
PHYSICAL REVIEW B 101, 125405 (2020)
Editors’ Suggestion

Inelastic electron tunneling spectroscopy for probing strongly correlated many-body
systems by scanning tunneling microscopy

Fabian Eickhoff,1 Elena Kolodzeiski ,2 Taner Esat,3,4 Norman Fournier,3,4 Christian Wagner ,3,4 Thorsten Deilmann ,5

Ruslan Temirov,3,4,6 Michael Rohlfing,5 F. Stefan Tautz,3,4,7 and Frithjof B. Anders 1

1Theoretische Physik II, Technische Universität Dortmund, 44221 Dortmund, Germany
2Physikalisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany

3Peter Grünberg Institute (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
4Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, Jülich, 52425 Jülich, Germany

5Institut für Festkörpertheorie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
6II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany

7Experimentalphysik IV A, RWTH Aachen University, Otto-Blumenthal-Straße, 52074 Aachen, Germany

(Received 22 October 2019; revised manuscript received 14 February 2020; accepted 18 February 2020;
published 6 March 2020)

We present an extension of the tunneling theory for scanning tunneling microscopy (STM) to include
different types of electron-vibrational couplings responsible for inelastic contributions to the tunnel current
in the strong-coupling limit. It allows for a better understanding of more complex scanning tunneling spectra
of molecules on a metallic substrate in separating elastic and inelastic contributions. The starting point is the
exact solution of the spectral functions for the electronically active local orbitals in the absence of the STM
tip. This includes electron-phonon coupling in the coupled system comprising the molecule and the substrate to
arbitrary order including the antiadiabatic strong-coupling regime as well as the Kondo effect on a free-electron
spin of the molecule. The tunneling current is derived in second order of the tunneling matrix element which
is expanded in powers of the relevant vibrational displacements. We use the results of an ab initio calculation
for the single-particle electronic properties as an adapted material-specific input for a numerical renormalization
group approach for accurately determining the electronic properties of a 1,4,5,8-naphthalene-tetracarboxylic
acid dianhydride molecule on Ag(111) as a challenging sample system for our theory. Our analysis shows
that the mismatch between the ab initio many-body calculation of the tunnel current in the absence of any
electron-phonon coupling to the experimental scanning tunneling spectra can be resolved by including two
mechanisms: (i) a strong unconventional Holstein term on the local substrate orbital leads to the reduction of the
Kondo temperature and (ii) a further electron-vibrational coupling to the tunneling matrix element is responsible
for inelastic steps in the dI/dV curve at finite frequencies.
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I. INTRODUCTION

The investigation of phonons and molecular vibrations by
inelastic electron tunneling spectroscopy dates back more than
50 years [1,2]. For example, point contact spectroscopy [3]
has been successfully used to measure the electron-phonon
coupling function that enters the Migdal-Eliashberg theory
[4,5] of superconductivity. Recently, the increasing relevance
of designed nanoscale quantum systems [6–14] revitalizes
the interest in vibrational inelastic electron tunneling spec-
troscopy (IETS) of molecules adsorbed on solid surfaces
[15–18] or contacted in transport junctions [19–23]. While
the fundamental mechanisms of the electron-phonon and
electron-vibron interactions are well understood (for simplic-
ity, we will refer to both as electron-phonon interaction from
now on), a quantitative theory with predicting power beyond a
simplified picture comprising independent electronic degrees
of freedoms and bosonic excitations is lacking. Even mod-
ern reviews [24] on this subject present the inelastic tunnel
process only on the original level of understanding [1,2], i.e.,
the emission or absorption of a single phonon when a single

electron is tunneling, as depicted in Fig. 1 of Ref. [2] or
Fig. 1(a) of Ref. [24].

This commonly accepted picture is very adequate in the
weak-coupling limit [2] of the adiabatic regime [25–28],
whence the electron-phonon coupling is small on the energy
scale of the hybridization between the relevant molecular
orbital(s) and the surface (or electrodes in a transport exper-
iment), and provides a basic understanding of the relevant
physical processes. However, it becomes problematic in sys-
tems dominated by polaron formation, or for systems in the
crossover region between the adiabatic and the antiadiabatic
regimes [25–27].

This calls for a more general treatment of the inelastic
tunneling process. In this paper we provide such a theory,
focusing in particular on the case of scanning tunneling spec-
troscopy (STS). We generalize the original picture [1,2] to
strongly correlated electron systems but maintain the notion
that inelastic contributions to the tunneling current require
absorption or emission of a phonon while the electron is cross-
ing the tunnel barrier. We treat the STM tip and the system
of interest as initially decoupled and fully characterized by
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their exact Green’s functions. After specifying the tunneling
Hamiltonian ĤT , the tunnel current operator is derived from
charge conservation. Then, the coupling between the system
and the STM tip, ĤT , is switched on, and the evolving steady-
state current is evaluated in second order of the tunneling
matrix elements. All material-dependent spectral properties
are encoded in the equilibrium spectral functions of the sys-
tem. Combining an accurate determination of the molecular
spectral function using Wilson’s numerical renormalization
group (NRG) approach [29,30] with a density functional
approach [31] provides a theoretical approach to strongly
coupled system with predicting power.

STS is an established technique and its theoretical back-
ground is well understood [32,33]. Setting aside more chal-
lenging situations, commonly a featureless density of states
in the STM tip is assumed, and the STM is operated in
the tunneling regime such that the measured dI/dV curve
may be interpreted as being proportional to the local energy-
dependent density of states (LDOS) of the sample at the
given bias voltage. Using spin-polarized tips [34] allows for
the detection of the spin-dependent LDOS. Since electrons
usually can tunnel from the STM tip to different orbitals in
the target system, the quantum mechanical interference of
different paths [35] may lead to Fano line shapes [36] in the
tunneling spectra.

The interpretation of electron tunneling becomes more
complicated if the spectrum is dominated by the Kondo effect.
The Kondo effect, originally discovered as resistance anomaly
in metals containing magnetic impurities [37,38], has been
studied experimentally in quantum dots [39,40], atoms and
molecules on surfaces [41–56], and molecular junctions [57].
A comprehensive understanding has been developed [29,58]:
briefly, the at low temperatures logarithmically diverging an-
tiferromagnetic exchange coupling between the unpaired spin
and the itinerant electron states in the substrate (or leads) pro-
duces a singlet ground state with a low-energy single-particle
excitation spectrum that is characterized by a resonance at
zero energy. In such systems with their intrinsically highly
nonlinear LDOS in the vicinity of the chemical potential,
it becomes very challenging to distinguish between elastic
tunneling processes governed by the energy-dependent trans-
fer matrix and additional inelastic contributions generated
by the presence of an additional electron-phonon coupling.
For example, in such systems, so-called Kondo replica at
vibrational frequencies have been observed [59–65], whose
precise nature is, however, not yet understood. The interplay
between Kondo physics and electron-vibron coupling has also
been studied theoretically [66–68].

Since only the total tunneling current is accessible in exper-
iments, its decomposition into individual processes requires
guidance by a theory. In this paper, we present an approach
providing this guidance. Specifically, we derive an extension
to the comprehensive theory of the tunneling current in STM
that was originally formulated by Schiller and Hershfield
[35] in the context of a magnetic adatom and generalized
Fano’s analysis [36] to inelastic contributions in the tunneling
Hamiltonian which includes the calculation of the current
operator from the local continuity equation. Notably, our
theory accounts for two different types of electron-phonon
interactions: (i) the intrinsic electron-phonon coupling in the

system in the absence the STM tip and (ii) vibrationally
induced fluctuations of the distance between tip and molecule
or substrate. The former is included in the system’s Green’s
functions and only contributes to the elastic current. The latter
enter the tunneling Hamiltonian ĤT and, therefore, are the
origin of the inelastic current contributions.

Having developed said theory, we demonstrate its ca-
pabilities by applying the approach to explain experi-
mental data. To this end, we have chosen the system
of naphthalene-tetracarboxylic-acid-dianhydride (NTCDA)
molecules adsorbed on the Ag(111) surface. Similar systems,
PTCDA/Ag(111) [69–72] and PTCDA-Au complexes on
Au(111) [73,74], have been investigated before but without
the necessity of including phononic contributions. There, we
applied a combination of density functional theory and many-
body perturbation theory (DFT-MBPT) and used the ensuing
quasiparticle spectrum as input to a NRG calculation [30]
to comprehensively understand the STS spectra. However,
despite the similarity between NTCDA and PTCDA, STM
experiments on NTCDA/Ag(111) cannot be explained using
the same methodology. Specifically, the theory predicts a
zero-bias resonance whose width is significantly too large
compared to the experiment. The origin of this deviation is not
clear, as DFT-MBPT are expected to provide reliable input pa-
rameters for accurate NRG-calculated spectra [71–74]. More-
over, the calculated spectra lack additional features that are
present in the experiment and hint toward inelastic electron-
phonon contributions. The NTCDA/Ag(111) system, there-
fore, seems a good candidate as a first application case of our
theory.

Indeed, we argue below that the NTCDA/Ag(111) experi-
ments can be interpreted in a conclusive way by incorporating
the very different effects of two vibrational modes into the
description. One mode couples strongly to the local sub-
strate electrons, thus dynamically modifying the hybridiza-
tion function between the substrate and the molecule; this
results in a substantial reduction of the Kondo temperature
of the NTCDA molecule/substrate system. In contrast, the
second mode couples only weakly to the electronic system.
Both modes, however, cause modulations of the tunneling
distance. While the second mode induces rather accentuated
inelastic side peaks close to the vibrational frequency as
consequence of a second-order phonon absorption/emission
process, the polaronic entanglement of the first mode with
the electronic system gives rise to two inelastic current con-
tributions: a first-order term involving only a single phonon
process is responsible for an asymmetric term while the
second-order contribution generates only very weak inelastic
features located in the spectrum at a renormalized phonon
frequency. The strength of the theory presented here is the
inclusion of both rather different mechanisms on an equal
footing. It demonstrates how different vibrational modes with
similar frequencies can nevertheless lead to distinctly dif-
ferent spectroscopic signatures. While, based on the com-
monly accepted level of understanding of electron-phonon
effects in electron tunneling, the steplike structures are easily
identified as vibration related, the vibrational sharpening of
the Kondo resonance in the presence of only marginal side
peaks would be impossible to pinpoint without theoretical
guidance.
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Before going in medias res, we briefly review the rel-
evant literature regarding inelastic tunneling in STM and
STS. Many papers in the literature focus on the theory of
inelastic contributions to the tunneling current and, therefore,
modifications to STS spectra. In particular, the influence of
vibrational modes has been addressed [2,24,75,76]. Most of
these theories [32,33,77] are based on the seminal many-body
approach to tunneling by Bardeen [78] that allowed to derive
the Josephson current as a tunneling current between two su-
perconductors [79]. Higher-order electron-phonon processes
in tunneling theories were investigated by Zawadwoski [77],
while Caroli and collaborators [80,81] employed the Keldysh
approach to calculate the inelastic electron-phonon terms.
Paaske and Flensberg investigated the influence of vibrational
effects onto the dynamics of a Kondo impurity [66]. They
combined a Schrieffer-Wolff transformation [82] with a third-
order perturbation theory that is valid in the high-temperature
regime well above the Kondo temperature and is limited to
the antiadiabatic regime. In their approximation, the atomic
solution of a Holstein model [83] derived by Lang and Firsov
(see also Mahan’s textbook [84]) modifies the Kondo coupling
J in the weak tunneling, large-U limit. This Kondo coupling J
matrix becomes energy dependent due to polaron formation,
inducing steps in the transmission matrix at multiples of the
phonon frequency. Lorente and Persson [75] combined the
Keldysh approach of Caroli et al. [81] with density functional
theory, both relying on the free-electron picture and decoupled
vibrational modes. Such an approach is only applicable in
the adiabatic regime [26,27], but cannot address the antiadi-
abatic regime that was considered by Paaske et al. [66]. In
two recent papers [85,86], electron-phonon effects included
in the single-particle self-energy have been attributed to an
inelastic electron tunneling contribution. If these self-energy
corrections are only evaluated in the adiabatic regime, the
effect on the current is so small that it becomes visible only in
the second derivative of the tunneling current d2I/dV 2 [87].

This paper is organized as follows. In Sec. II we present
our theory of the tunneling current. The theory is independent
of the system Hamiltonian and therefore of general nature. In
particular, we discuss the inelastic and elastic contributions to
the current, suggesting a partitioning that is based strictly on
the question whether energy is transferred during the tunnel-
ing process. As a necessary step toward the application of the
tunneling theory to an actual physical system, we specify a
system Hamiltonian in Sec. III. The choice of this Hamilto-
nian, consisting of a single-impurity Anderson model (SIAM)
and two distinct types of Holstein couplings, is motivated
by the experimental system of NTCDA/Ag(111) which we
introduce in Sec. IV. One of the Holstein couplings is uncon-
ventional in the sense that it couples vibrations of the adsorbed
molecule to electronic states in the substrate. In Sec. V A, we
apply the tunneling theory to the NTCDA/Ag(111) system.
To this end, we present NRG calculations of differential con-
ductance spectra and compare them in detail to experimental
scanning tunneling spectra (STS). As a result, we are able to
present a model of the NTCDA/Ag(111) system that provides
a comprehensive understanding of all generic features in the
STS spectra. In Sec. V B, we consider the STS spectra that
are to be expected for a Kondo impurity in the antiadiabatic
regime. In particular, we show that Kondo replica that are

naively expected do not show up, at least in the parameter
regime which we consider. The paper closes with a conclusion
(Sec. VI).

II. THEORY OF THE TUNNEL CURRENT

In this section of the paper, we derive a generalized tun-
neling theory for STS spectroscopy that incorporates previous
approaches [35,66,75] as limiting cases in certain parameter
regimes. We differentiate between, first, vibrational contribu-
tions that modify the electronic single-particle Green’s func-
tion (GF) of the system even in the absence of the STM tip
from, second, true inelastic contributions that are introduced
during the electron tunneling process from the STM tip into
the system, as illustrated in Ref. [2]. While the former enter
the self-energy of the Green’s function for arbitrary order in
the electron-phonon coupling, the latter are included in the
perturbative treatment of the tunneling Hamiltonian.

In essence, our approach is a generalization of the theory
by Caroli et al. [81] to arbitrary correlations in the system of
interest, but with the limitation that it is strictly only correct
up to second order in the tunnel matrix element. Higher-
order corrections, as addressed by Zawadovski [77] for oxide
interfaces, require a proper Keldysh theory that incorporates
the feedback process from the system to the STM tip and
vice versa. In such an approach, nonequilibrium distribution
functions replace the Fermi functions that we use in our
theory. In this so-called quantum point contact regime [3]
the STM tip is not any more a weak probe, and the STS
spectra would not only contain information about the system
of interest, but also about its coupling to the tip. Therefore, we
exclude these considerations here and restrict ourselves to the
tunneling limit for the system-STM coupling.

A. Tunneling Hamiltonian

We start from the most general situation for deriving the
theory by dividing the total Hamiltonian of the coupled prob-
lem as depicted in Fig. 1 into three parts,

Ĥ = ĤS + Ĥtip + ĤT , (1)

where ĤS is the system Hamiltonian of the sample, comprising
the adsorbed molecule and the substrate surface, Ĥtip denotes
the Hamiltonian of the STM tip, and ĤT accounts for all tun-
neling processes between the tip and the sample system S. We
will keep the system Hamiltonian ĤS unspecified without any
restrictions. In particular, we do not make any assumptions
about its electronic, vibronic, or even magnetic excitations.
Therefore, the strong-coupling limit, polaron formation, or
any other many-body effect, such as the Kondo effect or any
kind of magnetism, may be included in the system S. The
STM tip, however, is modeled by a simple free-electron gas

Ĥtip =
∑
�kσ

ε�kσ
c†

�kσ,tip
c�kσ,tip, (2)

where c†
�kσ,tip

creates a tip electron with spin σ and energy ε�kσ
.

If relevant, the Hamiltonian can be extended to a multiband
description, thus interpreting the index σ as a combined spin
and band label.
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FIG. 1. Cartoon of the setup: a system comprising a molecule
and a substrate is coupled to an STM tip. The arrows indicate the
two transmission paths for electrons tunneling from the tip to the
system S. The interference of such multiorbital tunneling paths is
responsible for Fano line shapes in the tunneling spectra [35].

Assuming some appropriately chosen orbital basis in the
sample system S and a single-electron tunneling process,
the most general bilinear tunneling Hamiltonian is given by
[33,78]

ĤT =
∑

μ�kσσ ′

(
T σσ ′

μ,�k d†
μσ c�kσ ′,tip + H.c.

)
, (3)

where d†
μσ creates an electron in the as yet unspecified local-

ized orbital μ of the system S. μ = 0, . . . , M − 1 labels dif-
ferent orbitals in the system. While only two tunneling paths
are included in Fig. 1, in general, electrons thus tunnel from
the STM tip to M different orthogonal orbitals of the system
S. These orbitals can be the orbitals of a molecule adsorbed
on the substrate surface, or substrate Wannier orbitals in the
vicinity of the STM tip. The shape of the STM tip influences
which orbitals μ have to be included in Eq. (3). If M � 2, the
quantum mechanical interference of the different tunneling
paths includes the possibility of a Fano resonance [35]. An
additional capacitive coupling between the STM tip and the
system [88] is ignored since we target the low-bias regime
of STM junctions. Such charging terms become relevant at
large-bias voltages which are not considered in this paper.

A difficulty arises because even if T σσ ′

μ,�k is spin diagonal,

it still depends on the details of the tip shape, which is
unknown in experiment. Therefore, one usually makes several
approximations that effectively absorb the details of the tip
shape into an unknown ratio of tunneling matrix elements,
but nevertheless turn out to be helpful for the understanding
of spectroscopy data. For example, Tersoff and Hamann [33]
assume that the STM tip electrons are described by plane
waves, leading essentially to a factorization of the matrix
elements

T σσ ′

μ,�k = a�ktσσ ′
μ . (4)

Then, a fictitious STM tip orbital can be introduced as

c0σ,tip =
∑

�k
a�kc�kσ,tip (5)

that we label with i = 0. The local annihilation operator c0σ,tip

of an electron with spin σ in this orbital is expanded in
the free-electron operators c�kσ,tip with some expansion coef-
ficients a�k whose details are not of interest and do not enter
the theory, unless the STM tip is characterized by a strongly
nonlinear DOS in the relevant energy range. In the approx-
imations (4) and (5), the STM tip shape has disappeared in
some overall tunneling matrix elements tσσ ′

μ . However, we
have to be aware that the STM tip breaks the local point-group
symmetry of the molecule. Therefore, one has to be careful
when excluding tunneling channels purely on the basis of the
symmetries of ĤS .

For frozen nuclear positions { �Ri}, the above bilinear tun-
neling Hamiltonian is given by

ĤT =
∑
μσσ ′

tσσ ′
μ ({ �Ri})d†

μσ c0σ ′,tip + H.c. (6)

Here, tσσ ′
μ ({ �Ri}) denotes a tunnel matrix element that depends

on some parameter set that is related to the atomic positions
{ �Ri} in the system S and the tip, as well as on the spin.

