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in bilayer-graphene van der Waals spin valves
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We investigate the Cooper pair splitting based on crossed Andreev reflection in a two-dimensional narrow
superconductor coupled to two leads, where the two leads are van der Waals (vdW) spin valves formed by
inserting bilayer graphene (BLG) between two antiparallel insulating ferromagnetic layers. In this BLG-based
n-type vdW spin valve/superconductor/p-type vdW spin valve junction with edge-contact geometry, when
controlling the Fermi energy and the interlayer electric field in BLG independently by top- and bottom-gate
voltages in the vdW spin valve region, we first demonstrate that the two electrons of perfect Cooper pair
splitting can remain nonlocal valley entanglement. This effect can be explained as follows: When both the two
antiparallel insulating ferromagnetic layers and the interlayer electric field are taken into account, BLG exhibits
a spin-splitting but valley-degenerate band gap near the Dirac point. Thus, our setups allow the Cooper pair in
the BCS scenario to serve as a natural source of valley entanglement. We further predict large oscillations of
cross conductance as a function of the doping of the superconductor, the junction length, and the bias voltage.
Our results may provide a tool for realizing fast nonlocal switching of the valley-entanglement state.
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I. INTRODUCTION

Quantum entanglement between two particles is a funda-
mental feature of quantum mechanics in which the state of
one particle is determined by a measurement performed on
the other [1]. This feature has been identified as a useful
property for applications in both computation and commu-
nication [2]. For example, entanglement between photons
is well developed and already offers applications [3–5]. In
the solid state, entangled electrons can be exploited as a
source of Einstein-Podolsky-Rosen pairs, which is a necessary
ingredient for the teleportation of qubit states across a chip
[6–8]. Proposals for nonlocally entangled electron pairs have
been put forward [9–13]. One attractive proposal is splitting
the Cooper pairs in a BCS superconductor via crossed An-
dreev reflection (CAR) into spatially separated leads. This
idea has so far motivated numerous theoretical and experi-
mental attempts to split Cooper pairs in various geometries
and materials, such as ferromagnetic junctions [14–18], p-n
junctions [19–21], topological systems [22–24], quantum dots
[25–27], carbon nanotubes [28–30], bilayer graphene (BLG)
[31], and quantum hall systems [32]. In these endeavors, the
Cooper pair splitter is either nonlocal spin-entangled electrons
[19–21,25,26,31,33] or not spin entangled due to spin helicity
or spin polarization of the leads [14–18,22–24,27,33–37]. In
principle, a Cooper pair in the BCS scenario can also serve
as a source of spatially separated entangled electrons with
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momentum. An earlier work proposed a spin-independent
scheme to generate momentum-entangled electron pairs via
CAR in a mesoscopic normal-superconductor system [38].
However, this method has the drawback that full cancelation
of local AR is only at precise tuning the splitter from open to
close.

Due to the existence of two valleys related by time-reversal
symmetry in two-dimensional (2D) hexagonal crystals such
as graphene, silicene, MoS2 and other group-VI dichalco-
genides, the two electrons at the two inequivalent valleys with
opposite spins can form Cooper pairs in the BCS ground state,
which are natural candidates to study the process of AR at
the normal-superconducting interface in which the incident
electron and the reflected hole come from the different valleys
[16,39–45]. Since the Cooper pairs consist of two electrons
that are both spin and momentum entangled, they can, in prin-
ciple, serve as a source of spatially separated valley-entangled
electrons if such Cooper pairs can be extracted coherently.
Although there has been great interest in the properties of
the splitting of Cooper pairs in 2D hexagonal crystals, the
common mechanism for such a Cooper pair beam splitter
relies on the spin singlet character of Cooper pairs; the study
of devices combining valley degrees of freedom and quantum
entanglement via CAR is still in its infancy. Meanwhile, it
is important to point out that the large momentum separation
between different valleys causes the suppression of intervalley
scattering so that the electron subsystems near K and K ′
points are effectively independent. Thus, slow valley relax-
ation and dephasing processes, compared to electron spin, can
be accessed [46,47]. We also remark that the search for novel
systems realizing nonlocal valley-entangled electron pairs can
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provide a unique playground to test the interplay between
transport and electron correlations.

Motivated by these interesting features, in the present
work we propose, guided by the finding that AB-stacked
BLG can open a band gap at the two inequivalent corners
of the Brillouin zone by adjusting the gate voltages [48]
or the van der Waals (vdW) spin valve [49,50], a strategy
for realizing a nonlocal valley-entangled Cooper pair splitter
in AB-stacked BLG vdW spin valves. Making use of the
two antiparallel insulating ferromagnetic (AIF) layers and
the interlayer electric field, the band structure of BLG has
a spin-dependent but valley-degenerated band gap near the
Dirac points. When controlling the Fermi energy and the
interlayer electric field independently by tuning the top and
bottom gates in the vdW spin valve region, we demonstrate
that the local AR and the elastic cotunneling (EC) are com-
pletely blocked, while local normal reflection (NR) and per-
fect CAR are the only permissible process. As a consequence
of this perfect CAR, two electrons of a Cooper pair in a
conventional BCS superconductor (SC) can be split towards
opposite leads and remain valley entangled. Moreover, we
find that the corresponding cross conductance exhibits largely
oscillatory behavior when the doping of the SC, the junction
length, and the bias voltage is varied. This large oscilla-
tion may find promising applications in a valley-entangled
switch.

II. MODEL AND FORMALISM

The starting point for BLG with AB stacking is the ef-
fective four-band Hamiltonian near the centers of the valleys
in the basis A1, B1, A2, B2, with A (B) and 1 (2) labeling the
sublattice and layer numbers [51–54],

H =

⎛
⎜⎝

εA1 h̄vF π− 0 0
h̄vF π+ εB1 γ 0

0 γ εA2 h̄vF π−
0 0 h̄vF π+ εB2

⎞
⎟⎠,

π± = ηkx ± iky, (1)

where vF = √
3aγ0/2h̄ ≈ 106 m s−1 is the effective Fermi

velocity, γ = 0.38 eV is the interlayer nearest-neighbor hop-
ping, εmi (m = A, B; i = 1, 2) is the on-site energy, and
(kx, ky) are the 2D kinematic momenta for states at the two
inequivalent corners, K and K ′, of the Brillouin zone with
η = ± labeling the two valleys. The factor h̄vF will be set
to 1 in the following, unless stated otherwise.

