
σ (τ ) = 〈 f̃ †

σ (τ ) f̃σ (0)〉B, (A15a)

C(−)
σ (τ ) = 〈 f̃σ (τ ) f̃ †

σ (0)〉B, (A15b)

with f̃σ (τ ) ≡ f̃σ (χ = 0, τ ) and 〈(· · · )〉B ≡ trB[(· · · )ρB] the
usual thermal average. By substituting Eq. (A7) into
Eq. (A15), the reservoir correlation functions simplify to

C(±)
σ (τ ) =

∑
k

|tkσ |2 f (±)(εkσ )e±iεkσ τ . (A16)

Actually, Eq. (A14) is a causality transformation, which
can be decomposed into spectral functions and dispersion
functions as [73]

γ (±)
σ (ω) = 	(±)

σ (ω) + iD(±)
σ (ω). (A17)

The involved spectral functions are simply the Fourier trans-
forms of the corresponding reservoir correlation functions

	(±)
σ (ω) =

∫ ∞

−∞
dτe−iωτC(±)

σ (τ ). (A18)

In the usual wide-band limit, it reduces to

	(±)
σ (ω) = 	σ f (±)(ω), (A19)

where 	σ is the tunneling width, f (+)(ω) is the usual Fermi
function, and f (−)(ω) ≡ 1 − f (+)(ω). With the knowledge of
the spectral functions, the dispersion functions in Eq. (A17)
can be obtained via the Kramers-Kronig relation [73,74]

D(±)
σ (ω) = − 1

π
P

∫ ∞

−∞
dω′ C

(±)
σ (ω′)
ω − ω′ , (A20)

where P denotes the principle value. By introducing a
Lorentzian cutoff J (ω) = w2

(ω−μ0 )2+w2 centered at ω = μ0 and
with bandwidth w, the dispersion functions can be evaluated

D(±)
σ (ω) = ±	σ

π

{
ln

(
βw

2π

)
− Re�

[
1

2
+ iβ

2π
(ω − μ0)

]}
,

(A21)
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where �(x) is the digamma function. The dispersion func-
tions normally account for the system-bath coupling-induced
energy renormalization, similar to the so-called Lamb shift.
It has been revealed that the energy renormalization have
strong influence on electron transport through QD systems
[75–77], Aharonov-Bohm interferometer [78,79], quantum
measurement of solid-state qubit [80,81]. Later, we will show
that the dispersion functions in ESR pumping have important
contribution to an effective magnetic field.

It is noted that in Eq. (A13) the coefficients are independent
of the counting fields. Mathematically, this is due to fact that
for nonzero reservoir correlation functions, one should only

account for the thermal averages of f̃σ (χ) and its Hermitian
conjugate with the same momentum and spin, cf. Eq. (A15).
Physically, this implies that the term [I] in Eq. (A13) is
not directly responsible for particle and energy transport.
However, it does not necessarily mean that they do not have
any contribution. Actually, they may have important roles
to play via influencing the spin dynamics. Similar analysis
applies to the last term [IV] in Eq. (A6), which is also χ

independent. This is no longer the case for the second and
third terms, i.e., [II] and [III] in Eq. (A6), which depend
explicitly on the counting fields. For instance, the term [II] is
given by