Since we are interested in the influence of molecular vibra-
tions on the tunneling current, we must account for the change
of the tunneling matrix element between the system S and the
STM tip due to the vibrationally induced changes of the tip
distance. To be more specific, let us assume that d†

μσ creates
an electron in some extended molecular orbital spread over
the entire surface-adsorbed molecule, or in a local Wannier
state of the substrate in the vicinity of the STM tip. The
molecule will have some vibrational eigenmodes, labeled by
ν, that deform the orbital. Imagining a perfectly rigid STM tip
without any intrinsic vibrations, the tip-orbital distance will
change as a function of this displacement. Since the tunnel
matrix elements are exponentially dependent on the distance,
we model the tunneling matrix element by

tσσ ′
μ ({ �Ri}) → tσσ ′

μ

({ �R0
i

}
, �Rtip

)
e fμ({X̂ν }), (7)

where tσσ ′
μ ({ �R0

i }, �Rtip ) denotes the tunneling matrix element
between the STM tip and the orbital μ if all atoms of the
molecule are in their equilibrium positions { �R0

i } and the STM
tip is located at position �Rtip. The unknown function fμ
depends on the superposition of all individual dimension-
less displacement operators X̂ν = bν + b†

ν of each molecular
eigenmode. Since we also allow for an electron-phonon cou-
pling in the system (the system Hamiltonian ĤS is as yet
unspecified), the equilibrium position of atoms within the
molecule might be shifted with respect to the equilibrium
positions in the absence of this coupling [26,27]. Therefore,
it is useful to subtract the equilibrium position xν0 = 〈X̂ν〉
from X̂ν and define X̂ ′

ν ≡ X̂ν − xν0 in Eq. (7). We assume that
vibration-induced changes in the tunneling matrix element
are small and expand exp[ fμ({X̂ ′

ν})] up to first order in the
displacement. This leads to the simplification

tσσ ′
μ ({ �Ri}) ≈ tσσ ′

μ

({ �R0
i

}
, �Rtip

)(
1 +

∑
ν

λtip
μνX̂ ′

ν

)
, (8)

where λ
tip
μν parametrizes the change of the tunnel coupling of

the STM tip to the orbital μ, induced by the excitation of the
molecular vibration ν. Similar terms have been considered in
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the context of heavy-fermion superconductivity [89] where
the ionic breathing mode couples to the lattice phonons.
Although this parameter λ

tip
μν can be spin dependent in the

case of a magnetically ordered surface, we have dropped this
spin dependency. From now on, we also drop the argument
{ �R0

i }, �Rtip on the right-hand side of Eq. (8) and use tσσ ′
μ to refer

to tσσ ′
μ ({ �R0

i }, �Rtip ).
The matrix form of tσσ ′

μ in spin space can be expressed in
general [90] as

t
μ

= t0
μI + �tμ �σ (9)

by specifying four parameters t0
μ, �tμ as spin-dependent tunnel

matrix elements. The spinor matrix �σ could, for example,
represent a free localized spin in the system S, or on the STM
tip, that can couple to magnetic excitations such as magnons
in a magnetic system S, which may cause additional magnetic
inelastic contributions. In this paper, however, we assume that
t
μ

is diagonal with diagonal elements

tμσ = t0
μ + σ t z

μ. (10)

This allows spin-dependent tunneling matrix elements tμσ , as
they occur, e.g., for spin-polarized tips. If both the tip and
the system S are paramagnetic, then �tμ = 0 in Eq. (9) and
tμ,+1/2 = tμ,−1/2 = t0

μ.

Note that a small λ
tip
μν in Eq. (8) does not imply that the

electron-phonon coupling in the system S comprising sub-
strate and molecule must be weak because it is included in ĤS

and not connected to the parameters λ
tip
μν in the STM tunneling

theory. In fact, the electron-phonon coupling in S can be
arbitrarily strong [66] since the theory that we will present
below only requires that tσσ ′

μ is a very small energy scale and,
therefore, the STM must be operated in the tunneling limit.

In the following, we drop the prime in X̂ ′ and demand
〈X̂ 〉 = 0. We discuss the generic case of 〈X̂ 〉 = x0 	= 0 below
in Sec. III B 2, where we show that in leading order the total
tunneling current is independent of x0, as expected, although
the partitioning between elastic and inelastic contributions
is not unique. This is not surprising since the notion of an
inelastic process requires the definition of the underlying
phonon basis sets.

B. Tunnel current operator

As the next step, we explicitly derive the analytic form
of the tunnel current operator from charge conservation. This
approach has the advantage that it allows the construction of
the total current operator of the problem systematically and
without adding terms by hand.

Since the tunnel current changes the number of electrons
on the STM tip, the current operator ĵSTM is related to the
change of the charge Q̂tip = eN̂tip on the tip, i.e.,

ĵSTM = dQ̂tip

dt
= i

e

h̄
[Ĥ , N̂tip] = i

e

h̄
[ĤT , N̂tip]

= i
e

h̄

∑
μσ

tμσ ({ �Ri})(d†
μσ c0σ,tip − c†

0σ,tipdμσ ), (11)

in order to enforce charge conservation in the total system,
consisting of the tip and the sample system S. Because the

total particle number operator of the STM tip, N̂tip, commutes
with Ĥ0 = ĤS + Ĥtip, the current operator is generated by the
tunneling Hamiltonian ĤT only.

The inelastic contributions to the tunnel current will be-
come transparent once we substitute the linear expansion of
tμσ ({ �Ri}) in the displacements, Eq. (8), into Eq. (11). A differ-
ent ĤT , for example in the case of a magnetic interface, will
modify the current operator derived in Eq. (11). Depending on
the physics included in ĤT , this approach could also include
inelastic magnetic spin-flip contributions.

C. Tunnel current in a scanning tunneling microscope

Since in the tunneling limit ĤT defines the smallest energy
scale of the system, we proceed in the interaction picture. Us-
ing textbook expressions we can derive an analytic expression
that is exact in the order O(H2

T ) and comprises a product of
two fermionic spectral functions [78] (see Appendix A for the
details). The total tunneling current is given by

Itot = 2πe

h̄

∑
σ

∫ ∞

−∞
dω ρσ,tip(ω)τσ (ω)

×[ ftip(ω) − fS (ω)], (12)

where ftip(ω) = f (ω − eV ) and fS (ω) = f (ω), with f (ω) =
[exp(βω) + 1]−1 being the Fermi function. One of the spectral
functions

ρσ,tip(ω) = lim
δ→0+

1

π
ImGc0σ,tip,c

†
0σ,tip

(ω − iδ) (13)

incorporates the properties of the STM tip and is usually
replaced by a constant. All system properties are encoded in
the transmission function

τσ (ω) =
M−1∑
μμ′

tμσ tμ′σ lim
δ→0+

1

π
ImGBμσ ,B†

μ′σ
(ω − iδ), (14)

where the composite operator Bμσ ,

Bμσ = e fμ({Xν })dμσ , (15)

includes the dependency of the tunneling processes on the
vibration-induced displacements of the local atomic positions.
As usual, GA,B(z) with arbitrary operators A, B refers to the
equilibrium Green’s function [91] defined in the complex
frequency plane z except on the real axis.

All elastic and inelastic contributions to the current are
incorporated in τσ (ω) and are connected with the composite
Fermionic operator Bμσ . In order to discriminate between
elastic and inelastic contributions, it is useful to define Bμσ ≡
[1 + C]dμσ where the operator C is given by

C = e fμ({Xν }) − 1. (16)

Substituting this expression into Eq. (14) yields four terms:
the first does not contain C, two are linear in C, and one is
quadratic in C. The first term obviously defines the elastic
current Iel, while the other three are included in the inelastic
current Iinel, defining the terminology

Itot = Iel + Iinel, (17)

used throughout the rest of the paper. It turns out that the
two terms linear in C are only nonvanishing for a finite
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electron-phonon coupling in the system and are responsible
for an additional odd-frequency contribution while the term
quadratic in C survives in the limit of vanishing electron-
phonon coupling in the system.

1. Elastic tunnel current

The elastic tunnel current is given by

Iel = 2πe

h̄

∑
σ

∫ ∞

−∞
dω ρσ,tip(ω)τ (0)

σ (ω)

×[ ftip(ω) − fS (ω)], (18)

where

τ (0)
σ (ω) =

M−1∑
μμ′

tμσ tμ′σ lim
δ→0+

1

π
ImGdμσ ,d†

μ′σ
(ω − iδ) (19)

is the spin-dependent transmission function from the STM tip
to the system S. The transmission function τ (0)

σ (ω) can also be
interpreted as the fermionic Green’s function of the operator
Aσ = ∑M−1

μ tμσ dμσ .
We note that the result in Eq. (18) includes the Fano effect

[36] by interference effects among more than one elastic
transport channel. For example, it is straightforward to show
that Eq. (18) reproduces the result of Eq. (6) of Ref. [35], if
we set M = 2 and replace d1σ by the local surface conduction
electron operator ψ ( �Rs).

2. Inelastic tunnel current

In order to gain insight into the nature of the inelastic
tunneling term and make connection to the literature, we use
the linear expansion of the operator C in the electron-phonon
as outlined in Eq. (8). The contributions to the inelastic tunnel
current are classified by the power of the electron-phonon
coupling λ

tip
μν in the tunneling Hamiltonian.

In first order in λ
tip
μν , we obtain an inelastic tunnel current

I (1)
inel = 2πe

h̄

∑
σ

∫ ∞

−∞
dω ρσ,tip(ω)τ (1)

σ (ω)

× [ ftip(ω) − fS (ω)], (20)

where the transmission function τ (1)
σ (ω) is defined as

τ (1)
σ (ω) =

M−1∑
μμ′

tμσ tμ′σ

×
( Nν−1∑

ν

λtip
μν lim

δ→0+

1

π
ImGX̂νdμσ ,d†

μ′σ
(ω − iδ)

+
Nν−1∑

ν

λ
tip
μ′ν lim

δ→0+

1

π
ImGdμσ ,X̂νd†

μ′σ
(ω − iδ)

)
. (21)

Since the expectation value of the anticommutator of a
Green’s function GA,B(z) equals the frequency integral of the
corresponding spectrum ρA,B(ω) = ImGA,B(ω − i0+)/π , we
can conclude that the spectra of Gdμσ ,X̂νd†

μ′σ
and GX̂νdμσ ,d†

μ′σ
both individually integrate to 〈X̂ν〉δμ,μ′ . Hence, for a vanishing
displacement 〈X̂ν〉 = 0, either the Green’s function Gdμσ ,X̂ dμσ

is identically zero, or its spectrum [i.e., the transmission

function τ (1)
σ (ω)] has equal positive and negative spectral con-

tributions. The first statement is true in the limit of vanishing
electron-phonon coupling. For nonvanishing electron-phonon
coupling, however, the transmission function τ (1)

σ (ω) does not
vanish since quantum fluctuations and hence nonzero correla-
tors Gdμσ ,X̂νd†

μ′σ
and GX̂νdμσ ,d†

μ′σ
(z) are allowed even if 〈X̂ν〉 = 0.

In second order in λ
tip
μν , the inelastic tunnel current

I (2)
inel = 2πe

h̄

∑
σ

∫ ∞

−∞
dω ρσ,tip(ω)τ (2)

σ (ω)

× [ ftip(ω) − fS (ω)] (22)

involves the transmission function

τ (2)
σ (ω) =

M−1∑
μμ′

tμσ tμ′σ

×
Nν−1∑
νν ′

λtip
μνλ

tip
μ′ν ′ lim

δ→0+

1

π
ImGX̂νdμσ ,X̂ν′ d†

μ′σ
(ω − iδ).

(23)

Up to second order, the total inelastic contribution to the
tunneling current is thus given by Iinel = I (1)

inel + I (2)
inel. Again,

the spectral sum rule of GX̂νdμσ ,X̂ν′ d†
μ′σ

(z) is related to the

expectation value of the anticommutator, i.e., 〈X̂ν X̂ν ′ 〉δμ,μ′ .

3. The limit of vanishing electron-phonon coupling in the system S

In order to make the connection to the literature and also
to point out the major difference of our theory in comparison
with earlier ones, we consider the limit of vanishing electron-
phonon coupling in the system S, but maintain a small but
nonzero λ

tip
μν . Then, 〈X̂ν〉 = 0. As argued in the previous

section, as a consequence τ (1)
σ (ω) = 0, and I (1)

inel = 0 hold,
while I (2)

inel is reduced to a simplified result [2] because the
correlation function GX̂νdμσ ,X̂ν′ d†

μ′σ
(t ) in Eq. (23) factorizes in

the time domain into the product of the electronic Green’s
function and the phonon propagator GX̂ν ,X̂ν

(t ):

GX̂νdμσ ,X̂ν′ d†
μ′σ

(t ) = Gdμσ ,d†
μ′σ

(t )GX̂ν ,X̂ν
(t )δνν ′ . (24)

Therefore, the spectral function is given by a convolution
in the frequency domain. Summing over all free vibrational
modes ν on a molecule with frequency ων , we obtain [84]

τ (2)
σ (ω) =

∑
μμ′ν

tμσ tμ′σ λtip
μνλ

tip
μ′ν

[
ρdμσ ,d†

μ′σ
(ω − ων )[g(ων )

+ fS (ων − ω)] + ρdμσ ,d†
μ′σ

(ω + ων )

× [g(ων ) + fS (ων + ω)]
]
, (25)

where g(ω) denotes the Bose function. Using the approxi-
mation (25) in Eq. (22) yields the identical inelastic current
contribution as derived in Ref. [81].

We briefly discuss two extreme cases for the electronic
spectral function. For simplicity, we restrict ourselves to M =
1 and a single vibrational mode with frequency ω0. This
excludes the possibility of a Fano resonance. In the first
extreme, we assume a featureless density of states in the
vicinity of the Fermi energy over an interval [−2ω0, 2ω0], i.e.,
ρμ,μ′σ (ω) → const in Eq. (25), and βω0 � 1 so that the Bose
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function can be ignored. Then, τ (2)
σ (ω) will be dominated by

the Fermi functions, introducing two threshold contributions
in the overall differential conductance dI/dV at ±ω0. These
are the typical dI/dV steps that are often encountered in
inelastic tunnel spectroscopy as shown in Fig. 1 of Ref. [24].

In the second extreme, we consider an electronic DOS of
the sample system S which possesses a sharp spectral peak
located at ω = 0 with a width 
 � ω0. Then, τ (2)

σ (ω) exhibits
again a sharp threshold behavior at ±ω0, but instead of a
plateau the spectral function decreases with increasing |ω| on
a scale given by the peak broadening 
. In this case, two
“replicas” of the peak at ω = 0 can be found at ±ω0 in the
overall differential conductance dI/dV . However, the Fermi
function fS (ω0 ± ω) cuts away the halves of the replicas on
the low-|ω| side and modifies them to a threshold behavior: a
minimal energy transfer for eV = ±ω0 is required to generate
an inelastic contribution replicating the standard picture [2].
These truncated replicas of the ω = 0 peak are generated
by the inelastic tunneling process due to the change of the
distance between system S and STM tip. In case of a large
electron-phonon coupling in S, the approximation (25) is
invalid and the proper Green’s function GX̂νdμσ ,X̂ν′ d†

μ′σ
(t ) must

be calculated, along with GXνdμσ ,d†
μ′σ

(t ) and Gdμσ ,Xνd†
μ′σ

(t ).

D. Discussion

The presented tunneling theory combines different limits
[2,24,66,75,84,92] discussed in the literature. We stress again
that no assumption is needed with respect to the nature and
dynamics governing the system S. On the contrary, the theory
can address arbitrary strengths of both the electron-electron
and electron-phonon interactions in the system. The only
input that is required are the Green’s functions of the partic-
ipating orbitals and vibrational displacements in the absence
of the STM tip.

The theory is valid in the tunneling limit and we have re-
stricted ourselves to the conventional single-particle electron
transfer operator ĤT [78]. A further assumption that we have
made concerns the relative distance changes between the tip
and the system S that are induced by the relevant vibrational
modes; they must be small enough such that a linear expansion
of the tunneling matrix elements in the displacements suffices
and higher-order terms can be neglected.

Apart from allowing quantitative calculations of tunneling
spectra for realistic systems, one of the most important ben-
efits of the theory is that it allows a systematic separation of
elastic contributions to the tunneling current (charge transfer
does not involve an energy transfer) from inelastic ones (aris-
ing from correlated tunneling processes involving a fermionic
hopping and a displacement operator). This differentiation
in some cases deviates from the one given in the literature.
In fact, the terminology elastic vs inelastic current is not
unambiguous throughout the literature.

In some cases, certain contributions to the elastic and
inelastic tunnel currents may even have the same analytic
structure. This can be illustrated for a single orbital in the
case of weak electron-phonon coupling in the system S, if
moreover the free-electron and the free-phonon pictures are
employed [75,85,92]. We have seen in the previous section
that in the case of vanishing electron-phonon coupling in S,

FIG. 2. Second-order Feynman diagram of the generating
Luttinger-Ward functional in the system S. The full line represents
the full local electron Green’s function Gd (z), the wiggled line the
full phonon propagator. iωn = iπ (2n + 1)/β denote the fermionic
Matsubara frequencies and iωn = i2πn/β the bosonic Matsubara
frequencies [93].

but for finite coupling λtip in the tunneling matrix element,
the general expression for τ (2)

σ (ω) [Eq. (23)] in the inelastic
current I (2)

inel takes on the shape as Eq. (25), leading to an
inelastic current which for the special case of a flat DOS at
the Fermi level leads to steps in the differential conductance
at the vibrational energies ±ω0.

We now compare this result to the perturbatively calculated
elastic current in the same limit. Under these circumstances,
the Green’s function of the orbital with the single-particle en-
ergy εa has the form Ga(z) = [z − εa − �el(z) − �el-ph(z)]−1,
where the self-energy �el(z) accounts for the purely electronic
interactions and �el-ph(z) arises from the additional electron-
phonon coupling which is limited to the system S as assumed
by Lorente et al. [75]. Introducing G(0)

a = [z − εa − �el(z)]−1

allows for a perturbation expansion in linear order of �el-ph(z)
in weak electron-phonon coupling,

Ga(z) = G(0)
a (z) + G(0)

a (z)�el-ph(z)G(0)
a (z) + · · · . (26)

If we substitute this expansion of Ga(z) into the expression
(18) for the elastic current, two contributions arise: first a
purely electronic one generated by G(0)

a (z), and second a
contribution involving the self-energy �el-ph(z) in first order.
This second term has been designated as an inelastic term in
the literature [75,85,92], but we include it in the elastic part
of the current since the electron energy is conserved during
the tunneling process and the scattering process occurs in the
system S.