To enable unexplored device opportunities, we study the
effects of proximity in vdW heterostructures that can engineer
electronic structures of a 2D material through its adjacent
regions, which do not occur naturally within a single 2D
material. In the presence of a double-gate voltage and two
AIF layers (see Fig. 1), the on-site energy due to the proximity
effect is modeled as [49,50,55]

εA1 = εB1 = λ+
s − U,

(2)
εA2 = εB2 = λ−

−s − U,

where λ±
s = ±λE + sM is a Dirac mass term. Here, λE is the

potential difference which can open a band gap at the charge

FIG. 1. Schematic of a CrI3-encapsulated dual-gated BLG de-
vice geometry. The total doping density n and the vertical electric
field �E in graphene bilayers are governed by the top- and bottom-
gate voltages VT G and VBG in this dual-gate field-effect device. This
device simultaneously enables the electrical control of magnetism in
bilayer CrI3.

neutral point. U is the electrostatic potential between on-site
energies in the two layers. sM is a spin-dependent band gap
with s = ↑(+),↓(−). Note that the sign of s can be reversed
by changing the AIF configuration [49].

To electrically gate BLG, we use the dual-gated structure
which has BLG fully encapsulated by the magnetic insula-
tor bilayer CrI3 [56] (see Fig. 1). Hexagonal boron nitride
(h-BN) flakes serve as a flat and clean dielectric environment
between the BLG and the top and bottom gates. We also use
graphene as top- and bottom-gate electrodes, which enable a
reversible electrical switching of magnetic order in the CrI3

AIF layer near the interlayer spin-flip transition [57,58]. On
the other hand, voltages applied on top and bottom gates (VT G

and VBG) simultaneously enable us to independently control
the interlayer potential difference λE and the electrostatic
potential U in the BLG [54,59–62].

Within this model, we consider the energy spectrum of the
bilayer graphene system described by Eqs. (1) and (2). The
energy eigenvalues read

Eα,ε
±,s

= ε

√√√√
k2+(λ±

s )2+ γ 2

2
+(−)α

√(γ 2

2

)2

+k2[4(λ±
s )2+γ 2],

(3)

with α = 1, 2. k =
√

k2
x + k2

y represents a wave vector mea-
sured from the two inequivalent valley points K and K ′.
The index ε = ± specifies the conduction and valance bands.
Since the higher-energy band E2,ε

±,s is not convenient for the
analysis of transport properties of carriers in the low-energy
band of a bilayer [51], we neglect the contribution of carriers
in the higher-energy band E2,ε

±,s, as shown in Fig. 2.
From the low-energy spectrum for the BLG in the presence

or absence of the spin-dependent potential M and poten-
tial difference λE , calculated from Eq. (3), we observe the
following: (i) When M or λE is separately turned on, a
gap appears while spin and valley states are degenerate in
the conduction and valence bands, as shown in Figs. 2(a)
and 2(e) and 2(b) and 2(f). The gap between conduction
and valence band edges is given by 2λs for k = 0. (ii) For
λE �= 0 and M �= 0, the combination of potential difference
λE and spin-dependent potential M opens a gap and splits
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FIG. 2. Effects of spin-dependent potential M and potential difference λE on the low-energy bands E 1,ε
±,s of bilayer graphene plotted

along the kx axis near the corners K, K ′. (a) and (e) M = 4.5 meV, λE = 0.0 and M = −4.5 meV, λE = 0.0; (b) and (f) M = 0.0, λE =
4.5 meV and M = 0.0, λE = −4.5 meV; (c) and (g) M = 9.0 meV, λE = 4.5 meV and M = −9.0 meV, λE = −4.5 meV; and (d) and (h)
M = 9.0 meV, λE = 4.5 meV and M = −9.0 meV, λE = −4.5 meV. The insets show the side view of a bilayer-graphene vdW spin valve
configuration under consideration. The other parameters used in the calculations are γ = 0.38 eV and U = 0.0.

the spin degeneracy of the Dirac spectrum. The results are
plotted in Figs. 2(c) and 2(g) and 2(d) and 2(h). From
Eq. (3), we obtain analytically two extreme values, E1,ε

I,±,s =
ε

√
(λ±

s )2
γ 2

4(λ±
s )2+γ 2 for kI,±,s =

√
4(λ±

s )4+2(λ±
s )2

γ 2

4(λ±
s )2+γ 2 and E1,ε

II,±,s = ελ±
s

for kII,±,s = 0, which divide the Dirac spectrum E1,+
±,s into two

branches: regions I and II, defined by E1,+
I,±,s � E1,+

±,s � E1,+
II,±,s

and E1,+
±,s > E1,+

II,±,s. Thus, the gaps between conduction and

valence bands are given by 2E1,+
I,±,s for k = kI and 2E1,+

II,±,s
for k = kII , respectively. We also obtain analytically the spin
splitting E1,+

I,±,↑ − E1,+
I,±,↓ for k = kI and E1,+

II,±,↑ − E1,+
II,±,↓ for

k = kII . For {M, λE } 	 γ , the differences in gaps and the
spin splittings between k = kI and k = kII are negligible in the
band structure, which can be seen in Fig. 2. (iii) Notice that
the perfect switching of the spin polarization can be realized
when switching the sign of M or λE in the mass term λs by
properly tuning the gate voltage or AIF layer configuration.
For device operations, a spin-dependent gap can be gener-
ated by the gate voltages, while the valley states are still
degenerate. Thus, the on-site energy εmi (m = A, B; i = 1, 2)
under the two AIF layers and the double-gate voltage coac-
tion results in two important outcomes: opening a tunable
band gap and realizing spin splitting. These properties of
the energy spectra in BLG open venues for investigating
perfect CAR.

