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Recently, we proposed a way to engineer a flexible acoustomechanical coupling between the center-of-mass
motion of an isolated micromagnet and one of its internal acoustic phonons by using a magnon as a passive
mediator [C. Gonzalez-Ballestero, J. Gieseler, and O. Romero-Isart, Phys. Rev. Lett. 124, 093602 (2020)]. In
our approach, the coupling is enabled by the strong magnetoelastic interaction between magnons and acoustic
phonons which originates from the small particle size. Here, we substantially extend our previous work. First,
we provide the full theory of the quantum acoustomagnonic interaction in small micromagnets and analytically
calculate the magnon-phonon coupling rates. Second, we fully derive the acoustomechanical Hamiltonian
presented in Gonzalez-Ballestero et al. Finally, we extend our previous results for the fundamental acoustic
mode to higher-order modes. Specifically, we show the cooling of the center-of-mass motion with a range of
internal acoustic modes. Additionally, we derive the power spectral densities of the center-of-mass motion
which allow us to probe the same acoustic modes.
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I. INTRODUCTION

Micromagnets are a powerful resource in nanotechnology,
enabling applications such as magnetic resonance microscopy
[1] and serving as mediators for quantum spin-mechanical
interfaces [2–8]. Recently, their elementary solid-state ex-
citations, known as magnons, have been harnessed in the
quantum regime to realize active quantum components for
applications in quantum science and technology, even at the
level of single quanta [9]. In this context, magnons are ex-
tensively studied due to their long coherence times [10–15]
and the perspective of interfacing them with other quantum
excitations, such as other magnons [16], spin qubits [9,17,18],
acoustic phonons [19–22], and optical [23–27] and microwave
photons [12–14,18,28–31]. This versatility enables a variety
of applications, ranging from fundamental physics [32,33] to
quantum technologies [11,13,14,29,30,34–36] or microwave-
to-optical conversion [11,13,23,35]. A particularly promising
prospect is to largely isolate single micromagnets from their
environment, either by clamping them to high-Q microres-
onators [6,37–41] or by levitating them, as theoretically stud-
ied [42–47] and experimentally implemented [40,48–51]. The
large degree of isolation allows one to explore rich internal
mesoscopic quantum physics, such as the strong interaction
between magnons and acoustic phonons inside the magnet,
and the interplay between the internal and the external degrees
of freedom, that is the center-of-mass motion and the rotation
of the micromagnet.

Following this idea, we proposed in our recent work [42]
a way to couple the lowest-energy acoustic phonon of an
isolated micromagnet to its center-of-mass motion by using
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a magnetization wave (magnon) as a passive mediator. We
showed that the resulting acoustomechanical system is widely
tunable and that it can be exploited to implement well-known
optomechanical protocols, where the acoustic phonon plays
the role of a built-in internal acoustic “cavity.” Specifically,
we demonstrated the possibility of acoustically cooling the
center-of-mass motion to its ground state and of experimen-
tally probing the elusive acoustic mode by measuring the
center-of-mass displacement in the strong-coupling regime. In
this article, we present in detail the theoretical derivation lead-
ing to the acoustomechanical Hamiltonian, namely Eq. (1)
of Ref. [42], and extend our previous results to higher-order
acoustic modes.

This article is organized as follows. First, in Sec. II, we
summarize the derivation of the magnon and acoustic phonon
modes inside a spherical micromagnet. Subsequently, we
derive the magnetoelastic interaction Hamiltonian in Sec. III
and analytically compute the coupling rates and the selection
rules for the couplings between every acoustic phonon and
selected magnon modes. In Sec. IV, we include the motion
of the micromagnet and derive the acoustomechanical
Hamiltonian. We also extend the results of Ref. [42]
to higher-order acoustic phonons. Finally, we draw our
conclusions in Sec. V. The four appendices of this article
provide further details about the calculation of the magnon
and the phonon modes (Appendices A and B, respectively),
the magnetoelastic coupling rates (Appendix C), and the
internal heating of the micromagnet (Appendix D).