It is interesting to note that the second-order contribution
to �el-ph(z) in Eq. (26) is proportional to GX̂νdμσ ,X̂νd†

μ′σ
in

weak coupling. This can be seen from Fig. 2, which depicts
the generating functional [93] for the conserving approxi-
mation of �el-ph(z): by differentiating with respect to the
electronic Green’s function Gd (iωn) (equivalent to cutting
the semicircular full line) we obtain the diagram of the
electronic self-energy �el-ph(z) due to the electron-phonon
interaction [5,28]. Evidently, this diagram has the structure
of GX̂νdμσ ,X̂νd†

μ′σ
. Therefore, the analytic structure of the elastic

current calculated in second-order perturbation theory from
Eq. (26) is identical to that of the inelastic current given
by Eq. (25). But, while the overall form of the two current
contributions is identical, the physical mechanisms are differ-
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ent: In one case, an electron tunnels elastically from the tip
into the system S, probing its density of states that includes
the effects of vibration-induced electron scattering within the
system S. In the other case, the electron loses energy during the
tunneling, induced by the modulation of the distance between
the tip and the system S, and transmits through the system
S without further scattering on the vibration. Although both
loss processes are governed by different coupling constants
(λtip vs λc or λd , see Sec. III B 1), in the limit of vanishing
couplings these become of course indistinguishable. Thus,
our approach incorporates the literature result in the limit
of vanishing electron-phonon couplings. Once we leave the
validity of the weak-coupling limit, however, the two pro-
cesses become distinguishable: On the one hand, the electron-
phonon coupling in S leads to peaks in the density of states
at the vibrational frequencies (see above), giving a distinct
signature in the elastic current, and on the other hand the full
composite Green’s function GX̂νdμσ ,X̂νd†

μ′σ
must be calculated

in the appropriate higher order to obtain the correct inelastic
current as given by Eq. (22); this also properly accounts for
the renormalization of the phonon frequency in the adiabatic
regime which will affect the inelastic current profoundly.

Returning to Fig. 2, we note that the phonon propagator
obtains its self-energy by differentiation of the functional with
respect to the phonon propagator (equivalent to cutting the
wiggly phonon line that branches off from the particle-hole
loop). In the spectral function and STS spectra, this correc-
tion to the phonon propagator has two consequences: First,
it causes a renormalization of the phonon frequency itself
[27,94] and, second, it induces multiphonon processes. In the
literature, however, the self-energy of the phonon propagator
is often neglected [85] and the phonon is treated as a free exci-
tation with an infinite lifetime, such that only the bare phonon
frequency enters the final expression [75,92]. Evidently, such
approaches are limited to the case of a vanishing electron-
phonon coupling in the system, i.e., the weak adiabatic limit,
and cannot include renormalization effects stemming from
multiphonon processes. Already at moderate electron-phonon
coupling corrections at ω = 2ω0 in the self-energy occur
which also find their way into the tunneling spectra. Reference
[28] discusses the deviations of the nonperturbatively calcu-
lated full electron-phonon self-energy from the lowest-order
perturbative results.

In conclusion, we maintain the terminology of the elastic
current for all current contributions where the electrons travel
ballistically between the tip and sample system S. Internal
many-body scattering processes within the system S are all
included the spectral functions within τ (0)

σ (ω) and no assump-
tion of the strength of the internal interactions is required.
Therefore, Iel describes the current for a static distance be-
tween the system S and the STM tip.

III. MODELING THE SYSTEM

In the previous section, we have presented a tunneling the-
ory which relies on three transmission functions: one contains
the information on the elastic tunneling current, the other
two are connected linearly and quadratically to vibrational
displacements. While this tunneling theory is completely gen-
eral, for its application we need to specify the Hamiltonian of

the system ĤS and thus also the spectral functions which enter
the tunneling theory. In this section, we specify and discuss a
ĤS which turns out to be of sufficient generality to describe the
physical sample system which we investigate experimentally
in Sec. IV.

A. Electronic degrees of freedom

We employ a single-orbital single-impurity Anderson
model (SIAM) for the electronic degrees of freedom

Ĥe =
∑
�kσ

ε�kσ
c†

�kσ
c�kσ

+
∑

σ

εdσ nd
σ + Und

↑nd
↓

+
∑
�kσ

V�k (c†
�kσ

d0σ + d†
0σ c�kσ

) (27)

of the sample system S, thereby assuming that only one single
molecular orbital is relevant for the energy spectral properties
accessed by the STM. c†

�kσ
creates an effective substrate elec-

tron of energy ε�kσ
, momentum �k, and spin σ , while d†

0σ creates
an electron in a local orbital, e.g., of a species adsorbed on
the substrate surface, with the energy εdσ . The third term in
the above equation specifies the Coulomb repulsion between
electrons of opposite spin in the local orbital. The last term
describes the hybridization between the substrate and the local
orbital. We include the subscript 0 into the notation of the
single active molecular orbital, indicating that it will enter the
tunnel Hamiltonian ĤT [Eq. (3)] as μ = 0 orbital.

For solving realistic systems with this ansatz, the SIAM
needs to be mapped to the results of an atomistic simulation of
the system in question. In this context, the projected density of
states (PDOS) of the local orbital as calculated by a combina-
tion of DFT and many-body perturbation theory (MBPT) [31]
plays a crucial role because the mean-field parametrization of
the local orbital’s Green’s function

Gmf
d (z) = [z − εdσ − Un−σ − �(z)]−1 (28)

can be employed to extract εdσ as well as the hybridization
function �(z) [71,73] as defined in the framework of the
SIAM:

�(z) =
∑

�k

|V�k|2
z − ε�kσ

. (29)

Both serve as the input for a NRG calculation [30]. We
note that in the absence of an electron-phonon coupling the
influence of the substrate on the dynamics in the local orbital
is completely determined by �(z), which justifies an effective
single-band model [95]. The spectral function required for the
calculation of the elastic tunnel current through the system S
as specified by the above Hamiltonian can be obtained by the
standard approach [96,97] that is based on the complete basis
set of the NRG [98,99]. If the local orbital is close to integral
filling, the exact solution of this model describes the Kondo
effect [29,100].

B. Vibrational degrees of freedom
and electron-phonon coupling

1. Hamilton operator

Naturally, we need to include a vibrational component into
ĤS if we want to calculate the two inelastic transmission
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functions τ (1)
σ (ω) and τ (2)

σ (ω) that play a role in the tunneling
theory of Sec. II C. We divide the vibrational Hamiltonian into
two parts, Ĥph and Ĥe-ph. We assume that there are Nν phonon
modes in the system S, and hence Ĥph is given by

Ĥph =
Nν−1∑
ν=0

ωνb†
νbν, (30)

where a phonon of mode ν is created by b†
ν . Even in the

absence of an electron-phonon coupling in the system S, this
term must be included in ĤS when we evaluate the tunneling
current as presented in Sec. II C because each of the modes
ν can in principle modulate the tunneling matrix element
between the tip and the system S.

The second term in the vibrational Hamiltonian Ĥe-ph de-
scribes the electron-phonon coupling in S. While in principle
all Nν phonon modes may couple to the electrons in the system
S, for simplicity we restrict the electron-phonon coupling in
the present section to a single mode b†

0 of frequency ω0.
All NRG calculations reported below are performed with
the restriction to a single-phonon mode in order to keep the
number of parameters in the model very small. Therefore, ω0

always labels the eigenfrequency of the coupled vibrational
mode that is included in the NRG, while ων (ν > 0) refers to
eigenfrequencies of modes with no electron-phonon coupling
in ĤS but still contributing to the tunneling Hamiltonian
ĤT . Of course, the number of phonon modes that couple to
the electrons can straightforwardly be extended to whatever
number is required to explain the experimental observations.
For example, it turns out that Nν = 2 phonon modes, one
with a nonzero electron-phonon coupling within S, the other
without, are sufficient to reproduce the experimental spectra
of NTCDA/Ag(111) in Sec. IV with a minimal set of free
parameters. We note that all molecular vibrations that do
not have a finite or relevant electron-phonon coupling in the
system S can be ignored in the calculation of the electronic
properties of the system in absence of the STM tip.

We assume that Ĥe-ph is given by an extended Holstein
Hamiltonian

He-ph = λd X̂0

(∑
σ

d†
0σ d0σ − nd0

)

+ λcX̂0

(∑
σ

c†
0σ c0σ − nc0

)
, (31)

comprising two Holstein couplings λd and λc to two distinct
orbitals. One of these orbitals is the local orbital d0, the other
an effective local substrate electron c0σ that hybridizes with
the local orbital d as described in Eq. (27). The annihilation
operator of the effective local substrate electron is defined by

c0σ = 1

V̄

∑
�k

V�kc�kσ
, (32)

V̄ 2 =
∑

�k
|V�k|2, (33)

and is entering the hybridization part in the SIAM [Eq. (27)].
This operator and the corresponding c†

0σ obey the fermionic
anticommutation relation by construction. X̂0 = b†

0 + b0

denotes the dimensionless vibrational displacement opera-
tor of the phonon mode ω0. The unconventional Holstein
coupling λc is included in Ĥe-ph since it captures the fact
that a vibrational excitation of the adsorbed molecule may
couple to electrons in the substrate when parts of the molecule
periodically beat onto the substrate surface. In particular, we
will show below that this unconventional Holstein coupling
can reduce the Kondo temperature [101] of the system S.

The additional constants nd0 and nc0 in Eq. (31) are often
set to zero in the literature [102] when the polaronic energy
shift in the single-particle energies is of primary interest be-
cause they do not play a role then. Here, however, we focus on
the quantum fluctuations with respect to some reference filling
that are induced by the electron-phonon coupling [27,28] and
use these constants to ensure 〈X̂ν〉 = 0. Typical values are
nd0 = nc0 = 1 at half-filling.

2. Interaction-driven displacement of the harmonic oscillator

Away from particle-hole symmetry, an electron-phonon
coupling as the one in Eq. (31) generates a displacement of the
equilibrium position of the corresponding harmonic oscillator.
Since we are going to use an atomistic DFT calculation with
relaxed atomic coordinates to generate the input parameters of
the model Hamiltonian Ĥe + Ĥph + Ĥe-ph, such an additional
displacement is not justified. We therefore include appropri-
ately adjusted nd0 and nc0 added in Eq. (31) to ensure 〈X̂0〉 =
0. However, the perturbative derivation of the tunnel current
does not rely on explicitly vanishing displacements 〈X̂ν〉, and
therefore the absorption of the equilibrium displacement in
Eq. (8) is just a convention and must not alter the physics.

The equilibrium displacement generated by the electron-
phonon coupling also touches upon a more fundamental issue:
Evidently, the physical observables such as the total STS
spectra must not depend on the precise definition of the
operators bν . We therefore need to analyze our theory in this
respect. Specifically, we show in this section that the total
current STS spectra calculated in our theory do not depend
on the choice of the basis for the operators bν . Interestingly,
however, this choice of basis does determine the partitioning
between the elastic and the inelastic contributions to the
total current. Inelastic and elastic currents are therefore not
physical observables, but an interpretation based on a model-
dependent partitioning of the total current.

Let us assume that we have made a particular choice X̂ of
the oscillator basis and find a nonzero 〈X̂0〉 = x0 for the mode
ω0 (for which ĤS foresees an electron-phonon coupling). For
simplicity, we assume that the other Nν − 1 vibrational modes
〈X̂ν〉 = 0 hold. Then, we can define a new bosonic operator

b̄0 = b0 − 1
2 x0 (34)

such that 〈 ˆ̄X0 = b̄0 + b̄†
0〉 = 0. Substituting this expression

into Ĥph + Ĥe-ph [Eqs. (30) and (31)],

Ĥph + Ĥe-ph

=
Nν−1∑
ν=1

ωνb†
νbν + ω0b̄†

0b̄0 + λd x0Nd + λcx0N̂c + E0

+ ˆ̄X0

(
λd (N̂d − nd0) + λc(N̂c − nc0) + ω0x0

2

)
, (35)
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where we define N̂d ≡ ∑
σ n̂d

σ , N̂c ≡ ∑
σ c†

0σ c0σ , and absorb
all constants into E0. To keep the Hamiltonian ĤS = Ĥe +
Ĥph + Ĥe-ph invariant under the basis set change of the bosonic
operator, we substitute εd → εd + λd x0 and define a single-
particle energy εc = λcx0 for the orbital c0σ . In case of a
nonzero λc, we also need to shift the constant nc0 → nc0 −
ω0x0/2λc. Since under these conditions the Hamiltonian is
unaltered, the dynamics of the fermion degrees of freedom
remains identical and independent of this basis transformation
b0 → b̄0. In particular, this means that the Kondo temperature,
if applicable, and other thermodynamic properties of the
system S remain unchanged.

Now, we analyze the effect of a nonzero expectation
value 〈X̂0〉 = x0 on the tunnel current. For simplicity, we
set Nν = 1 and assume identical vibrational couplings in the
tunneling Hamiltonian ĤT for all M orbitals, i.e., λ

tip
μν = λ

tip
μ′ν .

For τ (1)
σ (ω) defined in Eq. (21) we require the Green’s func-

tions involving the vibrational displacements either linearly or
quadratically. The relation between these in the two bases X̂
and ˆ̄X follows from (34) and is given by

GX̂ dμσ ,d†
μ′σ

(z) = G ˆ̄Xdμσ ,d†
μ′σ

(z) + x0Gdμσ ,d†
μ′σ

(z), (36)

GX̂dμσ ,X̂ d†
μ′σ

(z) = G ˆ̄Xdμσ , ˆ̄Xd†
μ′σ

(z)

+ x0
(
Gdμσ , ˆ̄Xd†

μ′σ
(z) + G ˆ̄Xdμσ ,d†

μ′σ
(z)

)
+ x2

0Gdμσ ,d†
μ′σ

(z). (37)

Substituting these expressions into the formula for the total
tunnel current, Eq. (12), and regrouping the different con-
tributions, we obtain for the sum of the three transmission
functions that enter the integral for the total tunnel current up
to second order

τ (0)
σ + τ (1)

σ + τ (2)
σ

(1 + λtipx0)2τ̄ (0)
σ + (1 + λtipx0)τ̄ (1)

σ + τ̄ (2)
σ . (38)

The purely fermionic Green’s function Gdμσ ,d†
μ′σ

(z) picks up

the factor (1 + λtipx0)2 which therefore appears as a prefactor
in the elastic density of states and in the corresponding tunnel
current. Remembering that our theory is accurate to quadratic
order in λtip, we may add corrections of order O([λtip]3) and
higher to the right-hand side of Eq. (38). Since τ̄ 1

σ and τ̄ (2)
σ are

of orders (λtip) and (λtip)2, respectively, we can thus write

τ (0)
σ + τ (1)

σ + τ (2)
σ � (1 + λtipx0)2

(
τ̄ (0)
σ + τ̄ (1)

σ + τ̄ (2)
σ

)
after adding the corresponding higher-order correction terms
to the prefactors of τ̄ (1)

σ and τ̄ (2)
σ . Therefore, a finite displace-

ment x0 generates an overall prefactor (1 + λx0)2 in the total
tunnel current. This can be absorbed into the tunneling matrix
element t2

μσ → t̄2
μσ = t2

μσ (1 + λx0)2 ≈ [tμσ exp(λx0)]2, lead-
ing to an identical total tunnel current for the two bases X̂ and
ˆ̄X , up to O([λtip]3) corrections.

However, while the total current is invariant under the basis
change of the harmonic oscillator, the attribution of elastic
and inelastic contributions remains basis dependent, which
becomes immediately obvious from Eqs. (36) and (37): the

inelastic current in the original oscillator basis contains an
elastic part with respect to the shifted oscillator basis.

We adopt the following strategy in order to ensure that
all properties are discussed in the framework of a harmonic
oscillator basis with vanishing displacements in the presence
of the electron-phonon coupling: First, we calculate the dis-
placement for a given ĤS , second we perform a basis set
change of the harmonic oscillators to a basis ˆ̄Xν with 〈 ˆ̄Xν〉 = 0.
This leads, third, to a renormalization of the model parameters
in ĤS , as outlined in Eq. (35). Fourth, we calculate all spectral
functions in the transformed basis. This implies that the effect
of the displacement is absorbed into the definition of the
prefactor via Eq. (8) and is consistent with the notion that
an additional electron-phonon coupling does not change the
atomic equilibrium positions as determined by the LDA.

IV. EXPERIMENTS ON NTCDA/AG(111)

A. Choice of system

To meaningfully test our tunneling theory of Sec. II C, we
need a system S that exhibits both strong electron-electron
interaction and electron-phonon interaction and can be in-
vestigated in very clean conditions with STM and STS.
Specifically, building on the Hamilton operator introduced
in Sec. III, a quantum impurity system which shows the
Kondo effect appears prospective. Molecular adsorbates on
metals are a good starting point to realize a quantum im-
purity system [45,46,63,69,73,74] since they have localized
orbitals that may interact with the electrons of the metal
substrate. At the same time, molecules display large numbers
of vibrational modes, offering the possibility to find a sizable
electron-phonon coupling at least for some of these modes.
In fact, the combination of the Kondo effect and vibrational
inelastic tunneling has been reported for a few molecule-on-
metal systems [60–64]. For technical reasons, well-ordered,
commensurate periodic layers have advantages since in these
layers the molecules are located at well-defined sites, enforced
by both interactions with the substrate and interactions with
the neighboring molecules.

These considerations draw our attention to the sys-
tem of 1,4,5,8-naphthalene-tetracarboxylic acid dianhydride
(NTCDA) on Ag(111). For this system, the Kondo ef-
fect has been reported [103]. An additional benefit is that
NTCDA/Ag(111) bears similarity to PTCDA/Ag(111) and
AuPTCDA/Au(111), for which the Hamiltonian in Eq. (27)
has allowed a quantitative modeling of the Kondo effect. How-
ever, unlike PTCDA/Ag(111), NTCDA/Ag(111) displays the
Kondo effect even in the native adsorbed state [103], without
artificially lifting the molecule from the surface, such that
it can be studied in the tunneling regime, a prerequisite for
our theory. Moreover, it shows a rich vibrational signature
[104,105]. This makes NTCDA/Ag(111) ideally suited to the
present purpose.

B. Experimental details

The Ag(111) crystal was prepared by repeated cycles of
Ar+ sputtering and annealing to T ≈ 800 K for 15 min. A
small coverage of NTCDA molecules (less than 15% of a
monolayer) was deposited from a home-built Knudsen cell
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bright
molecule

dark
molecule

FIG. 3. Constant-current STM image of the relaxed phase of
NTCDA on Ag(111) (I = 200 pA, V = 50 mV). Graphical repre-
sentations of (gas-phase) NTCDA molecules have been overlaid over
the bright and dark molecules. The white, gray, and red circles indi-
cate hydrogen, carbon, and oxygen atoms of NTCDA, respectively.
The length of the scale bar is 10 Å.

onto the clean Ag(111) surface held at T ≈ 80 K. After
deposition, the sample was annealed at T ≈ 350 K for 5 min
and afterward cooled down to T ≈ 80 K within 2–3 min. In
order to minimize contaminations the sample was transferred
into the STM immediately after the preparation.

The scanning tunneling microscopy (STM) and spec-
troscopy (STS) experiments on NTCDA/Ag(111) were car-
ried out in ultrahigh vacuum (UHV) in a Createc STM with a
base temperature of T ≈ 9.5 K and JT-STM (SPECS) with a
base temperature of T ≈ 4.3 K. The JT-STM offers magnetic
fields up to 3 T in the out-of-plane direction. Differential
conductance dI/dV spectra were recorded with the lock-in
technique with the current feedback loop switched off. Typical
parameters were a modulation amplitude of 0.6-2 mV and
a modulation frequency of 833 Hz. Before experiments on
NTCDA, a featureless tip density of states was ensured by
measuring the surface state of clean Ag(111). After changing
the temperature of the STM we waited for 20 h to obtain
equilibrium conditions before measuring dI/dV spectra.

dI/dV spectra at different locations above the same
molecule were measured as follows: First, the tip was posi-
tioned above the CH edge of a NTCDA molecule at tunneling
current I = 200 pA and bias voltage V = 50 mV; then, the
feedback loop was switched off and the tip was moved at
constant height to different locations above the molecule,
followed by the measurement of dI/dV spectra at each of the
desired positions.