Next, we propose bipolar setups to achieve nonlocal valley-
entangled states via perfect CAR, with no contributions from
the local AR and EC, in a BLG-based n-type vdW spin
valve/SC/p-type vdW spin valve junction with asymmetric-
and symmetric-gate configurations, as depicted in Figs. 3(a)
and 3(b). For this study, we employ BLG to generate and de-
tect the valley-entangled current by local band-gap engineer-
ing and proximity-induced superconductivity. The vdW spin
valve region is composed of the dual-gate field-effect device.
In order to reach the superconducting regime, here, we explore
the effects of the superconducting proximity built around
SC-BLG interfaces. Especially, the BLG flake encapsulated
between a bottom and top h-BN is electrically contacted
using edge contacts [63], which serve as source and drain
electrodes for transport measurement. This type of electrode
can also effectively suppress the intervalley scattering [64].
More specifically, the band gap and the carrier doping (Fermi
energy) in the left and right vdW spin regions (x � 0 and
x � L) can be controlled individually by tuning electrical
gates, while the pair potential of the center superconducting
region due to the proximity of the superconducting electrodes
(0 < x < L) is taken to be constant. With this arrangement
our model can be represented by HHyd	 = E	. HHyd is
the Dirac–Bogoliubov–de Gennes (DBdG) Hamiltonian in
sublattice and particle-hole (Nambu) spaces first employed in
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FIG. 3. (a) and (b) Schematic views of the devices used to realize pure valley-entangled states via CAR in the n-type vdW spin valve/SC/p-
type vdW spin valve junction with asymmetric- and symmetric-gate configurations attached to the spin valve region, respectively. The junction
resides in the x-y plane, and the interface is located at x = 0 and x = L. We assume that the superconductivity is induced in the BLG by means
of the proximity effect. The BLG flake is electrically contacted using edge contacts. (c) and (d) Illustration of the mechanism of CAR in a
gapped and spin-splitting dispersion. An incident electron residing in the lower conduction spin subband can be reflected as an electron or
transmitted as a hole through the SC. Local AR and EC are, instead, completely blocked due to the large spin splitting in the conduction and
valence bands.

Ref. [39], which can be defined as

HHyd =
(

He − EF 



∗ EF − Hh

)
, (4)

where

He(h) =

⎛
⎜⎝

λ±
s h̄vF π∓ 0 0

h̄vF π± λ±
s γ 0

0 γ λ∓
−s h̄vF π∓

0 0 h̄vF π± λ∓
−s

⎞
⎟⎠. (5)

Here, E is the excitation energy. 	 = (u v)T is the spinor.
u and v are the four-component electron and hole wave
functions, respectively, which have the form

u = (
uA1,s,K uB1,s,K uA2,s,K uB2,s,K

)T
,

(6)
v = (

vB2,−s,K ′ vA2,−s,K ′ vB1,−s,K ′ vA1,−s,K ′
)T

,

where T denotes the transpose. The Fermi energies EF in the
vdW spin valve regions and in the superconducting region are
described by

EF =
⎧⎨
⎩

EFL,

EFS,

EFR,

x � 0,

0 < x < L
x � L,

, (7)

where the Fermi energies EFL and EFR in the vdW spin
valve regions include the electrostatic potentials U in Eq. (2).

We have obtained a bipolar system by adjusting separately
the electrostatic potentials U using dual-gate technology in
vdW spin valve regions to have the same modulus U0 but
different signs, namely, EFL = −EFR = U0. Moreover, EFS in
the superconducting region is strongly doped.

For simplicity, we also assume a steplike model for the
spin-dependent potential M(x), the potential difference λE (x),
and the pairing potential 
(x),

M(x) = ML�(−x) + MR�(x − L),

λE (x) = λL
E �(−x) + λR

E �(x − L),


(x) = 
0 �(x)�(L − x). (8)

Here, �(x) is the Heaviside step function.
To study the valley-entangled states in the BLG-based n-

type vdW spin valve/SC/p-type vdW spin valve junction with
edge-contact geometry, we analyze the scattering properties
under the zero-temperature limit that an incoming electron
from the left vdW spin valve region with excitation energy
E � 0 and wave vector k±,s

L,e at an angle α from the interface
normal may experience by applying the scattering matrix
approach [39,41,65]. Due to the translational invariance par-
allel to the interfaces, the scattering modes for the incident
state with spin s and valley η have the form 	±

η,s(x, y) =
ψ±

η,s(x)eik±,s
y y. k±,s

y is a wave vector along the interface. In the
following, we give the solutions of the wave functions ψ±

η,s(x)
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for three regions, which can be expressed as

ψ±
η,s(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
uη,s

L

(
E ,±k±,s

L,ex

)
e±ik±,s

L,exx + rη,s
N,±uη,s

L

(
E ,∓k±,s

L,ex

)
e∓ik±,s

L,exx + rη,s
N∓uη,s

L

(
E ,±k∓,s

L,ex

)
e±ik∓,s

L,exx
](1

0

)
+[

rη,s
A,±v

η,s
L

(
E ,±k±,s

L,hx

)
e±ik±,s

L,hxx + rη,s
A,∓v

η,s
L

(
E ,∓k∓,s

L,hx

)
e∓ik∓,s

L,hxx
](0

1

)
, x � 0,

a1φM,e
(
E , k+,s

M,ex

)
eik+,s

M,exx + a2φM,e
(
E ,−k+,s

M,ex

)
e−ik+,s

M,exx + a3φM,e
(
E , k−,s

M,ex

)
eik−,s

M,exx

+a4φM,e
(
E ,−k−,s

M,ex

)
e−ik−,s

M,exx + b1φM,h
(
E , k+,s

M,hx

)
eik+,s

M,hxx + b2φM,h
(
E ,−k+,s

M,hx

)
e−ik+,s

M,hxx

+b3φM,h
(
E , k−,s

M,hx

)
eik−,s

M,hxx + b4φM,h
(
E ,−k−,s

M,hx

)
e−ik−,s

M,hxx, 0 < x < L,[
tη,s
EC,±uη,s

R

(
E ,∓k±,s

R,ex

)
e∓ik±,s

R,exx + tη,s
EC∓uη,s

R us
R

(
E ,±k∓,s

R,ex

)
e±ik∓,s

R,exx
](1

0

) + [
tη,s
CA±v

η,s
R

(
E ,±k±,s

R,ex

)
e±ik±

R,hxx

+tη,s
CA,∓v

η,s
R

(
E ,∓k∓,s

R,hx

)
e∓ik∓,s

R,hxx
](0

1

)
, x � L,

(9)

where rη,s
N,τ , rη,s

A,τ , tη,s
EC,τ , and tη,s

CA,τ are amplitudes of NR,
AR, EC, and CAR, with τ = ±, while aj and b j , with j ∈
{1, 2,3, 4}, are the scattering amplitudes in the superconduct-
ing region. The upper ± sign in ψ±