II. FREE MAGNON AND PHONON HAMILTONIANS
OF A MICROMAGNET

The system under consideration, schematically depicted in
Fig. 1, is a spherical micromagnet with radius R ≈ 10 nm
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FIG. 1. In this work, we theoretically study the interaction be-
tween the center-of-mass motion of a harmonically trapped micro-
magnet, the magnetization fluctuations about its fully magnetized
state, namely magnons, and the quanta of elastic deformations in the
magnet, i.e., acoustic phonons.

to 10 μm, which we consider to be well isolated from its
environment, for example due to levitation in high vacuum.
The Hamiltonian describing the micromagnet is given by

Ĥ = Ĥex + Ĥin + V̂ . (1)

Here, the first and third contributions describe the exter-
nal degrees of freedom of the micromagnet, i.e., translation
and rotation, and their interaction with the internal degrees
of freedom, respectively. These terms will be discussed in
Sec. IV. The second term in Eq. (1), namely Ĥin, describes
the relevant internal degrees of freedom of the micromagnet.
In the absence of optical fields these degrees of freedom
are acoustic and magnetic, i.e., phonons and magnons, and
we write

Ĥin = Ĥp + Ĥm + Ĥm-p, (2)

as the sum of three contributions describing the phonons, the
magnons, and the phonon-magnon interaction, respectively.
The term Ĥm-p will be discussed in Sec. III. In the following
section, we summarize the derivation of the free Hamiltonians
Ĥp and Ĥm, while more details are provided in Appendices B
and A.

A. Acoustic phonon Hamiltonian

We begin with the acoustic degrees of freedom of the
micromagnet. They are described by a continuous displace-
ment field u(r, t ), which we determine with the theory of
linear elastodynamics [52–54]. As detailed in Appendix B, we
first derive the classical acoustic eigenmodes of a spherical,
homogeneous, and isotropic body under free-stress boundary
conditions, which is a very good approximation for a well-
isolated body [19]. After canonical quantization, the Hamilto-
nian of linear elastodynamics takes the form

Ĥp = h̄
∑

α

ωα â†
α âα, (3)

in terms of phononic operators, that satisfy bosonic commu-
tation relations, [âα, â†

α′ ] = δαα′ . The above sum runs over the
compound index α ≡ {σ, ν, λ, μ}, which labels the different
acoustic modes of a free sphere, also known in the literature
as Lamb modes [53,56]. The first mode index σ ∈ {s, t} is
a polarization index that divides the eigenmodes into two

(a)

(b)

FIG. 2. Lowest-order torsional (a) and spheroidal (b) acoustic
mode eigenfrequencies of a YIG sphere, versus mode index λ.
Different colors correspond to different values of the mode index ν.
The joining lines are a guide to the eye. The right vertical axis shows
the eigenfrequencies for a YIG sphere of R = 500 nm.

families, namely the purely shear torsional modes (Tνλμ),
and the hybrid shear-compression spheroidal modes (Sνλμ).
The remaining mode indices take values ν = 1, 2, 3, . . ., λ =
0, 1, 2, 3, . . ., and μ ∈ [−λ, λ], and determine the azimuthal
(μ), polar (λ), and radial (ν) geometry of the displacement
mode functions. The corresponding acoustic eigenfrequen-
cies, namely ωα in Eq. (3), are independent of the mode
index μ, and are exclusively determined by the sphere size
R, to which they are inversely proportional (ωα ∝ R−1), and
by the longitudinal and transverse sound velocities of the
material, namely cL and cT . In Fig. 2, we show the acoustic
mode eigenfrequencies ωα for the torsional [panel (a)] and
spheroidal [panel (b)] mode families, using the material pa-
rameters for yttrium iron garnet (YIG), listed in Table I. The
left axes of both panels show the size-independent parameter
ωσ,νλR/cT , whereas the right axes show the corresponding
eigenfrequency for R = 500 nm, which reaches values above
2π × 1 GHz even for the lowest-energy mode S12μ. Note that,
by definition, the frequency increases at larger values of ν, and
that no torsional mode exists with λ = 0. Finally, the quantum
displacement field operator in the Schrödinger picture reads

û(r) =
∑

α

U0α[fα (r)âα + H.c.], (4)

TABLE I. Material parameters for YIG.