C. Structure

The geometric structure and the electronic properties of
NTCDA on Ag(111) have already been studied in previous
works [103–107]. There are two phases, commonly referred
to as the relaxed and the compressed ones [105–107]. Here,
we focus on the relaxed phase of NTCDA/Ag(111). In Fig. 3
an STM image of the relaxed phase of NTCDA is shown. The
relaxed phase contains two molecules per unit cell, arranged
in a brick-wall structure with a rectangular unit cell of area
11.57 Å × 15.04 Å. The structure is commensurate [105].
Because of their different appearance in the STM image, the

FIG. 4. Constant-current STM image of the rippled phase of
NTCDA on Ag(111) (I = 200 pA, V = 50 mV). The arrow indicates
a line along which the character of the molecules changes gradually
from bright to dark and vice versa. The length of the scale bar is
20 Å.

two molecules in the unit cell will from now on be referred
to as bright and dark molecules, respectively. Both molecules
are aligned with their long axis along the [011̄] direction of
the substrate [105]. The difference between the two molecules
most probably arises from different adsorption sites on the
surface. Because the arrangement of the molecules in the unit
cell is consistent with two distinct high-symmetry sites, on-top
and bridge [105], it appears natural that the molecules are in
fact located in these sites. However, it is not known whether
bright molecules are in on-top and dark molecules in bridge
sites or vice versa. From our PBE + vdWsurf calculations (see
below) we find that the NTCDA molecules at both sites are
chemisorbed. The on-top molecule has an average distance of
z = 2.89 Å and a corrugation of �z = 0.35 Å, while for the
bridge molecule we observe z = 2.86 Å and �z = 0.40 Å.

We report here also a phase that to the best of our knowl-
edge has not been reported before, the rippled phase. An STM
image of the rippled phase, a variant of the relaxed phase, is
shown in Fig. 4 in which over a distance of approximately six
unit cells along the [011̄] direction of the substrate the bright
molecule turns into a dark one and vice versa.

D. Kondo effect

Figure 5 displays STS spectra recorded above
NTCDA/Ag(111) in four different positions, namely, in
the vicinity of the CH edges of the NTCDA molecule and in
the center of the molecule, each for both the bright and the
dark molecules. These positions were chosen because at the
CH edges the lowest unoccupied molecular orbital (LUMO)
of NTCDA exhibits an intense lobe (for the bright molecule
this lobe is directly seen in the STM image of Fig. 3), while
in the center of the molecule two nodal planes of the LUMO
intersect. Note that the LUMO of NTCDA becomes partially
occupied when the molecule adsorbs on Ag(111) [103–105].
An image of the probability amplitude of the LUMO is shown
in Fig. 8.

Figure 5 shows that at the CH edge both molecules exhibit
a peak at zero bias (the precise peak position for the bright
molecule is +1.9 meV, while for the dark molecule it is
−0.6 meV), although with very different intensities. For the
bright molecule this peak is much more intense. Ziroff et al.
suggested that a corresponding peak observed in photoelec-
tron spectroscopy at the Fermi energy is a manifestation of
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CH edge CH edge

retneCretneC

FIG. 5. dI/dV spectra of the bright and dark molecules acquired
at the CH edge (left) and at the center (right) of the bright (red line)
and dark (black line) molecules, respectively. The spectra are plotted
on the bias-voltage axis as measured. A calibration of bias-voltage
scale to symmetrize the inelastic features would require shifting the
spectra by 2.25 mV to the right. Fano fits according to Eq. (39) are
indicated by blue lines, the fit parameters are bright molecule, CH
edge: δ = 24.04, q = 6.44. Bright molecule, center: δ = 32.50, q =
1.74. Dark molecule, CH edge: δ = 25.42, q = 6.95. Dark molecule,
center: δ = 29.84, q = 2.08. Average fit parameters are listed in
Table I.

the Kondo effect with a Kondo temperature of TK � 100 K
[103], although its temperature evolution did not resemble the
characteristic temperature dependence of a Kondo resonance.
For the purpose of this paper we have to establish beyond
doubt that the zero-bias peak for both molecules is indeed
a Kondo resonance. To this end, we use a three-pronged
approach, comprising measurements of the zero-bias peak as
a function of temperature, magnetic field, and hybridization,
in each case looking for the dependence that is indicative of
the Kondo effect.

We first analyze the temperature dependence of the zero-
bias peak for the bright molecule. In Fig. 6(a) its full
width at half-maximum (FWHM) is displayed. The FWHM
was extracted by fitting with a Fano line shape [35,36].
Broadening effects due to temperature T and modulation
amplitude Vmod have been taken into account by subtract-

FIG. 6. (a) Temperature evolution of the FWHM of the zero-bias
peak of the bright molecule. (b) dI/dV (V, z) maps for the bright
(left) and dark (right) molecules, recorded after the formation of
the tip-molecule bond. The meaning of the z coordinate is shown
schematically in the illustrations. (c) dI/dV spectra at various z in a
magnetic field of B = 2.5 T, measured at T = 4.3 K.

ing them from the measured FWHM, using FWHM =√
FWHM2

measured − (1.7Vmod)2 − (3.5kBT )2 [108]. The such-
determined intrinsic FWHM exhibits the expected tempera-
ture dependence of a Kondo resonance. Fitting the expression√

(αkBT )2 + (2kBTK )2 to the FWHM [109] we find a Kondo
temperature of T bright

K = 133 K and α = 4.53. It should be
noted that this is only a rough estimate because the FWHM is
related to TK by a nonuniversal scaling constant [73]. A more
accurate analysis of the Kondo temperature will be presented
in Sec. V A.

Because of its low intensity and broad FWHM, the temper-
ature dependence of the zero-bias peak of the dark molecule
is difficult to study. A broad Kondo peak indicates that the
system is in the weakly correlated regime, with a small ratio
U/
 and a large Kondo temperature TK , where U is the
intraorbital Coulomb repulsion [Eq. (27)] and 
 is an energy-
averaged hybridization parameter [related to Eq. (29)]. To
prove that the zero-bias peak of the dark molecule is also
a Kondo resonance, we therefore apply a different strategy:
Instead of decreasing the temperature to change its line shape,
we decrease 
, thus tuning the system further into the strong-
coupling regime, in which the Kondo peak is sharper and more
easy to pin down. The tuning of the hybridization is achieved
by forming a contact (at z ≡ 0 Å, where z is the vertical tip
coordinate) between the tip apex and one of the corner oxygen
atoms of NTCDA. The corresponding part of the molecule can
then either be pushed toward the surface (z < 0 Å) or lifted
up (z > 0 Å) [69–72]. Figure 6(b) displays dI/dV spectra
recorded at different z for both molecules, plotted as color
maps. Both maps exhibit very similar behavior, albeit shifted
with respect to each other by �z = 0.9 Å along the vertical
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FIG. 7. dI/dV spectra of the different NTCDA molecules in the
rippled phase, recorded directly after the formation of the bond of the
tip to the molecules. The data were acquired at T = 4.3 K. Spectra
are vertically offset by 5 μS for clarity.

axis. Based on the similarity of the maps, and the fact that for
the bright molecule we have already shown, employing the
temperature dependence, that the zero-bias peak is a Kondo
peak, we can conclude that the same is also true for the dark
molecule. In fact, both maps in Fig. 6(c) exhibit the expected
dependence of a spin- 1

2 Kondo effect, as the comparison
with the well-studied case of lifting PTCDA molecules from
Ag(111) shows [69–72].

The maps clearly show the sharpening of the Kondo res-
onance that is expected if the hybridization is reduced and
the Kondo effect is tuned from the weak-coupling toward the
strong-coupling regime. Note that in addition to reducing 
,
lifting the molecule may reduce the charge transfer to the
molecule and also lead to a smaller dielectric screening due
to the larger molecule-surface distance, both resulting in a
increased Coulomb interaction U , thus further increasing U/


with increasing z. We note furthermore that the FWHM of the
zero-bias peak decreases by a factor of ≈2.4 for the bright
and dark molecules when the molecule is contacted by the tip
(from 22 mV for the noncontacted bright molecule in Fig. 5
to 9 mV for the contacted molecule at z = 0, and from 45 mV
to 19 mV for the dark molecule, see Fig. 7). This reduction
of the FWHM can be explained by the partial dehybridization
that occurs when the oxygen atom jumps into contact with
the tip and lifts the surrounding parts of the molecule from
the surface. It is well known that the additional contact to the
tip is electronically weak and does not lead to an appreciable
hybridization with the LUMO [10,88]. Since the FWHM
of the zero-bias peak decreases by approximately the same
factor for the bright and dark molecules when the molecule is

contacted by the tip, we can conclude that the initial T dark
K of

the dark molecule, without the contact to the tip, must also be
larger than T bright

K . This explains the broader Kondo peak of
the dark molecule in Fig. 5.

In the strong-coupling regime, moderate magnetic fields
may split the Kondo resonance [110]. Applying a B field of
2.5 T at an experimental temperature of 4.3 K, we indeed
observe an incipient splitting of the Kondo resonance for the
bright molecule at z = 0.5 Å. Assuming a Landé factor of g =
2, the Zeeman energy at 2.5 T is gμBB ≈ 0.29 mV, slightly
smaller than the thermal fluctuations kBT ≈ 0.37 mV at T =
4.3 K (at z = 0.5 Å, TK has dropped so far that gμBB �
kBTK ). Therefore, the split is not well developed, but never-
theless clearly visible. Note that for the noncontacted bright
molecule a Bc ≈ kBTK/(gμB) ≈ 49.5 T would be necessary to
split the Kondo resonance, which is clearly out of reach.

Another notable observation in Fig. 5 is the fact that in
the center of the molecule steplike structures at zero bias are
observed instead of a Lorentzian peak. The spectra of the
bright and dark molecules are almost identical and merely
differ in the intensity of the steplike feature. Such features
result from the quantum interference between two or more
different tunneling paths [35,36]. This interference leads to
a zero-bias feature with a so-called Fano line shape. In the
simplest case of two interfering channels, the differential
conductance is approximated by

dI

dV
(V ) ∝ ρ0 + (q + ε)2

1 + ε2
, (39)

with

ε = eV − EK

(δ/2)
(40)

and

q = t2
πρ0
t1

. (41)

Here, EK describes the intrinsic position of the Kondo reso-
nance, δ its FWHM, 
 the hybridization between the local
orbital and the substrate, t1 and t2 the tunneling probabilities
from the tip directly into the substrate and into the local
orbital, respectively, and ρ0 the density of states. q determines
the line shape of the Kondo resonance. The blue lines in Fig. 5
display fits of Eq. (39) to the experimental tunneling spectra.
The fit parameters q and δ, averaged over fits for 10 data sets
including the one shown in Fig. 5, are summarized in Table I.
As expected, δ is on average larger for the dark molecule than
for the bright one (see above). However, it is noteworthy that
the δ that is extracted from the spectra recorded at the CH
edge is approximately the same as the one for the center of
the molecule. This confirms that both the Lorentzian peak
and the steplike feature indicate the same energy scale; we
can thus conclude that the step is also a manifestation of
the Kondo effect that leads to the peak recorded at the CH
edge. Table I also reveals that q is significantly smaller in the
center of the molecule, indicating that there the probability
to tunnel directly from the tip into the substrate (t1) is larger
than at the CH edge. The reason for the larger tunneling
probability directly into the substrate when the tip is located
in the center of the molecule is a direct consequence of the
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TABLE I. δ and q extracted from the fits of the Fano line shape
[Eq. (39)] to the dI/dV spectra of the bright and dark molecules. The
values are averages over the fit parameters for 10 different data sets.
One data set is shown in Fig. 5.

Molecule Location δ q

CH edge (28.5 ± 2.3) mV 15.5 ± 6.9
Bright

Center (29.4 ± 6.8) mV 1.2 ± 0.2

CH edge (52.1 ± 4.7) mV 21.4 ± 9.7
Dark

Center (48.5 ± 8.2) mV 0.9 ± 0.4

spatial distribution of the LUMO wave function, which has a
node in the center of the molecule and a pronounced lobe at
the CH edge [Fig. 8(b)]. This is reflected in Fig. 8(a), which
displays the LDOS of the LUMO 4 Å above the gas-phase
NTCDA molecule.

We note that the fits displayed in Fig. 5 and the derived
parameters in Table I are merely heuristic and should only
be used to ascertain that there are at least two tunneling paths
present, and that the center of the molecule is more transparent
to the tunneling current than the CH edge. More elaborate fits
to the spectra, based on a more solid theoretical foundation,
will be presented in Sec. V A.

We conclude that there is overwhelming experimental evi-
dence (from T -dependent data, junction stretching, magnetic
field data and quantum interference) that both the dark and the
bright molecule of the relaxed NTCDA/Ag(111) phase ex-
hibit the Kondo effect. To explain the behavior of the present
system quantitatively, it therefore appears natural to apply the
theory that has been very successful for PTCDA/Ag(111) and
AuPTCDA/Au(111) [71–74]. This is done in Sec. V A.

E. Vibrational features

In addition to the zero-bias features, the spectra in Fig. 5
also show features at finite-bias voltages. Most notable are
peaks at approximately +(47.0 ± 0.3) mV and −(51.5 ±
0.3) mV in the spectra recorded at the CH edges of both

FIG. 8. Local density of states (LDOS) of the LUMO of NTCDA
calculated 4 Å above the gas-phase molecule (left panel). A graphical
representation of the gas-phase NTCDA molecule has been overlaid
for clarity. The right panel shows the top view of the LUMO of
the gas-phase NTCDA molecule. The different colors indicate the
positive [�(r) > 0] and negative [�(r) < 0] contributions of the
wave function.

TABLE II. Vibrational modes of gas-phase NTCDA in the en-
ergy range 40 to 50 meV, calculated by DFT (taken from Ref. [104]).
Gas-phase NTCDA has the symmetry group D2h.

No. Symmetry h̄ω

1 B3g 41.6 meV (335.35 cm−1)
2 B1u 46.2 meV (372.41 cm−1)
3 B3g 50.4 meV (406.62 cm−1)
4 Ag 50.7 meV (408.96 cm−1)
5 B1g 52.8 meV (525.53 cm−1)

the bright and the dark molecules. However, we also observe
weak features around ±30 mV. The (nearly) symmetric loca-
tion of in particular the stronger features around zero bias (up
to a shift of 2.25 mV toward negative energies) is suggestive
of excitations, either during the tunneling process or within
the sample system. Such excitations can occur as a result of,
e.g., vibrational or magnetic degrees of freedom. We have not
observed any change or shift of the side peaks in magnetic
fields up to 3 T. It is therefore unlikely that the features are of
magnetic origin and we conclude that they must be linked to
vibrations. NTCDA indeed has a number of vibrational modes
in the relevant frequency range [104]. Some of them are listed
in Table II.

When recorded in the center of the molecule, the features
at +(47.0 ± 0.3) mV and −(51.5 ± 0.3) mV become much
stronger. In Fig. 9, the spatial distribution of the vibrational
features is displayed, recorded as a d2I/dV 2 image at �
50 mV, in comparison with a constant-height topographic
image. One observes an image without nodal planes and a
clear concentration of the intensity close to the center of the
molecule. This is true for both molecules, although the bright
molecule has a larger maximum intensity, which is consistent
with Fig. 5. Moreover, for the spectra measured in the center
of the molecules there is a clear difference in the line shape
between the bright and dark molecules. In both cases, they are
asymmetric with a steep rise at the low-bias side, but for the
dark molecule the drop on the high-bias side is more moderate
than for the bright molecule, giving the vibrational feature a
more steplike appearance for the dark molecule, in contrast to
a “half-peak” for the bright molecule.

The dependence of the line shapes of the vibrational
features at +(47.0 ± 0.3) mV and −(51.5 ± 0.3) mV on the
shape of the spectrum at zero bias is also apparent in Fig. 10,

FIG. 9. The panel on the left shows a STM topography image
measured at constant height above the molecules of the rippled
phase (V = 47 mV). The panel on the right shows the corresponding
d2I/dV 2 image. The length of the scale bar is 10 Å.
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FIG. 10. (Left) dI/dV spectra of the different NTCDA
molecules in the rippled phase at T = 4.3 K. The spectra have
been recorded at the CH edge of each molecule. Different colors
correspond to the different molecules as indicated by the colored
frames around the molecules. The color coding is the same as in
Fig. 7. (Right) dI/dV spectra of the different NTCDA molecules
in the rippled phase at T = 4.3 K, measured at the center of each
molecule. Colors as in (b). Spectra are vertically offset by 1 nS for
clarity.

which displays the evolution of the Kondo peak and the
vibrational side bands in the transition from the dark to
the bright molecule in the rippled phase of Fig. 4. As the
intensity of the Kondo peak (measured at the CH edge)
increases, the vibrational features measured in the center of
the molecule at +(47.0 ± 0.3) mV and −(51.5 ± 0.3) mV
turn from a step for the dark molecule into an asymmetric
peak for the bright molecule, in agreement with Fig. 5. For the
feature at +(47.0 ± 0.3) mV this behavior is also illustrated
by Fig. 11, in which �σcenter is plotted versus σCH(0) and a
linear correlation between the peak height of the vibrational
feature and the Kondo peak is observed [111].
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FIG. 11. Plot of the step height �σcenter measured at the center of
the molecules in the rippled phase as a function of the height σCH(0)
of the Kondo resonance at the CH edge. The values are obtained from
the spectra displayed in Fig. 10. Color coding as in Fig. 10. Data
points have been fitted by a linear function of the form �σcenter =
c × σCH(0) + b, fit parameters are c = 0.13, b = 0.30 nS.

V. NUMERICAL RENORMALIZATION GROUP RESULTS

A. Application of the tunneling theory to NTCDA

1. General approach

In this section we specify step by step the theoretical
framework needed to reproduce and explain the experimen-
tally measured differential conductance dI/dV spectra in
Fig. 5, using Eqs. (18), (20), and (22) as a basis. We use
an approach [71–74] in which we map the results of density
functional theory (DFT) calculations, combined with many-
body perturbation theory (MBPT) to include quasiparticle
corrections, onto the Hamiltonian ĤSIAM of a single-orbital
Anderson model (SIAM), here also including Holstein terms,
which is then solved by NRG calculations. In particular, the
NRG is used [29,30] to exactly calculate all spectral functions
that are required to calculate the transmission functions that
enter Eqs. (18), (20), and (22). As pointed out in Ref. [73],
employing a fully energy-dependent hybridization function

(ω) = Im�(ω − i0+) = π�|Vk|2δ(ω − εk ) in the NRG is
crucial for an accurate description. Moreover, we do not
impose particle-hole symmetry.

Our theoretical framework is the same as discussed in
Refs. [71–74]. Structural optimization is performed within
density-functional theory (DFT), using the SIESTA package1

[112,113], using ab initio pseudopotentials and a double-zeta
plus polarization basis (DZP). We employ the PBE exchange-
correlation functional [114]. Since the van der Waals (vdW)
interaction is crucial for weakly bound systems like organic
molecules on metal surfaces, we include it in the formulation
of Ruiz et al. [115] (vdWsurf) for all structure optimizations.