η,s(x) labels two incident
channels. uη,s

L(R)(E ,±kτ,s
L(R),ex ) and v

η,s
L(R)(E ,±kτ,s

L(R),hx ) are the
electron and hole eigenspinors of Eq. (4) in the vdW spin
valve regions. φM,e(E ,±kτ,s

M,ex ) and φM,h(E ,±kτ,s
M,hx ) are the

eigenspinors in the SC region. kτ,s
j,e(h)x, with j = {L, M, R}, are

the wave vectors of the eigenstates. kτ,s
j,e(h)x are chosen in such

a way that the evanescent wave vanishes as |x| → ∞. The
explicit form of the eigenstates and the wave vectors in these
three regions can be found in Appendix A.

Applying the continuity conditions of the wave functions at
the boundaries x = 0 and at x = d , the probability coefficients
Rη,s

N,τ , Rη,s
A,τ , T η,s

EC,τ , and T η,s
CA,τ can be obtained directly. For

more details about the calculations, we refer the reader to
Appendix B. Having obtained the above probability coef-
ficients, we can investigate the nonlocal entangled Cooper
pair splitting in our bipolar setups by analyzing the CAR
coefficient T η,s

CA,τ and the nonlocal differential conductance
GCA at zero temperature. GCA can be written in terms of CAR
coefficients,

GCA/G0 =
∑
τ,η,s

(
Gs

0,τ

G0

) ∫ π
2

0
dα

[
T η,s

CA,τ (E , α)

+ T η,s
CA,−τ (E , α)

]
cos α. (10)

Here, E = eVSD is the excitation energy, and α is the inci-

dent angle. G0 = ∑
τ,s

Gs
0,τ = e2

h

∑
τ,s

wykτ,s
L,e

π
denotes the differen-

tial conductance of the normal state. wy is the width of the
junction, and e is the electron charge. VSD describes the bias
voltage, as shown in Figs. 3(a) and 3(b). The results will be
discussed in the next section.

III. RESULTS AND DISCUSSION

In this section, we discuss the results of calculations of the
zero-temperature nonlocal conductance generated by perfect
CAR, obtained by using Eq. (10). For definiteness, but without
loss of generality, we assume a value of 
0= 1.5 meV for the
proximity-induced gap in the SC region, which should be ex-
perimentally feasible [66]. To manifest the nonlocal transport,
we also scale the length of the superconducting region L in
units of the coherence length of the SC, ξs = h̄vF


0
. According

to first-principles results [49], we set the typical value of

the AIF configuration-induced M = 4.5 meV. Throughout the
paper, the other energies are in units of 
0= 1.5 meV.

For conciseness, we take the n-SC-p bipolar junctions in
edge-contact geometry [see Figs. 3(a) and 3(b)], in which the
single-channel mechanism is realized in two distinct setups
of the vdW spin valve/SC/vdW spin valve junction, namely,
the n-SC-p junction with the asymmetric-gate configuration
(λL

EλR
E < 0 and MLMR > 0) and the symmetric-gate config-

uration (λL
EλR

E > 0 and MLMR < 0). In these setups, we find
that only an electron channel residing in the s =↓ conduction
subband is allowed in the left vdW spin valve region, whereas
only a purely s = ↑ polarized valence hole channel is allowed
in the other one. Moreover, to enter the superconducting
condensate, an electron needs a partner of the opposite spin
and different valley index. As a result, in the reflected region
x � 0, local AR is no longer possible because no opposite
spin electrons are available below the Fermi energy for local
AR. In the transmitted region x � L, EC is also completely
suppressed because of the spin conservation, which prevents
the electron from tunneling into the opposite-spin valence
subband. These mean that the scattering processes of local
NR and perfect CAR are the only ones physically allowed.
Moreover, we find that the spin degeneracy is lifted near the
Fermi energy, while degeneracy remains in valley states in
each case, as shown in Figs. 3(c) and 3(d). Thus, we can
explore perfect CAR for the nonlocal valley-entangled Cooper
pair splitting, which is useful for nonlocal Einstein-Podolsky-
Rosen pairs.

In the following numerical calculation, we further fix
γ = 760

3 
0, U0 = 3
0, |λ j
E | = 6
0, |Mj | = 3
0 ( j = L, R)

and set the bias voltage to VSD = E
e , with E = 2

3
0. Since
the interlayer coupling γ is larger than other energies, γ �
{|λi

E |, |Mi|,U0}, the longitudinal momenta k−,↓
j,ex and k−,↓

j,hx in
Eq. (9) become imaginary momenta. Thus, the incident chan-
nel ψ−

η,↓(x) is an evanescent mode which decays away from
the interface with imaginary momenta. Below, we neglect the
ψ−

η,↓(x) channel and just analyze the real solutions of k+,↓
j,ex

corresponding to the propagating channel, namely, ψ+
η,↓(x).

The identity of particle conservation in Appendix B becomes
Rη,↓

N,+ + Rη,↓
A,+ + T η,↓

EC,+ + T η,↓
CA,+ = 1.