[II] =
{
γ

(+)
↓

(
ε+ − ε0 + �

2

)
cos2

(
�

2

)
e−i(ε+−ε0+ �

2 )χ2↓−iχ1↓ + γ
(+)
↑

(
ε+ − ε0 − �

2

)
sin2

(
�

2

)
e−i(ε+−ε0− �

2 )χ2↑−iχ1↑

}

× |u+(0)〉〈u0(0)|ρ̃(χ, t )|u0(0)〉〈u+(0)|

+
{
γ

(+)
↓

(
ε− − ε0 + �

2

)
sin2

(
�

2

)
e−i(ε−−ε0+ �

2 )χ2↓−iχ1↓ + γ
(+)
↑

(
ε− − ε0 − �

2

)
cos2

(
�

2

)
e−i(ε−−ε0− �

2 )χ2↑−iχ1↑

}

× |u−(0)〉〈u0(0)|ρ̃(χ, t )|u0(0)〉〈u−(0)|

+
{
γ

(−)
↓

(
ε+ − ε0 + �

2

)
cos2

(
�

2

)
e+i(ε+−ε0+ �

2 )χ2↓+iχ1↓ + γ
(−)
↑

(
ε+ − ε0 − �

2

)
sin2

(
�

2

)
e+i(ε+−ε0− �

2 )χ2↑+iχ1↑

}

× |u0(0)〉〈u+(0)|ρ̃(χ, t )|u+(0)〉〈u0(0)|

+
{
γ

(−)
↓

(
ε− − ε0 + �

2

)
sin2

(
�

2

)
e+i(ε−−ε0+ �

2 )χ2↓+iχ1↓ + γ
(−)
↑

(
ε− − ε0 − �

2

)
cos2

(
�

2

)
e+i(ε−−ε0− �

2 )χ2↑+iχ1↑

}

× |u0(0)〉〈u−(0)|ρ̃(χ, t )|u−(0)〉〈u0(0)|

+ 1

2
sin � e+i(ε+−ε− )t

{
γ

(+)
↓

(
ε+ − ε0 + �

2

)
e−i(ε+−ε0+ �

2 )χ2↓−iχ1↓ − γ
(+)
↑

(
ε+ − ε0 − �

2

)
e−i(ε+−ε0− �

2 )χ2↑−iχ1↑

}

× |u+(0)〉〈u0(0)|ρ̃(χ, t )|u0(0)〉〈u−(0)|

+ 1

2
sin � e−i(ε+−ε− )t

{
γ

(+)
↓

(
ε− − ε0 + �

2

)
e−i(ε−−ε0+ �

2 )χ2↓−iχ1↓ − γ
(+)
↑

(
ε− − ε0 − �

2

)
e−i(ε−−ε0− �

2 )χ2↑−iχ1↑

}

× |u−(0)〉〈u0(0)|ρ̃(χ, t )|u0(0)〉〈u+(0)|

+ 1

2
sin � e−i(ε+−ε− )t

{
γ

(−)
↓

(
ε+ − ε0 + �

2

)
e+i(ε+−ε0+ �

2 )χ2↓+iχ1↓ − γ
(−)
↑

(
ε+ − ε0 − �

2

)
e+i(ε+−ε0− �

2 )χ2↑+iχ1↑

}

× |u0(0)〉〈u+(0)|ρ̃(χ, t )|u−(0)〉〈u0(0)|

+ 1

2
sin � e+i(ε+−ε− )t

{
γ

(−)
↓

(
ε− − ε0 + �

2

)
e+i(ε−−ε0+ �

2 )χ2↓+iχ1↓ − γ
(−)
↑

(
ε− − ε0 − �

2

)
e+i(ε−−ε0− �

2 )χ2↑+iχ1↑

}

× |u0(0)〉〈u−(0)|ρ̃(χ, t )|u+(0)〉〈u0(0)|. (A22)

Accordingly, the term [III] can be obtained following the similar procedure. By putting all four terms in Eq. (A6) together, one
finally arrive at the GQME in the interaction picture as

d

dt
ρ̃(χ, t ) =

{
	0,+(χ)J [|u0(0)〉〈u+(0)|] − 1

2
	0,+A[|u0(0)〉〈u+(0)|] − i

2
κ0,+C[|u0(0)〉〈u+(0)|]

}
ρ̃(χ, t )

+
{
	0,−(χ)J [|u0(0)〉〈u−(0)|] − 1

2
	0,−A[|u0(0)〉〈u−(0)|] − i

2
κ0,−C[|u0(0)〉〈u−(0)|]

}
ρ̃(χ, t )

+
{
	+,0(χ)J [|u+(0)〉〈u0(0)|] − 1

2
	+,0A[|u+(0)〉〈u0(0)|] − i

2
κ+,0C[|u+(0)〉〈u0(0)|]

}
ρ̃(χ, t )

+
{
	−,0(χ)J [|u−(0)〉〈u0(0)|] − 1

2
	−,0A[|u−(0)〉〈u0(0)|] − i

2
κ−,0C[|u−(0)〉〈u0(0)|]