We emphasize that the systematic evaluation on the DFT-
MBPT level as input for our NRG calculations is crucial.
As elaborated in detail in Refs. [71,73], precise structural
properties are required for a realistic description of the en-
ergetic positions of HOMO and LUMO and the molecule-
substrate hybridization, as a prerequisite for obtaining a re-
alistic Kondo temperature. This concerns in particular the
adsorption heights of the molecules. It turns out that for
weak chemisorption, as in Ref. [73] and in the case of
NTCDA/Ag(111) discussed in this paper, the correct imple-
mentation of van der Waals interaction is crucial for the ad-
sorption structure. We achieve this by employing the approach
of Ref. [115]. On the other hand, the vibrational properties are
much less sensitive to the underlying equilibrium structure.
This has been discussed in Ref. [104] by comparing the
results from various theoretical methods. It turns out that
the symmetries and energies of the vibrational modes are
very similar for the various DFT functionals, and our NRG
results depend only marginally on the chosen approximation,
provided that the realistic equilibrium adsorption structure
(from our vdW-corrected DFT) is employed.

In addition to the structural data, the electronic mean-field
spectrum of the adsorbed molecule (in particular its LUMO
state) is required as input for the NRG. This cannot be calcu-
lated on the level of DFT since DFT suffers from problems

1We are using version 3.2 of SIESTA which is available at
http://departments.icmab.es/leem/siesta
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FIG. 12. PDOS of the LUMO of NTCDA/Ag(111) as calculated
by a combination of DFT and MBPT. The latter includes quasiparti-
cle corrections. (a) On-top molecule, (b) bridge molecule.

regarding electronic spectra [71–74]. Instead, many-body per-
turbation theory (MBPT) provides a systematic approach to
spectral features (except for the dynamical correlation to be
treated by the NRG.) Here, we employ the same approach
as discussed in Refs. [71–74]. Starting from a DFT-LDA
calculation for a given geometry, we carry out a MBPT
calculation within our LDA + GdW approach. This yields
realistic band-structure energies for all states of the adsorbate
system, fully including all screening and broadening effects
resulting from the metallic surface. After projecting on the
LUMO state of the bare molecule, we arrive at a projected
density of states (PDOS) as shown in Fig. 12. From this PDOS
one can deduce the level position εdσ of the LUMO state
when adsorbed on the surface, as well as its hybridization
function �(z) [see Eq. (28)]. In addition, the internal Coulomb
interaction U of the LUMO state is also obtained from
MBPT [71].

2. Input from ab initio calculations and model without
electron-phonon coupling

As suggested by experimental data (see Fig. 3 and dis-
cussion in Sec. IV C), the molecules in the calculations are
placed at on-top and bridge sites on the Ag(111) surface.
According to the calculation, both molecules chemisorb sta-
bly at these sites. The ab initio calculation predicts well-
separated NTCDA molecular orbitals, an energy broadening
of the orbitals due to their hybridization with the substrate, a
partial occupation of the lowest unoccupied molecular orbital
(LUMO) due to charge transfer from the substrate, and a
substantial intramolecular Coulomb interaction U = 1.25 eV
for the LUMO. The specific local environments of the two
adsorption sites lead to slightly different positions of the
on-top and bridge LUMOs, as can be seen in the projected
densities of state in Fig. 12, with the weight of the PDOS
spectrum of the bridge molecule appearing further to the
left. Similarly, the value of the hybridization functions at the
chemical potential differ slightly for the two molecules, being

bridge(0) = 190 meV and 
top(0) = 165 meV.

Because the Coulomb interaction is substantial compared
to the hybridization strength, it enforces a single occupation
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FIG. 13. Comparison between the experimental dI/dV spectra
recorded on NTCDA/Ag(111) (black lines) and the results of NRG
calculations for the SIAM with the PDOS of Fig. 12 as input (blue
lines). The NRG spectra have been adjusted with a constant offset
[ρoffset = 0.2 nS in (a), ρoffset = 1.1 nS in (b)] to account for an
experimental background signal such that the zero-bias peak heights
and the high-frequency tails are matched to the experimental dI/dV
curve.

of the LUMOs on both molecules, leading to a free spin of
the radical that is ultimately screened by the Kondo effect
for T → 0. Since the ab initio PDOS spectra only contain
the Coulomb interaction on a mean-field level, the half-filled
orbitals are spin degenerate in a paramagnetic calculation and
the effective mean-field orbital energy must be pinned close
to the Fermi energy, as is indeed apparent in Fig. 12.

Both ab initio spectra in Fig. 12 are much too wide
compared to the STS data which exhibit a peak width of the
order of 30 meV in the differential conductance at zero bias.
This indicates that many-body correlations play an important
role and must be taken into account for matching theory with
experiment. Interpreting the ab initio PDOS as a mean-field
solution [Eq. (28)] [71–74] allows us to extract the single-
particle energies ε

bridge
dσ

= −0.77 eV and ε
top
dσ

= −0.67 eV for
both types of molecules as well as the full complex hybridiza-
tion function �(z) [Eq. (29)].

Next, we use these sets of ab initio parameters and func-
tions as an input for NRG calculations to solve the SIAM for
both the bridge and the on-top molecules in the absence of
any electron-phonon coupling. For simplicity, we also set the
tunneling matrix element tc0σ

from the tip to the local effective
substrate orbital [defined in Eq. (32)] to zero and only include
ρd0σ ,d†

0σ
(ω) in the calculation of the theoretical dI/dV curve

[Eqs. (18) and (19)], where d0σ is the annihilation operator
for an electron in the LUMO. The results for the on-top
and bridge molecules are displayed in Fig. 13, revealing a
substantial narrowing of the zero-bias resonance relative to
the ab initio PDOS.

Thus, in the calculations as well as in experiments, both
molecules exhibit a Kondo resonance. Driven by the differ-
ences in 
(0), the two molecules in the NTCDA/Ag(111) unit
cell have different Kondo temperatures: the Kondo temper-
ature of the bridge molecule is larger than that of the on-top
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molecule. If we associate the larger measured to the larger cal-
culated Kondo temperature, we can identify the dark molecule
with the bridge site and the bright molecule with the on-top
site (as is done in Fig. 13). This identification is consistent
with expectations based on structural arguments, namely, that
the bridge molecule adsorbs slightly closer to the surface and
exhibits a larger corrugation. This explains the larger 
, the
smaller coupling parameter U/
, and thus also the larger
TK . However, while the experimental trend T dark

K > T bright
K is

thus correctly predicted, the actual widths of the zero-bias
anomalies, which are a measure of Kondo temperature, are
too large compared to experiment, as indicated by the much
narrower experimental curves in Fig. 13.

3. Identification of the problem: The unconventional Holstein
model as a possible solution

The SIAM without electron-phonon coupling as discussed
in the previous section has three shortcomings: (i) the Kondo
temperature TK , determined from the full width at half-
maximum (FWHM) of the calculated spectra, is too large, (ii)
the calculated spectra naturally lack the additional vibrational
features that are observed in experiment, and (iii) the exclusive
coupling of the STM tip to the LUMO orbital of NTCDA
cannot explain the marked differences between the dI/dV
spectra measured in the center and at the CH edge of the
molecules.

While it is clear how shortcomings (ii) and (iii) can be
addressed, namely, by reverting to the general tunneling the-
ory of Sec. II C that includes both inelastic tunneling and
tunneling interference, we still need to identify a mechanism
that is able to reduce the Kondo temperature below what
is expected from standard theory without electron-phonon
interaction as sketched out in the previous section.

In Sec. IV E, we have reported the observation of two
sets of vibrational features in our STS spectra. At the same
time, in our theoretical analysis of Secs. II and III we have
identified three distinct mechanisms in which vibrations may
influence the differential conductance spectra measured in
STS: a vibration-induced change of the tunnel coupling of the
STM tip to an orbital of the system S, as well as an electron-
phonon coupling purely within the system S, the latter either
of conventional or unconventional Holstein type. The coin-
cidence of observing in experiment both a reduced Kondo
temperature and vibrational features that possibly result from
an electron-phonon coupling in the system S suggests that the
two observations might be connected.

We therefore briefly explore the possibility that the
electron-phonon coupling within the system S influences,
and in particular reduces, its Kondo temperature. A finite
electron-phonon coupling |λd | > 0 [see Eq. (31)] as in the
conventional Holstein model [94,102] generates a reduction of
U → U d

eff = U − λ2
d/ω0 [27,28,84,102] and would thus lead

to an enhancement of the Kondo temperature. Only if U d
eff <

0 the width of zero-frequency peak is rapidly reduced and
the charge Kondo regime is entered [94] (see the discussion
in the literature [94] or in Sec. V B 1). However, for the
case of NTCDA/Ag(111) the DFT calculation excludes a
vibrational coupling of any local molecular vibrational mode
to the molecular orbital, i.e., demands λd ≈ 0 and, therefore,

rules out the conventional Holstein model, both as a source
of the sharpening of the Kondo peak and as a source of the
vibrational features in the STS spectrum. Finally, a coupling
of the phonon displacement to the hybridization V�k is known
to lead to an enhancement of the effective hybridization [116],
as well as a reduction of the local Coulomb interaction [89]
and thus an increase of the Kondo temperature, which can
also be analytically derived by a employing a Lang-Firsov
transformation [83].

In contrast, a possibility to reduce the Kondo temperature
is provided by an unconventional Holstein term which linearly
connects the charging energy of the effective local substrate
orbital c0σ to one of the molecular vibrational modes. In
Sec. III B 1 above, we have included such a term, parametrized
by the coupling constant λc, in Eq. (31). The physical idea
behind this term is that a molecular vibration perpendicular to
the substrate can induce a local potential change that shifts the
single-particle energy of local substrate orbitals as function
of the displacement. Such an unusual Holstein coupling has
been investigated in the context of the periodic Anderson
model to provide a microscopic mechanism for the Kondo
volume collapse [101], which is believed to be the origin of
structural γ → α phase transition in cerium [117]. It offers
the possibility to reduce the width of the equilibrium Kondo
resonance in a straightforward manner: In analogy to the
discussion before, the Holstein coupling induces an attractive
(negative) contribution to the local Coulomb interaction U c

which is initially zero in an uncorrelated free conduction band.
Consequently, the singly occupied spin-degenerate states are
energetically separated from the lower-lying empty and dou-
bly occupied states of c0σ . This energy separation reduces
the charge fluctuations with the LUMO. For a large λc, this
reduces the hybridization 
 → 
eff between the local orbital
d and the substrate c0σ , thus providing a mechanism for the
reduction of the Kondo temperature by bipolaron formation
[101].

Before applying this model to the NTCDA/Ag(111) sys-
tem, we investigate it in detail in the next two sections, first
regarding its influence on the Kondo temperature and second
regarding the spectral functions. To keep the analysis simple,
we employ the assumption of particle-hole symmetry in the
next two sections.

4. Analysis of the Holstein coupling λc: The influence
on the Kondo temperature

To set the stage for the realistic description of the
NTCDA/Ag(111) system, we investigate the influence of the
unusual Holstein coupling λc between a vibrational mode of
the molecule and a local substrate orbital on the particle-
hole-symmetric single-impurity Anderson Hamiltonian (27)
and its Kondo temperature. For clarity, we only include in
Eq. (31) a featureless conduction band with a constant density
of states ρ0 = 1/2D, a spin-degenerate molecular orbital d0σ

with single-particle energy εd = −U/2 and a single vibra-
tional mode ω0. The imaginary part of the hybridization
function (29), 
0 = Im�(−i0+) = πV 2ρ0, is a constant over
the whole band width ±D and serves as the natural unit for
all model parameters. We also set all λ

tip
μν = 0 and hence only

include the elastic contributions to the tunnel current. By
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FIG. 14. Ratio TK (λc )/TK (λc = 0) calculated for the symmetric
single-impurity Anderson model plus unusual Holstein coupling
λc for a single vibrational mode ω0. The main panel shows the
Kondo temperature as function of the coupling λc for U/
0 = 10
and different values for the vibrational frequency ω0, normalized at
λc = 0. The inset depicts the same quantity but plotted against the
polaronic energy shift Ep = λ2

c/ω0.

fitting the differential conductance that is calculated by the
NRG to the empirical formula [118] introduced by Goldhaber-
Gordon et al. [118]:

dI

dV
(V = 0) = G0[

1 + (21/s − 1)
(

T
TK

)2]s , (42)

with s = 0.22 for a spin- 1
2 system, we obtain the Kondo

temperature TK as function of λc.
In Fig. 14 we plot the ratio TK (λc)/TK (λc = 0) as function

of the Holstein coupling λc for different phonon frequencies
ω0. The additional coupling of the vibrational mode to the
surface orbital indeed leads to a reduction of the Kondo
temperature with increasing λc. For a fixed coupling strength
λc, the reduction of TK decreases with increasing ω0. For a
better understanding of the underlying mechanism, the inset
shows the same data, but plotted as a function of the polaronic
energy shift Ep = λ2

c/ω0. For phonon frequencies ω0 � 
0

and ω0 > 
0, the decrease of TK only depends on the polaron
energy Ep. In this high-frequency or antiadiabatic limit, the
phonons can be integrated out and their main effect is to
generate a negative effective U in the local substrate orbital
U c

eff ≈ −2Ep. For smaller frequencies, retardation effects play
a role and we observe increasing deviations in the crossover
regime to the adiabatic limit.

We have argued above in Sec. V A 3 that the attractive U c
eff

acting on the local substrate electrons primarily suppresses
the hybridization between the molecule and the substrate to
an effective value 
eff , which as a consequence reduces the
Kondo temperature due to the increasing correlation measured
by the ratio U/
eff . Yet, a more careful analysis reveals that
the notion of an effective hybridization 
eff may be misleading
since the absolute height of the Kondo peak is usually pinned
at 1/π
0 and additional correlations often only lead to a
narrowing of the peak width, parametrized by a reduction of
TK , but not to a change of the height of the peak. In the present

cases, however, both the peak width and its height are affected,
as we will see below.

In order to distinguish between a peak narrowing and 
eff ,
we define the latter by the orbital spectral function at zero
frequency for a particle-hole-symmetric Hamiltonian

ρd0σ ,d†
0σ

(0) ≡ 1

π
eff
. (43)

Since the real part of the Green’s function must vanish at ω =
0 in particle-hole symmetry,


eff = 
0 + Im[�σ (−i0+)] (44)

must hold using the general property Gd0σ ,d†
0σ

(z) = [z − εdσ −
�(z) − �σ (z)]−1, where we have divided the total self-energy
of the molecular orbital �tot (z) = �σ (z) + �σ (z) into the
hybridization-induced part �σ (z) for the noninteracting prob-
lem and all correlation-induced and electron-phonon-induced
corrections �σ (z). Since the imaginary part of the self-energy
�σ (z) vanishes for T, ω → 0 in a local Fermi liquid in
the standard case of a noninteracting conduction band, the
Green’s function is pinned to a fixed value ρd0σ ,d†

0σ
(0) =

1
π

(πV 2ρ0)−1 = (π
0)−1 independent of the model parame-
ters [119–121].

The presence of the unusual Holstein coupling λc, however,
leads to modifications of this picture. In Appendix B, we
derive the exact analytic expression of the correlation-induced
self-energy �σ (z) of the molecular orbital using the exact
equation of motion (EOM) for the Green’s functions [122].
The result is

�σ (z) = UFσ (z) + λdMσ (z) + λc
V0

�(z)Nσ (z)

Gd0σ ,d†
0σ

(z)
, (45)

with the definitions

Fσ (z) = Gd0σ nd−σ ,d†
0σ

(z), (46a)

Mσ (z) = GX̂0d0σ ,d†
0σ

(z), (46b)

Nσ (z) = GX̂0c0σ ,d†
0σ

(z). (46c)

We explicitly use Eq. (45) to obtain the Green’s function of
the molecular orbital from the NRG solution which provides
Fσ (z), Mσ (z), Nσ (z), and Gd0σ ,d†

0σ
(z) [122].

As shown by Hewson and Meyer [94], the self-energy
�σ (z) = [UFσ (z) + λd Mσ (z)]/Gd0σ ,d†

0σ
(z) maintains Fermi-

liquid properties and its imaginary part vanishes for T, ω →
0 for a coupling of the orbital to a free-electron gas. This
can be understood from the topology of a Feynman diagram
expansion of these correlation functions independent of the
analytic shape of Gd0σ ,d†

0σ
(z). In the presence of a finite λc, this

statement does not hold any longer: the imaginary part of the
self-energy acquires a negative offset which we will quantify
in the following.

Applying the EOM to Fσ (z) reveals that this composite
Green’s function also contains additional self-energy correc-
tions in the presence of a finite λc. Therefore, the self-energy
contribution �U (z) = UFσ (z)/Gdσ ,d†

σ
(z) cannot be identified

by the same skeleton expansion [93] as for the λc = 0 case.
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FIG. 15. Symmetric single-impurity Anderson model plus un-
usual Holstein coupling λc for a single vibrational mode ω0. Renor-
malized hybridization 
0 → 
eff (λc ) as function of λc for two
different values for ω0 at U/
0 = 10. The inset depicts the same
quantity for ω0/
0 = 0.2, λc/
0 = 0.35 as function of the Coulomb
interaction.

Another modification stems from the third term in the
numerator of Eq. (45):

��(z) = λc

V0

∣∣Gdσ ,d†
σ
(z)

∣∣2 �(z)Nσ (z)G∗
dσ ,d†

σ
(z). (47)

Assuming particle-hole symmetry and T → 0, and using that
the real part of Gdσ ,d†

σ
(−i0+), the real part of �(−i0+) as well

as the real part of Nσ (−i0+) vanish yields

��(−i0+) = i
λc
0

V0πρd0σ ,d†
0σ

(0)
ImNσ (−i0+). (48)

Nσ (z) is an off-diagonal Green’s function and its spectral
integral is zero. Therefore, its spectrum has equal positive and
negative spectral weight in different frequency regions. The
NRG calculation shows that ImNσ (−i0+) < 0 for λc > 0 and
ImNσ (−i0+) ∝ λc in leading order. Particle-hole symmetric
demands

Gd0σ ,d†
0σ

(−i0+) = i


eff
. (49)

We substitute Eq. (45) into Eq. (44) with λd = 0,


eff = 
0

−
eff

[
U ReFσ (−i0+) − λc

V0

0 ImNσ (−i0+)

]
, (50)

which we solve for the ratio


eff


0
= 1

1 + U ReF (−i0+) − λc
V0


0 ImNσ (−i0+).
(51)

A negative ImNσ (−i0+) in combination with a positive
ReF (−i0+) leads to a reduction of 
eff which is quadratic in
λc for small λc since then ImNσ (−i0+) is proportional to λc.
Clearly, the reduction 
0 → 
eff is not only affected by λc,
but also depends on U .