To see how the nonlocal valley-entanglement transport can
be obtained via perfect CAR, we focus on NR and perfect
CAR transport phenomena. In Fig. 4, we calculate and present
the probabilities of the four processes as a function of the
incident angle α. In Fig. 4, the numerical results show that
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FIG. 4. Angular dependence of the probabilities of the four processes for different values of the length L of the SC region. The probabilities
of reflection and transmission for the n-SC-p junction in edge-contact geometry with (a) and (b) the asymmetric-gate configuration [λL

EλR
E < 0

and MLMR > 0] and (c) and (d) the symmetric-gate configuration [λL
EλR

E > 0 and MLMR < 0]. VSD = E
e , with E = 2

3 
0, is the voltage bias
across the junction. Here, we have used γ = 760

3 
0, U0 = 3
0, and EFS = 100
3 
 for all plots.

the processes of local AR and EC are completely suppressed,
Rη,↓

A,+ = T η,↓
EC,+ = 0, which is in agreement with the previous

qualitatively physical explanation. In the limit L → 0, it is
seen that the CAR process is completely absent due to the
absence of superconductivity: T η,↓

CA,+ = 0. Thus, the NR is per-

fect with Rη,↓
N,+ = 1 due to the particle conservation. However,

at intermediate length scales L = 0.6ξs, a large perfect CAR
can occur in addition to normal reflection for incident angle α.
As the length L is longer than the superconducting coherence
length L = 1.2ξs, we emphasize that the CAR probability still
persists, while the amplitude of perfect CAR is suppressed.
This comparison is shown in Figs. 4(b) and 4(d). When
the coherence length L is finite, we also note that NR and
CAR behaviors exhibit an oscillation behavior. Moreover, the
asymmetry of NR and CAR coefficients between positive and
negative angles is reversed if the valley state of the incident
quasiparticle is reversed, i.e.,

RK,↓
N,+(α) = RK ′,↓

N,+ (−α), T K,↓
CA,+(α) = T K ′,↓

CA,+(−α). (11)

This result can be guaranteed by the following symmetry
operation of the DBdG equation [see Eq.(4)]:

SHHyd (π±)S−1 = HHyd (−π±), (12)

where S = PyCη consists of the transformation (Py : y →
−y) and the inversion of the valley state (Cη : η → −η).
Consequently, it follows from the boundary conditions [see

Eqs. (B1) and (B2) in Appendix B] that the scattering coeffi-
cients for π± equal the one for −π±.

In Fig. 5, we show results for the perfect CAR conductance
GCA as a function of the superconducting BLG Fermi energy
EFS for several values of L. In both cases, the magnitude of
the CAR conductance shows a strenuous Fabry-Pérot oscil-
latory dependence on Fermi energy EFS for short junctions
L = 0.2ξs (black dotted line in Fig. 5). Upon increasing the
junction length L [see red and blue dotted lines in Fig. 5(a)],
the CAR conductance is severely damped, and the Fabry-Pérot
oscillating behavior is not pronounced, while the frequency
of the GCA oscillation is increased. As shown by the red
and blue dotted lines in Fig. 5(b), we note that the main
results do not change qualitatively, while the pattern of CAR
conductance oscillations is still a more prominent feature for
large values of EFS , and one noteworthy thing is that the
oscillation amplitudes for the n-SC-p junction in edge-contact
geometry with the asymmetric-gate configuration (λL

EλR
E < 0

and MLMR > 0) are 10 times larger than those in the case with
the symmetric-gate configuration (λL

EλR
E > 0 and MLMR < 0).

Our findings suggest that the proposed device can act as
an on-off switch that operates the nonlocal valley-entangled
Cooper pair splitting.

Physically, the oscillatory behavior arises from the in-
terference effect between electronlike and holelike quasi-
particles in the SC region. For E < 
0, the wave vector
k+,↓

M,e(h)x = Re[κ+,↓
M,e(h)x] + (−)iIm[κ+,↓

M,e(h)x] [for more informa-

125406-6



TUNABLE NONLOCAL VALLEY-ENTANGLED COOPER PAIR … PHYSICAL REVIEW B 101, 125406 (2020)

FIG. 5. Dependence of the CAR conductance on the magnitude
of the Fermi energy in SC region EFS for the n-SC-p junction in
edge-contact geometry with (a) the asymmetric-gate configuration
(λL

EλR
E < 0 and MLMR > 0) and (b) the symmetric-gate configuration

(λL
EλR

E > 0 and MLMR < 0). The three lines correspond to different
lengths of the SC region: L = 0.2ξs (black dotted line), L = 0.8ξs

(red dotted line), and L = 1.4ξs (blue dotted line). Here, E = 2
3 
0,

and other parameters are the same as those described in the caption
of Fig. 4.

tion on κ
+,↓
M,e(h)x, see Eq. (A8) in Appendix A] in the SC region

is composed of a propagating term, Re[κ+,↓
M,e(h)x], and a damp-

ing term, Im[κ+,↓
M,e(h)x]. The oscillation period is determined

by the resonant condition (Re[κ+,↓
M,ex] − Re[κ+,↓

M,hx])L = 2nπ .

κ
+,↓
M,ex can be modified by tuning directly the bias voltage

VSD = E
e and the doping of EFS in the SC region. Increasing

EFS thus leads to a stronger oscillation. With increasing L,
the imaginary term Im[κ+,↓

M,e(h)x]L becomes larger. This results
in a strongly reduced CAR conductance. The increase in L

rapidly enlarges n = Re[κ+,↓
M,e(h)x]L

2π
. Hence, we see clearly that

GCA exhibits a rapid oscillation. The most interesting aspect
is that tuning the Fermi energy of the superconducting BLG
offers a useful parameter to control the valley-entanglement
transport.

Next, we calculate the cross conductance GCA as a function
of the SC length L for three different Fermi energies EFS

in the SC region, as shown in Fig. 6. The behavior of GCA

depends sensitively on the length L compared to the coherence
length ξs. In the limit L → 0, GCA vanishes due to the absence
of superconductivity. For small length L < ξs, the increase
in L surprisingly enhances GCA until it reaches its resonant
peak, when L ≈ 1

4ξs, but once L > 1
4ξs, the maximum value

that GCA can reach starts to decrease with L. In the case
L > ξs, the large GCA persists in the junction and drops to
zero as soon as L � ξs. This is a direct consequence of the
wave vectors k+,↓

M,e(h)x in the SC region, which have finite real

and imaginary parts. When L ≈ 1
4ξs, the real part Re[κ+,↓

M,e(h)x]
becomes dominant, which brings trigonometric functions into
the formula, and this causes the fast oscillations. Far away
from the coherent length ξs, the imaginary part Im[κ+,↓

M,e(h)x]
plays a dominant role, which causes the tunneling across SC
to exponentially decay.

FIG. 6. Plots of the conductance for CAR processes GCA/G0

versus the length of the SC region for the n-SC-p junc-
tion in edge-contact geometry with (a) the asymmetric-gate
configuration (λL

EλR
E < 0 and MLMR > 0) and (b) the symmetric-gate

configuration (λL
EλR

E > 0 and MLMR < 0) for three different Fermi
energies EFS in the SC region. Here, E = 2

3 
0, and other parameters
are the same as those described in the caption of Fig. 4.