}
ρ̃(χ, t )
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− e+i(ε+−ε− )t {[ϒ0,− + iξ0,−]|u+(0)〉〈u−(0)|ρ̃(χ, t ) + [ϒ0,+ − iξ0,+]ρ̃(χ, t )|u+(0)〉〈u−(0)|}
− e−i(ε+−ε− )t {[ϒ0,+ + iξ0,+]|u−(0)〉〈u+(0)|ρ̃(χ, t ) + [ϒ0,− − iξ0,−]ρ̃(χ, t )|u−(0)〉〈u+(0)|}
+ e+i(ε+−ε− )t [ϒ+,0(χ) + iξ+,0(χ) + ϒ−,0(χ) − iξ−,0(χ)]|u+(0)〉〈u0(0)|ρ̃(χ, t )|u0(0)〉〈u−(0)|
+ e+i(ε+−ε− )t [ϒ0,+(χ) − iξ0,+(χ) + ϒ0,−(χ) + iξ0,−(χ)]|u0(0)〉〈u−(0)|ρ̃(χ, t )|u+(0)〉〈u0(0)|
+ e−i(ε+−ε− )t [ϒ+,0(χ) − iξ+,0(χ) + ϒ−,0(χ) + iξ−,0(χ)]|u−(0)〉〈u0(0)|ρ̃(χ, t )|u0(0)〉〈u+(0)|
+ e−i(ε+−ε− )t [ϒ0,+(χ) + iξ0,+(χ) + ϒ0,−(χ) − iξ0,−(χ)]|u0(0)〉〈u+(0)|ρ̃(χ, t )|u−(0)〉〈u0(0)|, (A23)

where we have introduced the superoperators J [r]ρ = rρr†,
A[r]ρ = r†rρ + ρr†r, and C[r]ρ = [r†r, ρ].

The first four lines in Eq. (A23) depict the tunneling be-
tween QD and side reservoir in the Lindblad-like form, where
the χ-dependent terms are directly responsible for particle and
energy transfer. The involved χ-dependent rates are given by

	0,±(χ) = 	
(↓)
0,±e+i(ε±−ε0+ �

2 )χ2↓+iχ1↓

+	
(↑)
0,±e+i(ε±−ε0− �

2 )χ2↑+iχ1↑ , (A24a)

	±,0(χ) = 	
(↓)
±,0e−i(ε±−ε0+ �

2 )χ2↓−iχ1↓

+	
(↑)
±,0e−i(ε±−ε0− �

2 )χ2↑−iχ1↑ , (A24b)

with

	
(↓)
0,± = 1 ± cos �

2
	

(−)
↓

(
ε± − ε0 + �

2

)
, (A25a)

	
(↑)
0,± = 1 ∓ cos �

2
	

(−)
↑

(
ε± − ε0 − �

2

)
, (A25b)

	
(↓)
±,0 = 1 ± cos �

2
	

(+)
↓

(
ε± − ε0 + �

2

)
, (A25c)

	
(↑)
±,0 = 1 ∓ cos �

2
	

(+)
↑

(
ε± − ε0 − �

2

)
. (A25d)

The spectral functions 	(±)
σ (ω) are given in Eq. (A18). The

corresponding χ-independent rates are simply obtained by
setting χ = 0, i.e., 	0,± = 	0,±(χ = 0), and likewise for 	±,0.
The terms κ0,± and κ±,0 are only related to energy renormal-
ization and thus not involved in particle and energy transport.
They do not depend on the counting fields

κ0,± = 1 ± cos �

2
D(−)

↓

(
ε± − ε0 + �

2

)

+ 1 ∓ cos �

2
D(−)

↑

(
ε± − ε0 − �

2

)
, (A26a)

κ±,0 = 1 ± cos �

2
D(+)

↓

(
ε± − ε0 + �

2

)

+ 1 ∓ cos �

2
D(+)

↑

(
ε± − ε0 − �

2

)
. (A26b)

The corresponding dispersion functions D±
σ (ω) can be found

in Eq. (A20).
All the terms in the last six lines of Eq. (A23) are os-

cillating in time. They originate purely from the nonsecu-
lar treatment, where we also find some χ-dependent terms.
These terms also have important roles to play in energy and

particle exchange between the QD and side reservoir. The
χ-dependent coefficients read

ϒ0,±(χ) = ϒ
(↓)
0,±e+i(ε±−ε0+ �

2 )χ2↓+iχ1↓

−ϒ
(↑)
0,±e+i(ε±−ε0− �

2 )χ2↑+iχ1↑ , (A27a)