Figure 15 shows the dependence, as calculated by NRG, of
the effective hybridization on the coupling λc for two different
vibrational frequencies ω0 and a fixed U/
0 = 10. For a fixed
coupling strength λc, the reduction of 
eff decreases with
decreasing polaron energy Ep, as expected from the discus-
sion in the context of Fig. 14, confirming the microscopic
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FIG. 16. Symmetric single-impurity Anderson model plus un-
usual Holstein coupling λc for a single vibrational mode ω0. TK plot-
ted against the inverse of the renormalized hybridization. Different
Coulomb interactions are indicated by different colors and different
vibrational frequencies ω0 by different points. For comparison, we
added the textbook expression for TK of the SIAM as the dashed line.

mechanism outlined above: the larger Ep, the more severe
is the suppression of the hybridization and the stronger thus
the reduction of the Kondo temperature. For weak electron-
phonon coupling, we expect ImNσ (−i0+) ∝ λc, as confirmed
by NRG calculations. Furthermore, the change in real part of
correlation function Fσ (z) must also depend quadratically on
λc because it scales with the polaron energy. Hence, Eq. (51)
predicts an analytic form 1/(1 + αλ2

c ) for 
eff/
0, which
agrees well with the data presented in Fig. 15. Moreover,

eff/
0 should decrease linearly with increasing U for small
U , as an expansion of Eq. (51) in powers of U shows. The
inset in Fig. 15 confirms this prediction.

Finally, we address the question whether the change of
TK could also be understood by using an effective SIAM
without explicitly including the phonons, whose effect would
then be accounted for summarily by a renormalized 
eff . As
we will show below, the answer is no; one also needs a
renormalization U → Ueff in the molecular orbital. Since it is
possible to reproduce any TK with an appropriate combination
of U and 
, not much understanding would be gained if both
parameters were left free. Therefore, we demand that Ueff =
U f (x) depends only via a universal function f (x) on the ratio
x = 
0/
eff. Assuming the validity of the standard expression
for the Kondo temperature [100], the ratio of the Kondo
temperatures for fixed bandwidths but different hybridization
strengths 
eff is given by

T SIAM
K (Ueff = U f (x), 
eff)

T SIAM
K (U, 
0)

= 1√
x f (x)

e− πU
8
0

(x f (x)−1) (52)

which for a fixed initial value U/
0 is only a function of x.
In Fig. 16 we plot the NRG data of Fig. 14 as function of

x = 
0/
eff and indeed observe universality: all data points
for different phonon frequencies fall on top of a universal but
U -dependent curve. However, a constant function f (x) = 1,
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which would imply a Ueff = U that is not renormalized, yields
a mismatch between the NRG results and Eq. (52), as shown
for the case of U/
 = 20 by the dashed line in Fig. 16.
We obtain an excellent fit of the numerical data with a phe-
nomenological universal function f (x) = 1 + 0.21(x−2 − 1)
(thin dotted lines for the different values of U in Fig. 16). The
inset shows f (x) on the same interval.

In conclusion, our NRG solution of a physical model com-
prising an electron-phonon coupling λc between the molec-
ular vibration and a local effective substrate orbital reveals
a reduction of the Kondo temperature of the spin- 1

2 degree
of freedom in the molecular orbital. In the framework of
a particle-hole-symmetric single-impurity Anderson model,
this can be parametrized by a reduction of the hybridization
between the molecular orbital and the substrate and a concur-
rent, but more moderate reduction of the intraorbital Coulomb
repulsion U . The underlying mechanism is the generation of
a negative U c in the local effective substrate orbital. In the
antiadiabatic limit, this negative U c is essentially given by
the polaron energy. While it is intuitively clear that a negative
U c, by destabilizing the singly occupied state, will reduce the
hybridization with the molecular orbital, the NRG shows that
the screening of the intraorbital repulsion in the LUMO is also
indirectly affected by a coupling of the vibrational mode to the
local substrate orbital.

In summary, we have thus established the following con-
sequences of λc: (i) a reduction of 
eff , corresponding to an
increase of the Kondo peak height relative to 
0, (ii) a reduc-
tion of TK leading to a narrowing of the Kondo resonance, as
well as (iii) a parametrization of the Kondo temperature by re-
placing 
 → 
eff as well as U → Ueff = U f (
eff/
0) in the
standard analytic expression for TK . Although Eq. (51) does
not hold in the particle-hole-asymmetric case, the qualitative
features will remain valid.

5. Analysis of the Holstein coupling λc:
Spectral and transmission functions

Next, we investigate the influence of the unconventional
Holstein coupling λc on the various spectral functions ρ(ω)
that make up the elastic and inelastic transmission func-
tions τ (0)

σ , τ (1)
σ , and τ (2)

σ . This prepares the comparison of
the calculated to the experimental differential conductance
spectra for the NTCDA/Ag(111) system. As in the previous
section, we will consider a particle-hole-symmetric scenario
for simplicity. Then, the Holstein coupling λc does not lead to
a displacement of the harmonic oscillator ν = 0 with energy
ω0, and 〈X̂0〉 = 0 is always fulfilled. Furthermore, we allow
for tunneling into M = 2 states μ, μ′, namely, the molecular
orbital (tunneling matrix element t0σ = td ) and the effective
local substrate orbital (t1σ = tc) where we have dropped the
spin dependency of the tunneling matrix elements assuming a
nonmagnetic tip. We thus explicitly include the possibility of
a Fano interference in this section [35].

The elastic part of the transmission function τ (0)
σ (ω) com-

prises three different contributions [Eq. (19)]

τ (0)
σ (ω) = t2

d ρd0σ ,d†
0σ

(ω) + t2
c ρc0σ ,c†

0σ
(ω)

+ tdtc
[
ρc0σ ,d†

0σ
(ω) + ρd0σ ,c†

0σ
(ω)

]
, (53)
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FIG. 17. Contributions to the elastic spectrum due to tunneling
into the molecular orbital d0σ and the local surface orbital c0σ ,
leading to the constituents (a) ρd0σ ,d†

0σ
(ω), (b) ρc0σ ,c†
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(ω). The spectral functions have been calcu-
lated with NRG. We set U/
0 = 10, ω0/
0 = 0.1 and different
colors indicate various unconventional Holstein couplings λc.

stemming from the tunneling into the molecular orbital d0

and into the effective local surface orbital c0, introduced in
Eq. (32) and implying d1σ = c0σ in ĤT defined in Eq. (3). The
three relevant spectral functions are plotted versus frequency
for two different values of λc and a fixed U in Fig. 17.
For ρd0σ ,d†

0σ
(ω), displayed in Fig. 17(a), the narrowing of

the Kondo resonance with increasing λc is illustrated. The
increase of the peak height is connected to the reduction of

eff , as discussed extensively in the previous section. The
corresponding antiresonance in ρc0σ ,c†

0σ
(ω) is clearly visible

in Fig. 17(b). This antiresonance can be associated with
the contribution to the Kondo screening by the electrons in
local substrate orbital. The mixed contribution ρc0σ ,d†

0σ
(ω) =

ρd0σ ,c†
0σ

(ω) in Fig. 17(c) is an antisymmetric function and
thus its integrated spectral weight vanishes. This contribution
captures the interference between the two possible tunneling
paths and generates Fano line shapes in Eq. (53). We note that
the low-frequency part of all spectral functions in Fig. 17 is
governed by the same energy scale TK that is reduced with
increasing λc.

The constituents of the inelastic spectrum, Eqs. (21) and
(23),

τ (1)
σ (ω) + τ (2)

σ (ω) = λtip{λtipt2
d ρX̂0d0σ ,X̂0d†

0σ
(ω)

+ t2
d

[
ρX̂0d0σ ,d†

0σ
(ω) + ρd0σ ,X̂0d†

0σ
(ω)

]
+ tdtc

[
ρX̂0d0σ ,c†

0σ
(ω) + ρc0σ ,X̂0d†

0σ
(ω)

]}
(54)

are shown in Fig. 18. Here, we have assumed that λ
tip
μν = 0

except for μ = 0 and ν = 0, i.e., only the molecular orbital
d0 (but not the local effective substrate orbital c0) is coupled
through the vibration X̂0 to the STM tip, with coupling con-
stant λtip.
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FIG. 18. Contributions to the inelastic spectrum due to tunneling
into the molecular orbital d0σ , the local surface orbital c0σ , and a
coupling λtip

μν of the vibrational mode ω0 to the STM tip, leading to
the constituents (a) ρX̂0d0σ ,X̂0d†

0σ
(ω), (b) ρX̂0d0σ ,d†

0σ
(ω) = ρd0σ ,X̂0d†

0σ
(ω),

and (c) ρX̂0d0σ ,c†
0σ

(ω) = ρc0σ ,X̂0d†
0σ

(ω). The spectral functions have
been calculated with NRG. We set U/
0 = 10, ω0/
0 = 0.1 and
different colors indicate various Holstein couplings λc.

We note that ρX̂0d0σ ,X̂0d†
0σ

(ω), displayed in Fig. 18(a), can
in principle also be obtained from Eq. (25) in the limit λc =
0. It consists of two peaks at ±ω0 that indicate the threshold
for the excitation of a vibrational quantum by the tunneling
electron. The smooth structure of the thresholds in the NRG
spectrum is a consequence of the broadening procedure in the
NRG approach [30,96,97].

Tracking the peak position of ρX̂0d0σ ,X̂0d†
0σ

(ω) for increas-
ing λc reveals the well-understood renormalization of the
phonon frequency ωeff = ω′

0(λc) in the adiabatic limit [27].
Furthermore, it is interesting to note that in the limit of a
vanishing Holstein coupling λc, ρX̂0d0σ ,X̂0d†

0σ
(ω) is the only

nonzero contribution because the inelastic terms that are linear
in λtip require a nonzero electron-phonon coupling in the
system S such that the phonon number is not any longer a
conserved quantity.

6. Strategy for matching the experimental and theoretical spectra
for NTCDA/Ag(111)

We return to the NTCDA/Ag(111) system and show how
the tunneling theory of Sec. II, the unconventional Holstein
model (Sec. III B 1), and the ab initio input to the NRG
(Sec. V A 2) can be combined to match the experimental
spectra.

In the first step (Sec. V A 7) we adjust the unconventional
Holstein coupling λc such that the zero-bias peak in the
experimental differential conductance spectra is correctly re-
produced, irrespective of the spectral signatures at finite volt-
ages. This procedure can indeed reduce the simulated Kondo
temperature sufficiently to achieve a match to the experi-
mental Kondo temperature. In the second step (Sec. V A 8),
we focus on the inelastic parameters λ

tip
μν which parametrize

the change of the tunnel coupling of the STM tip to the
orbital μ, induced by vibration ν, and govern the differential
conductance spectra at higher energies. Both coupling mech-
anisms together allow modeling the differential conductance
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FIG. 19. NRG results for the Kondo temperature TK of the
bright/on-top and dark/bridge molecules as a function of the uncon-
ventional Holstein coupling λc for two different vibrational energies
ω0 = 41.6 meV, 50.4 meV.

spectra in excellent agreement with experiment, as we will
demonstrate in Sec. V A 9.

7. Holstein coupling λc for NTCDA/Ag(111)

First, we need to identify the vibrational mode(s) which
may couple to the local effective orbital c0σ . To this end, we
use the free vibrational modes of the gas-phase molecule in
the absence of the substrate as guidance. The energies ων of
molecular eigenmodes in the relevant energy range are given
in Table II of Sec. IV, together with their irreducible repre-
sentations. Two modes have B3g character, namely, the ones
at ω = 50.4 meV and ω = 41.6 meV. The B3g eigenmodes
describe specific out-of-molecular-plane vibrations, while the
B1u, Ag, and B1g modes close in energy all correspond to in-
plane vibrations. Since any mode that potentially contributes
to the unconventional Holstein coupling λc must change the
local potential and thus shift the single-particle energy of
local substrate orbitals as function of the displacement, we
can expect the relevant modes to involve displacements per-
pendicular to the surface. Thus, we can concentrate on the
two B3g modes. Note that the symmetry considerations only
provide guidance and are not strictly valid since the D2h point-
group symmetry of the molecule in the gas phase is broken in
the NTCDA/substrate system as well as the presence of the
STM tip.

Assuming that only one of the two possible B3g modes
couples to the substrate, we calculate the Kondo temperature
as function of the coupling strength λc for both modes in-
dividually, using the electronic ab initio parameters as input
for the NRG calculations. The result is depicted in Fig. 19
for both types of molecules and both vibrational modes. A
substantial narrowing is achieved for λc > 100 meV, whence
the polaron energy Ep exceeds the hybridization strength of

dark(0) = 190 meV and 
bright(0) = 165 meV at the Fermi
energy. Therefore, by fixing the appropriate value of λc the
NRG-calculated spectral width of the Kondo peak can be
matched to the experimental findings, irrespective of which
of the two B3g modes is used.
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8. Tip-system coupling λtip
μν for NTCDA/Ag(111)

The unconventional Holstein coupling λc substantially re-
duces the Kondo temperature and thus improves the overall
agreement of the experimental differential conductance spec-
trum with the combined ab initio and NRG spectrum, but it
does not explain the additional features in the dI/dV spectra
at finite frequencies, most notably the ones at +(47.0 ±
0.3) mV and −(51.5 ± 0.3) mV which we have attributed to
inelastic tunneling processes (Sec. IV E). Since in experiment
these features are linked to the evolution of the zero-bias
anomaly (Fig. 11), we propose that they are incarnations of
the so-called vibrational Kondo replica [59–65] and related
to half of the Kondo peak shifted by ±ωeff as suggested by
Eq. (25) (see the discussion of the second limiting case at
the end of Sec. II C 3). The features at +(47.0 ± 0.3) mV and
−(51.5 ± 0.3) mV thus very likely appear in the differential
conductance spectrum as a result of inelastic tunneling in the
limit of a free phonon mode. The relevant coupling is the
vibration-induced change of the tunneling matrix element,
i.e., the tip-system coupling λ

tip
μν , and no electron-phonon

coupling in the system S is required.
This raises the question as to which electronic states μ

and which vibrational modes ν may take part in the tip-
system coupling λ

tip
μν . We note that the presence of the tip at

a general position above the system, as well as its possibly
axially nonsymmetric shape, breaks the symmetry of the
molecule completely and principally allows the observation
of any mode (no selection rules). The only condition is that
the excitation of the vibrational mode modulates the tunnel
matrix elements, as shown in Eq. (8). Most likely, only the
atomic displacements on the molecule will lead to a relevant
change of the tunneling matrix elements and, therefore, λ

tip
μν

is restricted to a tunneling into the molecular orbital d0σ ,
i.e., λ

tip
μν = λ

tip
0ν . Moreover, since electron densities vary expo-

nentially with perpendicular distance from the surface of the
system S, it is plausible that the most significant couplings
λ

tip
0ν will involve vibrational displacements perpendicular to

the substrate; among the modes in the relevant energy window
listed in Table II, these are the B3g modes. Thus, it turns out
that the same modes which induce a local potential change on
the surface and thereby provide the unconventional Holstein
coupling λc are those which also change the tunneling matrix
elements from the tip into the system strongly.

Because a large λc (which is needed for one vibrational
mode to reduce the Kondo temperature, see Sec. V A 7)
yields a sizable downward renormalization of the energy ωeff

at which the vibrational feature is observed, i.e., ωeff < ω0

where ω0 is the bare vibrational energy, and also because
it broadens the inelastic spectral functions substantially, a
second mode which only couples weakly within the system S
is needed to generate the sharp steps at +(47.0 ± 0.3) meV
and −(51.5 ± 0.3) meV in the total spectrum. Therefore,
we require two distinct vibrational modes in the tunneling
Hamiltonian in ĤT (Nν = 2).

It is interesting to note that the mode at ω0 = 50.4 meV
in particular changes the tunneling matrix element very ef-
fectively, as a DFT analysis reveals. Figure 20 shows the
elongation pattern of this mode, calculated for gas-phase
NTCDA. The outer C atoms at the CH edge exhibit a small

FIG. 20. Elongation pattern of B3g vibrational mode No. 3 (ω0 =
50.4 meV) from Table II.

amplitude, the ones in line with the carboxylic C atoms the
largest vibrational amplitude, while for symmetry reasons the
C atoms located on the long axis of the molecule have zero
amplitudes. If we estimate the contribution of each mode to
the transmission functions in Eqs. (21) and (23) separately by
calculating in DFT the change of the LUMO local density of
states (LDOS) on excitation of a single quantum of each vibra-
tion, we observe that the mode at ω0 = 50.4 meV produces a
substantial modulation of the LUMO LDOS above the center
of the molecule, although both the LUMO and the vibrational
mode amplitude itself vanish there. The reason is that the
positive and negative lobes of the LUMO (green and red in
Fig. 8), being of equal size for the nonvibrating molecule, are
distorted differently on excitation of this mode. This breaks
the symmetry in the center of the molecule, leading to a
nonvanishing LUMO density of states in the center of the
vibrationally distorted molecule. Evidently, this gives rise to
a large relative change of the LDOS on excitation of the
vibration, and thus to a large λ

tip
00 . Apart from explaining the

large value of λ
tip
00 , this also elucidates why the coupling is

sharply focused in the center of the molecule.

9. Numerical renormalization group results for NTCDA/Ag(111)

In summary, we arrive at the following model to calcu-
late differential conductance spectra for NTCDA/Ag(111):
In accordance with DFT, we set λd = 0 for all vibrational
modes of the NTCDA molecule, while one vibrational mode
(ω0 = 50.4 meV) exhibits a nonzero coupling λc to the sub-
strate orbital c0σ and two modes (ω0 = 50.4 meV and ω1 =
41.6 meV) exhibit finite couplings λ

tip
00 and λ

tip
01 to the tip.

The inelastic contribution stemming from the mode ω1 is
calculated via Eq. (25), using the NRG-calculated spectral
function ρd0σ ,d†

0σ
(ω), whereas the one stemming from the mode

ω0 is calculated within the NRG using the full formalism
of Eqs. (21) and (23). For the bright (on-top) molecule we
set λc = 200 meV, while λc = 220 meV is selected for the
dark (bridge) molecule. Since the DFT predicts a larger
hybridization 
bridge(0) = 190 meV compared to 
on-top(0) =
165 meV, a 10% enhancement of the electron-phonon cou-
pling for the bridge molecule appears justified. While the
tunneling Hamiltonian may include an arbitrary number of
orbitals in the system S, we focus on a minimal configuration

125405-22



INELASTIC ELECTRON TUNNELING SPECTROSCOPY FOR … PHYSICAL REVIEW B 101, 125405 (2020)

FIG. 21. Individual contributions to the (a) elastic and (b) inelas-
tic spectrum for the bright (on-top) molecule that are combined in
Fig. 22 to fit the experimental dI/dV spectra. Note that at the CH
edge we only include the spectra displayed with solid lines, whereas
the Fano effect in the center of the molecule leads to additional
contributions which are plotted as dashed lines in Fig. 21. Results
for the dark (bridge) molecule are qualitatively the same. Parameters
as in Fig. 22.

M = 2 to include (i) the Kondo effect, (ii) the feasibility
of a Fano resonance, and (iii) the possibility to change the
differential conductance spectra when moving from the CH
edge to the center of the molecules by adjusting the tunneling
matrix elements without altering the system S itself, i.e.,
using fixed spectral functions. For simplicity, we use the
same two orbitals for the M = 2 tunneling channels which
have already been introduced in the framework of the two
electron-phonon coupling mechanisms. As mentioned before,
the hybridization functions 
on-top(ω), 
bridge(ω), and the
intra-LUMO Coulomb repulsion U are provided as input to
the NRG calculation by a combination of DFT and MBPT,
the latter in the shape of the GdW approximation.