In Fig. 7, GEC and GCA as a function of the bias voltage
VSD = E

e are plotted for different values of Fermi energy
EFS with L = 0.5ξs [Figs. 7(a) and 7(b)] and junction length
L with EFS/
0 = 100/3 [Figs. 7(c) and 7(d)]. Notice that
GEC can be calculated just by replacing TCA in Eq. (10)
with TEC . As seen in Fig. 7, the CAR conductance GCA is
favored, while EC conductance GEC is vanishing. We can
qualitatively explain this result as follows. In Figs. 3(c) and
3(d), when a gate voltage is applied, the spin degeneracy
in the left and right vdW spin valve regions is lifted. By
using Eq. (3), we can find that the analytical expressions
of the split energy for the lowest conduction band and the

highest valence band are E1,+
±,s =

√
(λ±

s )2
γ 2

4(λ±
s )2+γ 2 − U0 and E1,+

±,s =
U0 −

√
(λ±

s )2
γ 2

4(λ±
s )2+γ 2 , respectively. For γ � λs, the onset of the

incident-electron energy contributing to the single-channel
transport in the left vdW spin valve region is from |λ+

↓ | − U0

to |λ−
↓ | − U0, and the opposite spin electron channels below

the Fermi energy, which are allowed only in right vdW
spin valve region, are from U0 − |λ+

↑ | to U0 − |λ−
↑ |. Thus,

the incident-energy windows which are the key to obtaining
the perfect CAR process are from E/
0 = 0 to E/
0 = 6
when λL

E = 6
0, ML = 3
0, and U0 = 3
0 are fixed, which
is out of the superconducting gap 
0 range. In the perfect
CAR process, we emphasize here that the SC plays a role
in converting electrons to holes. It is not crucial that the bias
voltage must be shifted into the superconducting gap. The key
issue is that the single-electron channel and the single-hole
channel must be realized in the two leads. Moreover, it is seen
that the GCA resonances are in the limit E → 0. In this case,
the incident (outgoing) energy lies closer to the bottom (top)
of the conduction (valance) band. This means that EC and
local AR process are completely blocked and only NR and
perfect CAR are possible because the spectrum is gapped on
the two leads. Still, it should be noted that we find that GCA
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FIG. 7. Charge conductance of the EC and CAR processes as a function of the bias voltage VSD = E
e for different values of (a) and (b) the

Fermi energy EFS with L = 0.5ξs and (c) and (d) junction length L with EFS/
0 = 100/3. In these plots γ = 760
3 
0 and U0 = 3
0.

has a distinct peak at E = 
0 independent of the Fermi energy
EFS and junction length L. Increasing E further, we find
that the conductance GCA oscillates due to the quasiparticle
interferences inside the superconducting region. Interestingly,
GCA minima are near zero. This suggests that the nonlocal
valley-entanglement effect can be completely switched off by
a fine tuning of the bias voltage.

Last, let us have a brief discussion of the experimental
feasibility of our physical model. First, our device requires the
intervalley scattering in BLG to be suppressed significantly to
achieve the valley-entangled electrons via CAR. To overcome
this obstacle, we set the orientation of the BLG nanoribbons
with the effective zigzag edge and sandwich the BLG between
two thin h-BN layers, which can eliminate the intervalley
scattering caused by the sharp defects, substrate roughness,
and armchair edge [64,67]. In addition, the conducting chan-
nel is established inside the BLG away from the atomically
rugged edge to greatly reduce the valley-mixing scattering.
Second, the main results discussed above are proposed to be
within the superconducting coherence length. The tempera-
ture has to be low compared to the critical temperatures Tc

of the SC. For instance, in NbSe2, we have Tc ∼ 14 K [66].
Recently, it was shown that the insulating ferromagnet CrI3

remains ferromagnetic up to 45 K [68]. Thus, the experiment
at a low temperature is necessary. Furthermore, we point
out that the valley-entangled ballistic beam splitter via the

CAR mechanism proposed here could be detected by testing
the expectation value of the entanglement witness operator
[69]. Finally, we stress that our results are also applicable
to silicene, MoS2, and other group-VI dichalcogenides in the
presence of the interlayer electric field and antiferromagnetic
exchange fields.

IV. CONCLUSION

In conclusion, we have theoretically studied the quantum
transport properties in the n-type vdW spin valve/SC/p-
type vdW spin valve junction with edge-contact geometry.
We have proposed two different setups, in which splitting
a valley-entanglement Cooper pair into two separate leads
via perfect CAR can be created by manipulating the top and
bottom gates in the vdW spin valve regions. We also calculate
the differential conductance GCA, which provides a direct
measurement of the perfect CAR. We find that it is possible
to control perfect CAR by the doping of SC, the junction
length, and the bias voltage. In particular, we have shown that
GCA exhibits a large oscillation behavior. Thus, our proposed
devices can be used to realize rapid on-off switching of the
nonlocal valley-entanglement state. Finally, we expect that
the production of valley-entangled electron pairs using these
setups can be guided by our analysis, which can also provide
useful additions to future experiments on valleytronics [70].
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APPENDIX A: SOLUTIONS OF THE DBdG EQUATION

In this Appendix, we briefly introduce the plane wave solutions of DBdG equation [see Eq. (4)] for electrons and holes in
three regions of the bilayer graphene system. These solutions for the left vdW spin valve region take the following form:

uη,s
L

(
E ,±kτ,s

L,ex

)
e±ikτ,s

L,exx = 1

Nτ,s
L,e

⎛
⎜⎜⎜⎜⎝

EL,+
(
�τ,s

L,e + γ 2
) + λ+

L,s

[
�τ,s

L,e − 4
(
kτ,s

L,e

)2 + γ 2
]

± 2π
τ,η,s
±,L,ex

[(
kτ

L,e

)2 − (EL,+ + λ+
L,s)2]

∓ 2γπ
τ,η,s
±,L,ex(EL,+ + λ+

L,s)