ϒ±,0(χ) = ϒ
(↓)
±,0e−i(ε±−ε0+ �

2 )χ2↓−iχ1↓

−ϒ
(↑)
±,0e−i(ε±−ε0− �

2 )χ2↑−iχ1↑ , (A27b)

ξ0,±(χ) = ξ
(↓)
0,±e+i(ε±−ε0+ �

2 )χ2↓+iχ1↓

− ξ
(↑)
0,±e+i(ε±−ε0− �

2 )χ2↑+iχ1↑ , (A27c)

ξ±,0(χ) = ξ
(↓)
±,0e−i(ε±−ε0+ �

2 )χ2↓−iχ1↓

− ξ
(↑)
±,0e−i(ε±−ε0− �

2 )χ2↑−iχ1↑ , (A27d)

where the individual spin-dependent components are given by

ϒ
(↓)
0,± = sin �

4
	

(−)
↓

(
ε± − ε0 + �

2

)
, (A28a)

ϒ
(↑)
0,± = sin �

4
	

(−)
↑

(
ε± − ε0 − �

2

)
, (A28b)

ϒ
(↓)
±,0 = sin �

4
	

(+)
↓

(
ε± − ε0 + �

2

)
, (A28c)

ϒ
(↑)
±,0 = sin �

4
	

(+)
↑

(
ε± − ε0 − �

2

)
, (A28d)

ξ
(↓)
0,± = sin �

4
D(−)

↓

(
ε± − ε0 + �

2

)
, (A28e)

ξ
(↑)
0,± = sin �

4
D(−)

↑

(
ε± − ε0 − �

2

)
, (A28f)
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, (A28g)

ξ
(↑)
±,0 = sin �

4
D(+)

↑

(
ε± − ε0 − �

2

)
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In the case when all the terms in the last six lines of
Eq. (A23) are oscillating fast, the effects of these terms will
very rapidly average to zero. It is then justified to apply the
secular approximation to drop these fast oscillating terms. By
further setting χ = 0, one will arrive at a Lindblad quantum
master equation such that the populations and coherences are
dynamically decoupled [66,82]. All the thermodynamics can
be analyzed in analogy to that for time-independent situations.
By comparing the quasienergies ε+ and ε− in Eq. (A10), one
readily finds that fast oscillations only take place in the limit
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where the Rabi frequency is much larger than the dissipation
strength.

In this work, our investigation is based on the GQME be-
yond the secular approximation, such that our thermodynamic
analysis is valid for a wide range of Rabi frequencies. In

particular, we will reveal the essential roles that the nonsecular
treatment will play in the thermodynamics of the ESR pumped
QD device. Finally, by converting from the interaction picture
back into Schrödinger’s picture, we arrives at the GQME in
the Floquet basis in Eq. (16).

[1] U. Weiss, Quantum Dissipative Systems, 3rd ed. (World Scien-
tific, Singapore, 2008).

[2] J. Gemmer, M. Michel, and G. Mahler, Quantum Thermody-
namics: Emergence of Thermodynamic Behavior within Com-
posite Quantum Systems, Lecture Notes in Physics, 2nd ed.
(Springer, Berlin, 2009).

[3] K. Sekimoto, Stochastic Energetics (Springer, New York,
2010).

[4] M. Campisi, P. Hänggi, and P. Talkner, Rev. Mod. Phys. 83, 771
(2011).

[5] U. Seifert, Rep. Prog. Phys. 75, 126001 (2012).
[6] M. Esposito, M. A. Ochoa, and M. Galperin, Phys. Rev. Lett.

114, 080602 (2015).
[7] S. Vinjanampathy and J. Anders, Contemp. Phys. 57, 545

(2016).
[8] J. Anders and M. Esposito, New J. Phys. 19, 010201 (2017).
[9] M. Carrega, P. Solinas, M. Sassetti, and U. Weiss, Phys. Rev.

Lett. 116, 240403 (2016).
[10] R. Alicki and R. Kosloff, Introduction to quantum thermo-

dynamics: History and prospects, in Thermodynamics in the
Quantum Regime, edited by F. Binder, L. Correa, C. Gogolin,
J. Anders, and G. Adesso, Fundamental Theories of Physics,
Vol. 195 (Springer, Cham, 2019).