Combining all elastic and inelastic contributions for the
outlined SIAM-Holstein model of the NTCDA/Ag(111) sys-
tem as displayed in Fig. 21, the experiment/theory compari-
son of the dI/dV curves is displayed in Fig. 22 for two STM
tip locations on both the dark (bridge) and bright (on-top)
molecules. As the figure shows, our minimal model yields
a remarkable agreement between NRG and the experiment,
with calculated Kondo temperatures T bright

K = 103.6 K and
T dark

K = 140.4 K.
In the comparison in Fig. 22, all other contributions beyond

the M = 2 tunnel paths that are explicitly contained in our
model in Sec. II are included into a constant background ρoffset

that is added to the NRG-calculated dI/dV curves. Its value
is uniquely fixed by the condition that the maximum dI/dV
value of the zero-bias peak agrees between theory and exper-
iment. It is reassuring that the experimental and theoretical
values at larger bias (±70 mV) are also comparable.

We stress that the NRG curves in Fig. 22 are not fits
in the mathematical sense. Rather, we have chosen a set of
electron-phonon input parameters for the NRG calculations
(in addition to the electronic ab initio parameters) which
illustrate that our formalism of Sec. II and model of Sec. III
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FIG. 22. Comparison between theoretical (blue) and experimen-
tal (black) dI/dV spectra for both types of molecules (bright and
dark), each measured at the CH edge and at the center of a
molecule. Two vibrational energies have been used: ω0 = 50.4 meV
and ω1 = 41.6 meV. Parameters are (a) bright/on-top molecule,
CH edge: λc = 200 meV for ω0, λc = 0 for ω1, λ

tip
00 = 0.25, λ

tip
01 =

0.35, tc/td = 0, ρoffset = 0; (b) bright/on-top molecule, center: λc =
200 meV for ω0, λc = 0 for ω1, λ

tip
00 = 0.45, λ

tip
01 = 1.0, tc/td =

0.5, ρoffset = 1.85 nS; (c) dark/bridge molecule, CH edge: λc =
220 meV for ω0, λc = 0 for ω1, λ

tip
00 = 0.28, λ

tip
01 = 0.40, tc/td = 0,

ρoffset = 0.52 nS; (d) dark/bridge molecule, center: λc = 220 meV
for ω0, λc = 0 for ω1, λ

tip
00 = 0.35, λ

tip
01 = 0.75, tc/td = 0.5, ρoffset =

2.18 nS.

are general enough to predict the generic features that are
observed in the experimental differential conductance spectra
of NTCDA/Ag(111). We have also tried a model in which the
role of the two modes ω0 and ω1 is reversed. However, the re-
sulting fit to the experimental data is significantly worse than
the one in Fig. 22, the prime reason being that the vibrational
mode renormalization through λc shifts the inelastic features
substantially down to ωeff < ων and it is therefore preferential
to start with a larger bare vibration energy.

With regard to the comparison of the NRG-calculated spec-
tra to the experiments in Fig. 22 it should be noted that each
experimental spectrum is inevitably measured with a slightly
different tip, and different STM tips generally lead to different
differential conductance spectra on the same molecule. Within
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our theory this can be accounted for by the modification of
the fictitious STM tip orbital in Eq. (5) that also changes
the individual matrix elements tσσ ′

μ ({ �Ri}) in the approximation
(6). This modification of the tunneling matrix elements leads
to a different background current and to a slightly different
mixing of the different frequency components of the spectral
functions. We therefore account for different tips by adjusting
ρoffset.

To facilitate the comparison between experiment and the-
ory, we have shifted the bias-voltage scale of the experimental
curves such that the experimental dI/dV spectra coincide
with the corresponding NRG curve at the Kondo peak. We
have shifted the experimental curves rather than the theoret-
ical ones because the precise calibration of the experimental
bias-voltage axis has an uncertainty which stems from small
thermal voltages which could develop in the STM wiring as
well as in the junction, while the location of NRG resonance
is determined via the Friedel sum rule [119–121] by LUMO
orbital filling and the hybridization function, both strongly
constrained by the DFT + MBPT input.

The offset of the Kondo peak from zero bias is in-
dicative of a particle-hole asymmetry. As such, the NRG-
calculated Kondo peak positions +7.5 mV for the bright/on-
top molecule and +3.8 mV for the dark/bridge molecule in
Fig. 22 stem directly from the DFT+MBPT-calculated mean-
field PDOS in Fig. 12. The as-measured experimental spectra
exhibit Kondo peak positions of +1.9 mV for the bright/on-
top molecule and −0.6 mV for the dark/bridge molecule.
However, since we know that the inelastic features in the
dI/dV spectra should be located symmetrically around zero
bias, we may use them for a calibration of the experimen-
tal bias-voltage scale. This results in Kondo peak positions
in the calibrated experimental spectra at +4.2 mV for the
bright/on-top molecule and +1.7 mV for the dark/bridge
molecule. This reveals that the NRG calculation agrees with
experiment regarding the direction of the particle-hole asym-
metry for both NTCDA molecules on Ag(111) (although the
NRG predicts a larger particle-hole asymmetry than found in
experiment), as well as regarding the fact that the particle-
hole asymmetry is stronger for the bright/on-top molecule.
In this respect, the absolute different between experiment and
NRG is only 1.2 mV (NRG predicts a difference of 3.7 mV
between the on-top and bridge molecules, while in experiment
the corresponding difference between the bright and dark
molecules is 2.5 mV).

In Fig. 22 we have shifted the as-measured CH-edge
spectra 5.6/4.4 mV (bright and dark molecules) to the right
to achieve coincidence of the Kondo peaks with the NRG.
A shift of 2.55 mV would have established a symmetric
distribution of the inelastic features in the experimental curve.
As a consequence, the inelastic features of the experimental
spectrum appear off center in Fig. 22 with respect to their
NRG counterparts (which are symmetric by construction).
After what has been said, it is clear that this difference is
not an issue of the electron-phonon coupling in our model,
but rather of the overestimated particle-hole asymmetry of
the NRG calculation (and, more fundamentally of the DFT +
MBPT calculation). In principle, a more correct comparison
of the NRG and experimental curves in Fig. 22 would re-
quire shifting the experimental Kondo peak by a larger value

(+5.6/+4.4 meV for bright/dark molecules, to correct for the
too large prediction of the particle-hole asymmetry) than the
rest of the spectrum at the inelastic features (+2.25 meV for
both molecules, to achieve the physically motivated symmetry
of the inelastic features). Essentially, these shifts are small and
also reveal the overall uncertainties in our procedure matching
theory and experiment.

In conclusion, Fig. 22 shows that our model of the
NTCDA/Ag(111) system explains all generic features of the
experimental differential conductance spectra: (i) the different
Kondo temperatures of the bright and dark molecules (by
different adsorption heights and correspondingly different hy-
bridizations with the substrate), (ii) the smaller-than-expected
Kondo temperatures of both molecules including their ab-
solute values (by electron-phonon coupling with an effec-
tive local substrate orbital through an unconventional Hol-
stein term), (iii) the strong threshold features approximately
at +(47.0 ± 0.3) mV and −(51.5 ± 0.3) mV including their
asymmetric peak shapes (by inelastic tunneling involving a
free phonon including the replication of half of the Kondo
peaks), (iv) the weak shoulders at lower bias (by inelastic tun-
neling involving the coupled vibration that is also responsible
for the reduction of the Kondo temperatures), (v) the marked
difference of the spectra at the CH edge and in the center of the
molecules (by quantum interference between tunneling path
into a molecular orbital and into the effective local substrate
orbital which is also implicated in the unconventional Holstein
coupling), (vi) the strong concentration of the inelastic tunnel-
ing in the center of the molecule (by the quantum interference
and the symmetries of the involved modes), (vii) the offset
of the Kondo peak to positive-bias voltages in the calibrated
spectra [by a particle-hole asymmetry in the PDOS of the
NTCDA LUMO adsorbed on Ag(111)], (viii) the fact that the
Kondo peak of the bright molecule appears at slightly larger
bias voltages (by the stronger particle-hole asymmetry of the
bright molecule).

B. Scanning tunneling spectroscopy in the antiadiabatic regime

In this section we focus on the conventional situation λd >

0 [26–28] in the antiadiabatic regime and neglect the uncon-
ventional coupling of a local phonon mode to the substrate,
i.e., we set λc = 0. Furthermore, we use ω0 = 
0 throughout
this section. In the antiadiabatic regime, the polaron energy
Ep exceeds the hybridization strength Ep = λ2

d/ω0 > 
0. For
simplicity, we only consider a featureless symmetric conduc-
tion band with a constant density of states to separate the
many-body effects from single-particle energy shifts induced
by particle-hole-asymmetric hybridization functions.

1. Equilibrium electronic spectra

We review the evolution of the molecular orbital’s equilib-
rium spectral properties [94] with increasing electron-phonon
coupling λd . The spectral function ρdσ ,d†

σ
(ω) for different

values of λd and a constant conduction band density of states
is shown for a fixed U/
0 = 10 and particle-hole symmetry in
Fig. 23. In order to obtain sharp spectral features, we average
over Nz = 30 z values in the NRG calculation and set the NRG
broadening parameter to b = 0.2 (see Refs. [30,96,97,99]
for the technical details). In Fig. 23, the width of the zero-

125405-24



INELASTIC ELECTRON TUNNELING SPECTROSCOPY FOR … PHYSICAL REVIEW B 101, 125405 (2020)

0.1

0.2

0.3

−0.2 0 0.2

(a)

−0.2 0 0.2

0.1

0.2

0.3

(b)

ρ
(ω
)

ρ
(ω
)

ω/Γ0

λd/Γ0 = 2.24
2.25
2.26

0

ω/Γ0

λd/Γ0 = 2.27
2.28
2.29

0

0

0.1

0.2

0.3

0.4

−10 −8 −6 −4 −2 0 2 4 6 8 10

(c)

ω/Γ0

λd/Γ0 = 0.00

2.28

2.29

FIG. 23. (a) Spectral function ρdσ ,d†
σ

(ω) of the molecular orbital
for the particle-hole-symmetric antiadiabatic regime of the con-
ventional Holstein model. (b) Spectral evolution of ρdσ ,d†

σ
(ω) for

increasing λd > λc
d . The case with λd = 0 is added to (a) and (b) for

comparison. (c) The spectral data of (b) plotted on a larger energy
interval. Parameters: ρ = const, D/
0 = 10, U/
0 = −2εd/
0 =
10, and ω0 = 
0.

frequency resonance changes nonmonotonically with λd . Ini-
tially, the width of the Kondo resonance increases (not shown
here) and, after reaching a maximum, it decreases again
rapidly with increasing λd . Small shoulders develop symmet-
rically around the zero-bias resonance before evolving into
two separated peaks, as clearly seen in Fig. 23(b).

The electron-phonon interaction generates an attractive
contribution to the electron-electron interaction [83,84] that
is related to the polaron energy and renormalizes the bare
value of U → Ueff = U − 2Ep = U − 2λ2

d/ω0 [94,123,124].
Ueff vanishes at a critical value λc

d = √
Uω0/2 and changes

its sign to an attractive interaction upon further increase of λd .
The spectral properties displayed in Fig. 23 can be understood
in terms of Ueff [94]. Starting from the purely electronic
problem at λd = 0, added for reference as a black line to
Fig. 23, the decrease of Ueff with increasing λd leads to an
increasing Kondo temperature until Ueff approaches the value
Ueff ≈ π
0. Accordingly, the width of the zero-frequency
peak monotonically grows up to this point, approaching its
largest value for λd/
0 = 2.24, whence it is roughly a factor
2 larger than the value for λd = 0 as shown in Fig. 23(a).

Once λd exceeds λc
d , the system enters the regime in which

Ueff is attractive at low frequencies [94,123,124]. This regime
is governed by bipolaron formation. The spectral properties
for this regime are shown in Figs. 23(b) and 23(c). There,
the spin-Kondo effect is replaced by a charge-Kondo effect
with a low-temperature scale T c

K that rapidly decreases for fur-
ther increasing λd > λc

d . Simultaneously, the spectra develop
two shoulders that are located approximately at ±Ueff/2. As
depicted in Fig. 23(b), these shoulders grow into symmetric
side peaks once |Ueff | exceeds the charge-Kondo scale, i.e.,
T c

K < |Ueff |.
Since the phonon frequency ω0 is of the order of the charge

fluctuation scale 
0 and smaller than U , the concept of an
effective Ueff is only useful at low energies |ω| � ω0. In
terms of the renormalization group approach [29], U becomes
frequency dependent in the presence of the electron-phonon
interaction and flows from its bare high-ω value to Ueff for
|ω| � ω0. Therefore, the high-energy features of the spectra
in Fig. 23(c) are only moderately modified: the original charge
excitations around ±U/2 are renormalized to slightly smaller
values, which indicates that the renormalization of U → Ueff

sets in very moderately at high energies ω ≈ U/2. Once the
flow of U to Ueff has converged, the spectra exhibit additional
peaks at ±Ueff/2 [Fig. 23(b)] in addition to the slightly
shifted high-energy charge fluctuation peaks at ω ≈ ±U/2
[Fig. 23(c)], leading to a much richer spectrum.

If we want to restrict ourselves to the spin-Kondo regime,
we need to avoid entering the negative-Ueff regime. One
option would be to fix Ueff = const by adjusting the bare
U of the model upon increasing λd . However, with increas-
ing λd the simultaneous renormalization of 
0 → 
eff ≈

0 exp[−λ2

d/ω
2
0 f (λd/ω0)] reduces rapidly the charge fluctu-

ation scale [94] in the strong-coupling regime. The reduction
factor exp[−λ2

d/ω
2
0] is generated by the local polaron forma-

tion and can be understood via the Lang-Firsov transformation
[83,84], while the scaling function f (λd/ω0) accounts for
additional reduction of 
eff due to the softening of the phonon
mode [94]. Consequently, the Kondo temperature reduces
rapidly once Ep exceeds ω0, thus suppressing the Kondo effect
at finite temperature. We have also investigated this limit, but
since the spectral functions qualitatively do not differ much
from those presented in Fig. 23, we skip the rather repetitive
analysis.

A comment is in order regarding particle-hole asymmetry.
While for particle-hole symmetry, the resonance in the spec-
tral function remains pinned to zero energy, a particle-hole
asymmetry allows for a continuous change of the scattering
phase [119,120] of the low-energy quasiparticles. In order
to understand the spectra in this particle-hole-asymmetric
regime for λd > λc

d , i.e. in the negative-Ueff regime, we can
perform a particle-hole transformation of one of the spin
species to convert a low-energy model with an attractive Ueff

(the phonons are integrated out and their effect enters the
renormalized parameters) back to a repulsive (positive) Ueff

in the transformed model.
Starting from the impurity Hamiltonian in the absence

of an external magnetic field (εdσ = εd ) and replacing
d↑d†

↑ → d̄†
↑d̄↑, i.e., n↑ = (1 − d↑d†

↑) = 1 − n̄↑ where n̄↑ is
the number operator of the holes, while keeping n̄d

↓ = nd
↓,
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FIG. 24. Spectral functions of the molecular orbital in the antia-
diabatic regime of the conventional Holstein model for local particle-
hole asymmetry. (a) �ε/
0 = 0.004 and (b) �ε/
0 = 0.01. NRG
parameters as in Fig. 23.

we derive∑
σ

εdσ nd
σ + Und

↑nd
↓ =

∑
σ

(
U

2
− σ�ε

)
n̄d

σ − Un̄d
↑n̄d

↓ + εd ,

(55)

where �ε = εd + U/2 serves as a measure of the particle-
hole asymmetry [100]. Therefore, mapping the U model to a
(−U ) model generates an additional effective local magnetic
field given by �ε.

In our case, we start from a U > 0 which becomes nega-
tive after the mapping. Then, the electron-phonon interaction
generates a repulsive U contribution (attractive in the original
model) so that we eventually end up with U ′

eff > 0 in the
mapped model. The charge-Kondo effect is mapped onto a
spin-Kondo effect in which the charge field �ε acts as an
effective magnetic field after the mapping.

With this analysis in mind, we can understand the evo-
lution of the spectra in Fig. 24, which shows the particle-
hole-asymmetric case for two values of �ε. The increase
of λd > λc

d increases (−Ueff ) as well as decreases the effec-
tive hybridization 
0 → 
eff [27,83,84]. Consequently, the
charge-Kondo temperature T c

K decreases and, therefore, the
dimensionless magnetic field �ε/T c

K (λd ) increases with in-
creasing λd . The zero-bias charge-Kondo resonance is shifted
to a finite value �ε, representing the effective magnetic field
in the transformed model. Furthermore, its peak height is
increasingly reduced due to the destruction of the Kondo
effect in a strong effective magnetic field. We thus conclude
that the spectral properties shown in Fig. 24 are consistent
with those of an effective Anderson model in the attractive-U
regime.

2. Inelastic contributions

Having reviewed in the previous section the present
understanding of the electronic spectral function in the
Anderson-Holstein model [94] in its antiadiabatic particle-
hole-symmetric as well as particle-hole-asymmetric regimes,

FIG. 25. All contributions to the STS spectra in the antiadiabatic
regime of the Holstein model, for three λd/
0 ratios as stated in (a).
Particle-hole symmetry is assumed. (a) Spectral function taken from
Fig. 23. (b) ρ̄ (2)(ω). (c) ρ̄ (1)(ω). NRG parameters as in Fig. 23.

we now proceed to a discussion of the implications for a
STS experiment in which elastic and inelastic contributions
to the tunnel current are detected. We assume for simplicity
that the STM tip couples only to the molecular orbital and
thus exclude Fano physics. In order to eliminate the coupling
parameters that need to be adjusted for a specific experimental
setup, we define the following generic spectral functions:

ρ̄ (1)(ω) = 1

t2
d λtip

τ (1)(ω), (56)

ρ̄ (2)(ω) = 1

(tdλtip )2
τ (2)(ω) (57)

for both inelastic terms. This eliminates the tip-dependent
prefactor and focuses on the salient spectral features.

The individual spectra contributing to the total STS signal
are shown in Fig. 25 for different coupling constants λd . For
comparison, Fig. 25(a) reproduces the elastic data contained
in Fig. 23, while Fig. 25(b) depicts the inelastic contribution
ρ̄ (2)(ω). We observe the same narrowing of the distance be-
tween the two peaks when increasing λd as plotted in Fig. 18
for the unconventional Holstein model with λd = 0, a finite
λc, and a phonon frequency ω0 = 0.1
0 which is 10 times
smaller than the charge fluctuation scale. We note that in
Fig. 25(b) the peaks are located at ±ω0 in the weak-coupling
limit (λd → 0), but the energy difference between the two
peaks is significantly reduced in the antiadiabatic regime.
Common to both cases, i.e., the previously discussed λd = 0,
λc > 0 and the λd > 0, λc = 0 which is in focus in the present
section, is thus the renormalization of the phonon propagator
in the strong-coupling limit. The charge susceptibility con-
tributes to the phonon propagator as can be understood either
in weak coupling derived from the Feynman diagram in Fig. 2
or in the atomic limit [83,84,94]. The softening of the phonon
mode generates additional low-energy contributions to the
correlated spectrum, which is the origin of the peak narrowing
observed in ρ̄ (2)(ω) as well as in the evolution of the inelastic
spectrum ρ̄ (1)(ω) shown in Fig. 25(c).
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FIG. 26. Sum of all contributions to the STS spectra that are
displayed in Fig. 25 (antiadiabatic, particle-hole-symmetric regime
of the Holstein model), for λd/
0 = 2.27 and two values of λtip.
NRG parameters as in Fig. 23.