− 2γ
(
πτ,s

±,L,ex

)2

⎞
⎟⎟⎟⎟⎠e±ikτ,s

L,exx,

v
η,s
L

(
E ,±kτ,s

L,hx

)
e±ikτ

L,hxx = 1

Nτ,s
L,h

⎛
⎜⎜⎜⎜⎝

EL,−
(
�τ,s

L,h + γ 2
) − λ+

L,−s

[
�τ,s

L,h − 4
(
kτ

L,h

)2 + γ 2
]

± 2π
τ,η,s
∓,L,hx

[(
kτ,s

L,h

)2 − (EL,− − λ+
L,−s)2]

∓ 2γπ
τ,η,s
∓,L,hx (EL,− − λ+

L,−s)

− 2γ
(
πτ,s

∓,L,hx

)2

⎞
⎟⎟⎟⎟⎠e±ikτ,s

L,hxx, (A1)

with

�τ,s
L,e =

√
γ 4 + 4

(
kτ,s

L,e

)2
[(2λ+

L,s)2 + γ 2], �τ,s
L,h =

√
γ 4 + 4

(
kτ,s

L,h

)2
[(2λ+

L,−s)2 + γ 2], (A2)

where τ = ± and EL,± = EFL ± E .
These solutions in the right region are given as

uη,s
R

(
E ,±kτ,s

R,ex

)
e±ikτ,s

R,exx = 1

Nτ,s
R,e

⎛
⎜⎜⎜⎜⎝

−ER,−
(
�τ,s

R,e + γ 2
) + λ+

R,s

[
�τ,s

R,e − 4
(
kτ,s

R,e

)2 + γ 2
]

± 2π
τ,η,s
±,R,ex

[(
kτ,s

R,e

)2 + (ER,− − λ+
R,s)2]

± 2γπ
τ,η,s
±,R,ex (ER,− − λ+

R,s)

− 2γ
(
π

τ,η,s
±,R,ex

)2

⎞
⎟⎟⎟⎟⎠e±ikτ,s

R,exx,

v
η,s
R

(
E ,±kτ,s

L,hx

)
e±ikτ,s

R,hxx = 1

Nτ,s
R,h

⎛
⎜⎜⎜⎜⎝

−ER,+
(
�τ,s

R,h + γ 2
) − λ+

R,−s

[
�τ,s

R,h − 4
(
kτ,s

R,h

)2 + γ 2
]

± 2π
τ,η,s
∓,R,hx

[(
kτ,s

R,h

)2 − (ER,+ + λ+
R,−s)2]

± 2γπ
τ,η,s
∓,R,hx (ER,+ + λ+

R,−s)

− 2γ
(
π

τ,η,s
∓,R,hx

)2

⎞
⎟⎟⎟⎟⎠e±ikτ,s

R,hxx, (A3)

where

�τ,s
R,e =

√
γ 4 + 4

(
kτ,s

R,e

)2
[(2λ+

R,s)2 + γ 2], �τ,s
R,h =

√
γ 4 + 4

(
kτ,s

R,h

)2
[(2λ+

R,−s)2 + γ 2], (A4)

with ER,± = EFR ± E . Above, N is the normalization factor where u†u = 1 and v†v = 1.
Inside the SC, the solutions of the DBdG equation are two states of the form

φM,e
(
E ,±kτ,s

M,ex

)
e±ikτ,s

M,exx =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∓ iπτ,η,s
∓,M,ex

(
EFS − E + �τ,s

M,e

)
× i

[(
kτ,s

M,e

)2 + �τ,s
M,e(EFS − E − γ )

]
× i

[(
kτ,s

M,e

)2 + �τ,s
M,e(EFS − E − γ )

]
∓ iπτ,η,s

±,M,ex

(
EFS − E + �τ,s

M,e

)
± iπτ,η,s

±,M,ex

∗

− i�τ,s
M,e


∗

− i�τ,s
M,e


∗

± iπτ,η,s
∓,M,ex


∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e±ikτ,s
M,exx,
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φM,h
(
E ,±kτ,s

M,hx

)
e±ikτ,s

M,hxx =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∓ iπτ,η,s
∓,M,hx

(
EFS + E − �τ,s

M,h

)
× i

[(
kτ,s

M,h

)2 − �τ,s
M,h(EFS + E + γ )

]
− i

[(
kτ,s

M,h

)2 − �τ,s
M,h(EFS + E + γ )

]
± iπτ,η,s

±,M,hx

(
EFS + E − �τ,s

M,h

)
∓ iπτ,η,s

±,M,hx

∗

−i�τ,s
M,h


∗

× i�τ,s
M,h


∗

± iπτ,η,s
∓,M,hx


∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e±ikτ,s
M,hxx, (A5)

where we have introduced the following notation:

�τ,s
M,e =

√(
kτ,s

M,e

)2 + γ 2

4
− γ

2
, �τ,s

M,h =
√(

kτ,s
M,h

)2 + γ 2

4
− γ

2
. (A6)

Above, π
τ,η,s
±, j,e(h)x = ηkτ,s

j,e(h)x ± ikτ,s
y , and (kτ,s

j,e(h) )
2 = (kτ,s

j,e(h)x )2 + (kτ,s
y )2. Here, kτ,s

j,e(h)x, with j = {L, M, R}) are the wave vectors.
To ensure that the evanescent wave decays exponentially as |x| → ∞, the wave vectors can be written as

kτ,s
L,e(h)x = Re

[
κτ,s

L,e(h)x

] + (−)iIm
[
κτ,s

L,e(h)x

]
,

kτ,s
M,e(h)x = Re

[
κτ,s

M,e(h)x

] + (−)iIm
[
κτ,s

M,e(h)x

]
,

kτ,s
R,e(h)x = Re

[
κτ

R,e(h)x

] − (+)iIm
[
κτ,s

R,e(h)x

]
, (A7)