[11] G. Benenti, G. Casati, K. Saito, and R. S. Whitney, Phys. Rep.
694, 1 (2017).

[12] R. Kosloff and A. Levy, Annu. Rev. Phys. Chem. 65, 365
(2014).

[13] R. Uzdin, A. Levy, and R. Kosloff, Phys. Rev. X 5, 031044
(2015).

[14] B. Leggio and M. Antezza, Phys. Rev. E 93, 022122 (2016).
[15] J. Roßnagel, S. T. Dawkins, K. N. Tolazzi, O. Abah, E. Lutz, F.

Schmidt-Kaler, and K. Singer, Science 352, 325 (2016).
[16] A. Argun, J. Soni, L. Dabelow, S. Bo, G. Pesce, R. Eichhorn,

and G. Volpe, Phys. Rev. E 96, 052106 (2017).
[17] A. Roulet, S. Nimmrichter, J. M. Arrazola, S. Seah, and V.

Scarani, Phys. Rev. E 95, 062131 (2017).
[18] B. Reid, S. Pigeon, M. Antezza, and G. D. Chiara, Europhys.

Lett. 120, 60006 (2017).
[19] S. Scopa, G. T. Landi, and D. Karevski, Phys. Rev. A 97,

062121 (2018).
[20] A. Hewgill, A. Ferraro, and G. De Chiara, Phys. Rev. A 98,

042102 (2018).
[21] J. Goold, M. Huber, A. Riera, L. del Rio, and P. Skrzypczyk,

J. Phys. A: Math. Theor. 49, 143001 (2016).
[22] M. Esposito, U. Harbola, and S. Mukamel, Rev. Mod. Phys. 81,

1665 (2009).
[23] C. V. den Broeck, Nat. Phys. 6, 937 (2010).
[24] A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R.

Dillenschneider, and E. Lutz, Nature (London) 483, 187 (2012).
[25] M. Esposito and G. Schaller, Europhys. Lett. 99, 30003 (2012).

[26] A. C. Barato and U. Seifert, Phys. Rev. Lett. 112, 090601
(2014).

[27] J. M. R. Parrondo, J. M. Horowitz, and T. Sagawa, Nat. Phys.
11, 131 (2015).

[28] S. Goldt and U. Seifert, Phys. Rev. Lett. 118, 010601 (2017).
[29] P. Strasberg, G. Schaller, T. Brandes, and M. Esposito, Phys.

Rev. X 7, 021003 (2017).
[30] S. Ito, Phys. Rev. Lett. 121, 030605 (2018).
[31] S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, and M. Sano,

Nat. Phys. 6, 988 (2010).
[32] J. P. Pekola, Nat. Phys. 11, 118 (2015).
[33] J. Pekola and I. Khaymovich, Ann. Rev. Condens. Matter Phys.

10, 193 (2019).
[34] O.-P. Saira, Y. Yoon, T. Tanttu, M. Möttönen, D. V. Averin, and

J. P. Pekola, Phys. Rev. Lett. 109, 180601 (2012).
[35] J. V. Koski, V. F. Maisi, T. Sagawa, and J. P. Pekola, Phys. Rev.

Lett. 113, 030601 (2014).
[36] N. Cottet, S. Jezouin, L. Bretheau, P. Campagne-Ibarcq, Q.

Ficheux, J. Anders, A. Auffèves, R. Azouit, P. Rouchon, and
B. Huard, Proc. Natl. Acad. Sci. 114, 7561 (2017).

[37] Y. Masuyama, K. Funo, Y. Murashita, A. Noguchi, S. Kono,
Y. Tabuchi, R. Yamazaki, M. Ueda, and Y. Nakamura, Nat.
Commun. 9, 1291 (2018).

[38] J. V. Koski, V. F. Maisi, J. P. Pekola, and D. V. Averin, Proc.
Natl. Acad. Sci. 111, 13786 (2014).

[39] N. Bar-Gill, L. M. Pham, A. Jarmola, D. Budker, and R. L.
Walsworth, Nat. Commun. 4, 1743 (2013).

[40] J. W. Park, Z. Z. Yan, H. Loh, S. A. Will, and M. W. Zwierlein,
Science 357, 372 (2017).
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