After discussing the individual spectral contributions, we
combine the results to obtain a total theoretical STS in Fig. 26.
We have selected the spectra for the largest λd in Fig. 25,
λd/
0 = 2.27. For this value, ρdσ ,d†

σ
(ω) clearly shows side

peaks associated with Ueff , but not with ±ω0. Moreover, with
increasing λtip, the STS becomes increasingly asymmetric
due to the admixture of the odd function ρ̄ (1)(ω), while
the spectral function ρ̄ (2)(ω) of electron removal or addition
correlated with a simultaneous displacement of the harmonic
oscillator X̂ only provides an incoherent background with a
small residual gap at zero energy. We note that in this case
the elastic contributions stemming from the side peaks in
ρdσ ,d†

σ
(ω) (Fig. 25) could be erroneously attributed to inelastic

contributions stemming from a fictitious phonon at frequency
ω′

0 = |Ueff |.

3. Discussion

We applied the inelastic tunneling theory to the conven-
tional Holstein model in the antiadiabatic strong-coupling
regime. This Holstein model was investigated by Paaske and
Flensberg [66] using a two-step perturbative approach. First,
the authors applied the Lang-Firsov [83] transformation to
eliminate the local electron-phonon interaction by introducing
a local polaron and, second, they performed a Schrieffer-Wolff
transformation [82] to map the resulting polaron model onto
an effective Kondo model. The transmission function was
calculated in the local-moment regime up to third order in
the coupling and shows reminiscence of the vibrational modes
via the energy-dependent exchange interaction. As a result,
very small steplike features at ±nω0 occur in the dI/dV spec-
trum which become pronounced only in the second derivative
d2I/dV 2. However, the authors focused only on the elastic
contribution to the tunneling current, and their approach is
moreover restricted to a very large Coulomb repulsion U and
Ueff � 
0. Also, the perturbative approach cannot access the
Kondo or strong-coupling regime.

In Sec. V B, we addressed the question of how the elas-
tic electron transmission function is influenced by a large

electron-phonon coupling in the strong-coupling regime that
is not accessible by perturbative approaches. Moreover, we
included the discussion of inelastic processes without the
limitations in the parameter space of Ref. [66]. In our analysis,
we in fact do not find any additional peaks in the orbital
spectral function as are reported in Refs. [28,125] for the spin-
less resonant level model. Furthermore, the electron-electron
interaction in the strong-coupling regime removes the small
steplike features in the transmission function [66].

In our orbital spectral function for large electron-phonon
coupling entering the charge-Kondo regime destroyed by a
charge field generated by particle-hole-symmetry breaking,
the excitation gap � for inelastic tunneling processes, which
in the absence of the Holstein electron-phonon coupling is
given by the phonon frequency ω0, is significantly reduced
with increasing λd and closes at the transition point into
the charge-Kondo regime as shown in Fig. 25(b). The width
of the Kondo resonance changes nonmonotonically, first
increasing due to the generation of an attractive contribution
to the Coulomb interaction and then rapidly decreasing once
Ueff < π
0.

VI. SUMMARY AND CONCLUSION

In this paper we have presented a general framework for
calculating the tunnel current into strongly correlated systems.
A central feature of our approach is the strict separation of
excitation processes that take place during the tunnel process
and those that happen in the physical system after (or before)
tunneling. This approach has several conceptual advantages.

(1) It offers the possibility to employ exact solutions for
all relevant spectral functions of the physical system in the
absence of the STM tip, relying thereby on the weak coupling
between the STM tip and the physical system. Importantly,
a Wick’s theorem is not required. Thus, the approach is
applicable to any physical system, also those which exhibit
a strong coupling of various degrees of freedom within them.
We have presented an application to a physical system that
can be described by a single-impurity Anderson Hamiltonian
with Holstein couplings to bosonic degrees of freedom as an
illustration of our method, but other system Hamiltonians ĤS

are equally possible. We only need accurate intrinsic Green’s
functions of the physical system as input to the tunnel theory.
In our application example, we calculate these Green’s func-
tions by the numerical renormalization group with system pa-
rameters from atomistic density functional theory and many-
body perturbation theory, but any other theoretical platform
that yields accurate Green’s functions is viable, too.

(2) In a similar manner, as we do not need to make any
assumptions regarding the physical system Hamiltonian ĤS ,
we are also essentially free regarding the nature of the tunnel
Hamiltonian ĤT . Our theory relies on the systematic deriva-
tion of the tunnel current operator from charge conservation in
the total system comprising the physical system of interest and
the STM tip. Thereby, the specific analytic form of the current
operator is determined by the tunnel Hamiltonian that con-
nects the two parts of the total system, and this Hamiltonian
can be freely chosen. In the present case, we have expanded
the tunneling matrix elements in terms of vibrational dis-
placements in order to obtain the specific tunnel Hamiltonian
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ĤT ; this has opened up the possibility to investigate inelastic
tunneling in which vibrations are excited. However, we may
expand the tunneling matrix elements in terms of other param-
eters as well, e.g., the electron density, which would enable us
to study the coupling of tunneling electrons to such excitations
as plasmons and excitons. The decay of those leads to the
luminescence in different anorganic and organic semiconduc-
tors [126–128], which can be detected in dedicated scanning
tunneling microscopes. If, on the other hand, we modulate the
tunneling matrix elements by the magnetization density and
at the same time use the complete tunneling matrix in spin
space, inelastic contributions to the tunneling current from
magnetic modes, excited by a spin-polarized STM tip, can
be incorporated straightforwardly. Note that in all cases the
charge continuity equation determines the analytic form of the
current operator, which is evaluated as outlined in Sec. II.

(3) The strict separation between the system Hamiltonian
ĤS and the tunnel Hamiltonian ĤT , for all its advantages,
of course has the disadvantage that the coupling between tip
and physical system must be assumed to be weak. However,
since our theory is primarily intended for scanning tunneling
spectroscopy, we do not consider this a too severe limitation
because experiments in STS are usually carried out in a way
that minimizes the coupling. In this paper, we have expanded
the tunneling matrix elements to second order. However, our
approach is conceptually open to higher-order expansions of
the tunneling matrix elements, if necessary. Indeed, a pertur-
bation expansion to any desired order is possible in principle.

We analyzed vibrational inelastic tunneling spectroscopy
of a molecular Kondo impurity on a metal surface as an
application example of our theory. We summarize several
notable results that have been made possible by the systematic
approach of deriving the tunnel current operator from charge
conservation in the total system.

(1) Because all tunneling processes, elastic and inelastic,
are treated on an equal footing, the assignment of spectral
contributions as elastic or inelastic becomes model indepen-
dent and systematic. In particular, we have shown that certain
terms which in the literature are classified as inelastic should
better be categorized as elastic. Also, we have shown that
certain approximative theories that are found in the literature
may lead to elastic contributions to the tunnel current that
mathematically look very similar as the inelastic ones in our
theory.

(2) Our approach finds components of the inelastic tun-
neling current that are linear and others that are quadratic in
the coupling constants of the vibrations to the tip. The two
linear terms are responsible for a contribution to the spectral
function that is odd under the inversion of the frequency axis.
Such contributions can explain differential conductance spec-
tra in scanning tunneling spectroscopy that appear asymmetric
around zero bias. We note here, however, that the linear terms
require both a coupling of the vibrations to an electronic
degree of freedom in the physical system and a coupling of
the very same vibration to the tip. This is in contrast to the
quadratic term, which survives even in the limit of vanishing
electron-vibration coupling in the system. Often, the linear
term is neglected in the literature, but clearly this is only
possible if there is no coupling in the system.

(3) Our approach has allowed us to identify a parameter
range in which the Kondo resonance of a single impurity is
sharpened by molecular vibrations. This mechanism, which is
based on a polaronic reduction of the hybridization between
the local orbital and the metal as well as a simultaneous but
more moderate decrease of the intraorbital repulsion, may
occur even in the absence of inelastic features in the spectrum
since the coupling of electronic states and vibrational modes
within the physical system is responsible. The sharpening
of the Kondo resonance may therefore occur as a hidden
effect of electron-vibrational coupling in the elastic part of the
spectrum. Specifically, the vibrational mode of the molecule
needs to couple to a local electronic orbital in the substrate,
establishing an unconventional Holstein term in the system
Hamiltonian. Of course, the same vibrational mode may (but
need not) at the same time also couple to the tip, in which case
additional signatures in the inelastic contribution to the total
spectrum may occur.

(4) In the antiadiabatic regime of the Holstein model
we do not find Kondo replicas at vibrational frequencies
in the orbital spectral function. Such additional polaron-
induced peaks were so far only reported for spinless models
[28,102,125]. We believe that their absence in the present case
is related to the fact that the local Coulomb interaction U
generates additional scattering processes that cause a spectral
broadening via the quadratically increasing imaginary part
of the self-energy at finite energies. We concluded that the
experimentally observed side peaks in the dI/dV curves are
generically caused by inelastic processes during the tunneling
and not by the electron-phonon coupling in the system. The
system can enter the attractive-U regime upon increasing the
local electron-phonon coupling beyond a critical value: the
spin-Kondo effect is replaced by a charge-Kondo effect that
is very sensitive to a particle-hole asymmetry.

As an application example, we have also carried out
low-temperature STM and STS experiments on the physical
system of NTCDA/Ag(111). This system shows a single-
impurity S = 1

2 Kondo effect, which we have proven ex-
perimentally by tuning the temperature, the magnetic field,
and the coupling to the substrate. Atomistic simulations for
this system in conjunction with NRG and our tunnel theory
allow us to understand many features of these experiments,
most notably the different Kondo temperatures for two types
of molecules in the unit cell and also different degrees of
electron-hole asymmetry for these two species. Ultimately,
this can be tracked down to slightly different adsorption
geometries. However, the absolute size of the Kondo tem-
perature can only be understood if the mechanism of vibra-
tional sharpening is taken into account. The NTCDA/Ag(111)
system therefore convincingly illustrates the relevance of this
mechanism. Our analysis reveals that the vibrational sharp-
ening is effected by a vibrational mode that appears only
very weakly in the STS spectra, while the strong inelastic
vibrational peaks of the NTCDA/Ag(111) system originate
from a different mode. This nicely illustrates the necessity to
include both the electron-vibrational coupling in the physical
system and between the system and the tip in order to be able
to comprehensively model STS spectra of complex physical
systems. In this respect, our systematic approach to calculate

125405-28



INELASTIC ELECTRON TUNNELING SPECTROSCOPY FOR … PHYSICAL REVIEW B 101, 125405 (2020)

the tunnel current turns out be very helpful to conceptualize
the various mechanisms correctly.

ACKNOWLEDGMENTS

The authors thank M. Ternes, RWTH Aachen Univer-
sity, for critically reading the manuscript. F.B.A. acknowl-
edges support from the Deutsche Forschungsgemeinschaft
via Project No. AN-275/8-1 and T.D. was supported by
the Deutsche Forschungsgemeinschaft via DE 2749/2-1.
F.S.T. and M.R. acknowledge support from the Deutsche
Forschungsgemeinschaft via the Collaborative Research Cen-
ter SFB 1083, Projects No. A12 and No. A13, respec-
tively. T.D. and M.R. gratefully acknowledge computing time
granted by the John von Neumann Institute for Computing
(NIC) and provided on the super-computer JUWELS at Jülich
Supercomputing Centre (JSC).

APPENDIX A: DERIVATION OF THE TUNNEL CURRENT

In this Appendix we present the elaborate derivation of the
tunnel current in the interaction picture, following textbook
perturbation theory. We assume that the tunnel Hamiltonian
ĤT is switched on at time t0. Then, the current, evaluated at
time t > t0, is given by

I (t ) = 〈 ĵSTM(t )〉 = 〈Û †(t, t0) ĵI (t )Û (t, t0)〉0, (A1)

where ĵI (t ) = exp[iĤ0(t − t0)] ĵSTM exp[−iĤ0(t − t0)] is the
STM current operator ĵSTM transformed into the interaction
picture. Note that we absorb h̄ in the time t , i.e., measure the
time in units of inverse energy.

The time evolution operator Û (t, t0) obeys the differential
equation

∂tÛ (t, t0) = −iV̂I (t )Û (t, t0) (A2)

which is formally integrated to the time-ordered operator

Û (t, t0) = Te−i
∫ t

t0
dt ′V̂I (t ′ )

. (A3)

All expectation values have to be calculated with respect to the
two decoupled systems 〈Â〉0 = Tr[ρ̂0Â], assuming thermody-
namic equilibrium in each of the two uncoupled subsystems
(S and the STM tip). Then, the density operator ρ̂0 factorizes
into two independent contributions

ρ̂0 = ρ̂Sρ̂tip (A4)

with

ρ̂S = 1

ZS
e−β(ĤS−μSN̂S ),

ρ̂tip = 1

Ztip
e−β(Ĥtip−μtipN̂tip ). (A5)

Here, we have introduced different chemical potentials for
each subsystem: μS for the sample system S and μtip for the
STM tip. The bias voltage V enters through the difference
μtip − μS = eV . For convenience, we define the chemical
potential μS of the system S as a reference energy and absorb
it into the definition of the single- particle energy.

Evaluating the current up quadratic order in the tunneling
matrix elements yields

I (t ) = i
∫ t

t0

dt ′[〈V̂ (t ′) ĵI (t )〉0 − 〈 ĵI (t )V̂ (t ′)〉0]

+ O
(
t3
s

)
, (A6)

where ts is a measure of the order of magnitude of the largest
tunneling matrix element tμσ .

Substituting the linear expansion of tunneling matrix el-
ements in the displacements of the vibrational modes ν

[Eq. (8)] into 〈V̂ (t ′) ĵI (t )〉0 yields

〈V̂ (t ′) ĵI (t )〉0 =
∑

μσμ′σ ′
tμσ tμ′σ ′

〈(
1 +

∑
ν

λtip
μνX̂ν (t ′)

)(
1 +

∑
ν ′

λ
tip
μ′ν ′ X̂ν ′ (t )

)
(d†

μσ (t ′)c0σ,tip(t ′) + c†
0σ,tip(t ′)dμσ (t ′))

× (d†
μ′σ ′ (t )c0σ ′,tip(t ) − c†

0σ ′,tip(t )dμ′σ ′ (t ))

〉
0

. (A7)

Since ĤS and Ĥtip as well as the corresponding density operators commute, the expectation values factorize into products of the
sample system S and the STM tip, and we arrive at

〈V̂ (t ′) ĵI (t )〉0 =
∑
μμ′σ

tμσ tμ′σ

〈(
1 +

∑
ν

λtip
μνX̂ν (t ′)

)(
1 +

∑
ν ′

λ
tip
μν ′ X̂ν ′ (t )

)
dμσ (t ′)d†

μ′σ (t )

〉
0

〈
c†

0σ,tip(t ′)c0σ,tip(t )
〉
0

−
∑
μμ′σ

tμσ tμ′σ

〈(
1 +

∑
ν

λtip
μνX̂ν (t ′)

)(
1 +

∑
ν ′

λ
tip
μν ′ X̂ν ′ (t )

)
d†

μσ (t ′)dμ′σ (t )

〉
0

〈c0σ,tip(t ′)c†
0σ,tip(t )〉0, (A8)

under the assumption that the system S and the STM tip are in
a normal conducting state. This factorization does not require
a Wick’s theorem, and, therefore, the Hamiltonian Ĥ0 remains
fully general. It is clear that the displacement terms X̂ν and
the electronic orbital operators dμσ do not factorize because
we explicitly allow for a strong electron-phonon coupling and
thus polaron formation in the system S. This step can be
generalized to the operator product exp[ fμ({Xν})]dμσ .

APPENDIX B: EQUATION OF MOTION FOR
CALCULATING THE ORBITAL GREEN FUNCTION

It is useful to derive a closed analytic expression for
the self-energy of the molecular orbital’s Green’s func-
tion [129] which is used to increase the precision of
the NRG Green’s function [122] as well as to ana-
lyze the results. We consider the system Hamiltonian
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ĤS:

ĤS =
∑
�kσ

ε�kσ
c†

�kσ
c�kσ

+ ω0b†
0b0 +

∑
σ

εdσ nd
σ + Und

↑nd
↓

+
∑
�kσ

V�k (c†
�kσ

d0σ + d†
0σ c�kσ

)

+ λd X̂0

(∑
σ

nd
σ − nd0

)
+ λcX̂0

(∑
σ

c†
0σ c0σ − nc0

)
,

(B1)

where we have defined

c0σ = 1

V0

∑
�k

V�kc�kσ
, (B2)

V̄ 2 =
∑

�k
|V�k|2. (B3)

We start from the commutators

[d0σ , ĤS] = εdσ d0σ + Und
−σ d0σ + V̄ c0σ

+ λd X̂0d0σ , (B4)

[ckσ , ĤS] = ε�kσ
c�kσ

+ λcX̂0
V�k
V̄

c0σ + V�kd0σ (B5)

and obtain the equation of motion (EOM)

(z − εd )Gd0σ ,d†
0σ

(z) = 1 + UFσ (z) + λd Mσ (z)

+
∑

�k
V�kGc�kσ

,d†
0σ

(z) (B6)

after introducing the notation

Fσ (z) = Gd0σ nd−σ ,d†
0σ

(z), (B7)

Mσ (z) = GX̂0d0σ ,d†
0σ

(z). (B8)

While the complex function Fσ (z) contains information about
the local correlations between the electrons of different spins

σ , the influence of the molecular vibration on the equilibrium
Green’s function is accounted for by Mσ (z) which is also
relevant for the inelastic tunneling current (see Sec. II C 2).
In order to close the EOM, we use the commutator (B5) to
derive

(z − ε�kσ
)Gc�kσ

,d†
0σ

(z) = V�kGd0σ ,d†
0σ

(z) + λc
V�k
V̄

Nσ (z). (B9)

The off-diagonal composite correlation function

Nσ (z) = GX̂0c0σ ,d†
0σ

(z) (B10)

accounts for the correlations between the hybridization pro-
cess and the vibrational displacement X̂0. We have seen its ex-
plicit importance for the renormalization of bare hybridization
via Eq. (48) and explicitly in Eq. (51). Defining

�σ (z) =
∑

�k

|V�k|2
z − ε�kσ

(B11)

and using the standard parametrization of the Green’s function
in terms of self-energy corrections �σ ,

Gdσ ,d†
σ
(z) = 1

z − εd − �σ (z) − �σ (z)
, (B12)

the self-energy can be expressed as [122]

�σ (z) = UFσ (z) + λd Mσ (z) + λc

V̄ �(z)Nσ (z)

Gd0σ ,d†
0σ

(z)
. (B13)

Since the NRG can calculate each individual Green’s function
Fσ (z), Mσ (z), Nσ (z), and Gd0σ ,d†

0σ
(z), Bulla et al. [122] have

shown that replacing the Green’s functions on the right side
of Eq. (B13) by the NRG results yields a self-energy that
becomes almost independent of the NRG discretization pa-
rameters and, therefore, is an accurate representation of the
true self-energy for the continuum model. Equation (45) is
analytically exact and is also used in the main text to present
a better analytical understanding of the numerical finding.
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