with

κτ,s
L,ex =

√
(EL,+)2 − (

kτ,s
y

)2 + (λ+
L,s)2 + τ

√
(2EL,+λ+

L,s)2 + [(EL,+)2 − (λ+
L,s)2]γ 2,

κτ,s
L,hx =

√
(EL,−)2 − (

kτ,s
y

)2 + (λ+
L,−s)2 + τ

√
(2EL,−λ+

L,−s)2 + [(EL,−)2 − (λ+
L,−s)2]γ 2,

κτ,s
R,ex =

√
(ER,−)2 − (

kτ,s
y

)2 + (λ+
R,s)2 + τ

√
(2ER,−λ+

R,s)2 + [(ER,−)2 − (λ+
R,s)2]γ 2,

κτ,s
R,hx =

√
(ER,+)2 − (

kτ,s
y

)2 + (λ+
R,−s)2 + τ

√
(2ER,+λ+

R,−s)2 + [(ER,+)2 − (λ+
R,−s)2]γ 2,

κτ,s
M,ex =

√
E2 − (

kτ,s
y

)2 + EFS (EFS − γ ) − 

∗ + τ

√
(2EFS − γ )2(E2 − 

∗),

κτ,s
M,hx =

√
E2 − (

kτ,s
y

)2 + EFS (EFS + γ ) − 

∗ + τ

√
(2EFS + γ )2(E2 − 

∗), (A8)

where kτ,s
y =

√
(EL,+)2 − (kτ,s

y )2 + (λ+
L,s)2 + τ

√
(2EL,+λ+

L,s)2 + [(EL,+)2 − (λ+
L,s)2]γ 2 sin α is the transverse wave vector along

the interface. α is the angle of incidence relative to the x direction.

APPENDIX B: THE BOUNDARY CONDITIONS

In this Appendix we show how to get the scattering amplitudes of the various scattering processes [Eq. (9)] by imposing the
continuity of the wave function at x = 0 and x = L. Then we can obtain the following sets of equations for the reflection and
transmission amplitudes:[

uη,s
L

(
E ,±k±,s

L,ex

) + rη,s
N,±uη,s

L

(
E ,∓k±,s

L,ex

) + rη,s
N∓uη,s

L

(
E ,±k∓,s

L,ex

)](1
0

)+[
rη,s

A,±v
η,s
L

(
E ,±k±,s

L,hx

) + rη,s
A,∓v

η,s
L

(
E ,∓k∓,s

L,hx

)](0
1

)
= a1φM,e

(
E , k+,s

M,ex

) + a2φM,e
(
E ,−k+,s

M,ex

) + a3φM,e
(
E , k−,s

M,ex

) + a4φM,e
(
E ,−k−,s

M,ex

)+b1φM,h
(
E , k+,s

M,hx

)+b2φM,h
(
E ,−k+,s

M,hx

)
+ b3φM,h

(
E , k−,s

M,hx

) + b4φM,h
(
E ,−k−,s

M,hx

)
(B1)

and

a1φM,e
(
E , k+,s

M,ex

)
eik+,s

M,exL + a2φM,e
(
E ,−k+,s

M,ex

)
e−ik+,s

M,exL + a3φM,e
(
E , k−,s

M,ex

)
eik−,s

M,exL + a4φM,e
(
E ,−k−,s

M,ex

)
e−ik−,s

M,exL

+ b1φM,h
(
E , k+,s

M,hx

)
eik+,s

M,hxL + b2φM,h
(
E ,−k+,s

M,hx

)
e−ik+,s

M,hxL + b3φM,h
(
E , k−,s

M,hx

)
eik−,s

M,hxL + b4φM,h
(
E ,−k−,s

M,hx

)
e−ik−,s

M,hxL
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= [
tη,s
EC,±uη,s

R

(
E ,∓k±,s

R,ex

)
e∓ik±,s

R,exL + tη,s
EC∓uη,s

R us
R

(
E ,±k∓,s

R,ex

)
e±ik∓,s

R,exL
](1

0

)
+ [

tη,s
CA±v

η,s
R

(
E ,±k±,s

R,ex

)
e±ik±

R,hxL+tη,s
CA,∓v

η,s
R

(
E ,∓k∓,s

R,hx

)
e∓ik∓,s

R,hxL
](0

1

)
. (B2)

Solving Eqs. (B1) and (B2) for the scattering amplitudes rη,s
N,τ , rη,s

A,τ , tη,s
EC,τ , and tη,s

CA,τ , we find that the corresponding reflection
and transmission probability coefficients equal

Rη,s
N,± = ∣∣rη,s

N,±
∣∣2

, Rη,s
N,∓ = V η,s

L∓,ex

V η,s
L±,ex

∣∣rη,s
N∓

∣∣2
, Rη,s

A,± = V η,s
L±,hx

V η,s
L±,ex

∣∣rη,s
A,±

∣∣2
, Rη,s

A,∓ = V η,s
L∓,hx

V η,s
L±,ex

∣∣rη,s
A,∓

∣∣2
,

T η,s
EC,± = V η,s

R±,ex

V η,s
L±,ex

∣∣tη,s
EC±

∣∣2
, T η,s

EC∓ = V η,s
R∓,ex

V η,s
L±,ex

∣∣tη,s
EC∓

∣∣2
, T η,s

CA± = V η,s
R±,hx

V η,s
L±,ex

∣∣tη,s
CA±

∣∣2
, T η,s

CA,∓ = V η,s
R∓,hx

V η,s
L±,ex

∣∣tη,s
CA,∓

∣∣2
, (B3)

with

V η,s
L±,ex = 〈

uη,s
L

(
E ,∓k±,s

L,ex

)∣∣ ∂He

h̄∂kx

∣∣uη,s
L

(
E ,∓k±,s

L,ex

)〉
,

V η,s
L±,hx = 〈

v
η,s
L

(
E ,±k±,s

L,hx

)∣∣ ∂Hh

h̄∂kx

∣∣vη,s
L

(
E ,±k±,s

L,hx

)〉
,

V η,s
R±,ex = 〈

uη,s
R

(
E ,∓k±,s

R,ex

)∣∣ ∂He

h̄∂kx

∣∣uη,s
R

(
E ,∓k±,s

R,ex

)〉
,

V η,s
R±,hx = 〈

v
η,s
R

(
E ,±k±,s

R,ex

)∣∣ ∂Hh

h̄∂kx

∣∣vη,s
R

(
E ,±k±,s

R,ex

)〉
. (B4)

These probability coefficients satisfy the identity Rη,s
N,± + Rη,s

N,∓ + Rη,s
A,± + Rη,s

A,∓ + T η,s
EC,± + T η,s

EC∓ + T η,s
CA± + T η,s

CA,∓ = 1.
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