Parameter Value

Longitudinal sound velocity [19] cL = 7118 m s−1

Transverse sound velocity [19] cT = 3871 m s−1

Mass density [19,55] ρ = 5170 kg m−3

Gyromagnetic ratio [19,55] γ = −1.76 × 1011 T−1 s−1

Saturation magnetization MS = 5.87 × 105 A m−1

Magnetoelastic constant B1 [19] B1 = 3.48 × 105 J m−3

Magnetoelastic constant B2 [19] B2 = 6.4 × 105 J m−3
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where the zero-point displacement of mode α is given by

U0α ≡
√

h̄

2ρωαNα

, (5)

with ρ being the mass density of the micromagnet. Both
the classical mode functions fα (r) and their normalization
constants Nα ≡ ∫

dV |fα (r)|2 are given in Appendix B.

B. Magnon Hamiltonian

We now focus on the magnetization waves, or spin waves,
supported by the spherical micromagnet. These waves are
described by a continuous magnetization field M(r, t ) and its
associated electromagnetic fields E(r, t ) and H(r, t ), which
obey both Maxwell’s equations and the phenomenological
nonlinear Landau-Lifshitz equation [55,57]

d

dt
M(r, t ) = −|γ |μ0M(r, t ) × Heff (M, r, t ). (6)

Here, γ is the gyromagnetic ratio, μ0 is the vacuum per-
meability, and Heff (M, r, t ) = H(r, t ) + �H(M, r, t ) is the
effective field, composed of the Maxwell field H(r, t ) and
an additional contribution that accounts for the solid-state
interactions in the magnetic material [55]. As detailed in
Appendix A, we obtain the magnetization eigenmodes under
the following approximations:

(1) We assume that a large external homogeneous field
H0ez is applied to fully magnetize the micromagnet to its
saturation magnetization MS . This allows us to describe small
deviations of the fields from their equilibrium as

H(r, t ) = H0ez + h(r, t ), (7)

M(r, t ) = MSez + m(r, t ), (8)

where m � MS and h � H0 are the dynamical variables,
whose eigenmodes we calculate and quantize later. The above
approximation, known in the literature as the spin-wave ap-
proximation or spin-wave limit [55], allows to linearize the
Landau-Lifshitz equation by keeping first-order terms in the
small variables m/MS and h/H0 (see Appendix A).

(2) We assume that the micromagnet is larger than the
usual domain wall length [55,58] (2R � 10 nm), and that it
has cubic internal symmetry, as is the case for YIG. This
allows us to largely simplify the effective field to Heff ≈ HI ez,
where HI ≡ H0 − MS/3 is known as the internal field [55]
(see Appendix A).

(3) We undertake the magnetostatic approximation [55]

∇ × h(r, t ) ≈ 0, (9)

which is valid for micromagnet sizes much smaller than the
wavelength of the electromagnetic component of the spin
wave, i.e., for R � 2πc/ωsw, where c is the vacuum speed
of light and ωsw is the frequency of the spin wave. For
the energies considered in this paper, this implies R � 1 cm.
This approximation simplifies the problem by uncoupling the
electric field from the system of equations and by allowing
us to define a magnetostatic potential; see Appendix A for
details.

FIG. 3. Magnonic eigenfrequencies of a YIG sphere for l = 1
(red), l = 2 (blue), and l = 3 (orange), as a function of external static
field B0. The frequency ω0 (see main text) has been subtracted on the
vertical axis for a better visualization. The shaded area shows the
unstable region when B0 < μ0MS/3 = 246 mT for YIG.

The above approximations allow us to obtain magne-
tization eigenmodes, known in the literature as magneto-
static dipolar spin waves, or Walker modes [58–60]. The
Walker eigenmodes are labeled by a compound multi-
index β ≡ {lmn}, with l = 1, 2, 3, . . ., m ∈ [−l, l], and n =
0, 1, 2, . . . , nmax(l ). These three indices determine the shape
of the magnetization profile (with m being an azimuthal wave
number) through complicated mode functions for which there
is no simple general expression [58,60] (see Appendix A).
The resulting mode eigenfrequencies ωβ ≡ ωlmn depend on
the external field B0 ≡ μ0H0, but are independent of the
micromagnet size R for the sizes consistent with our ap-
proximations (10 nm � R � 1 cm). In Fig. 3, we show these
eigenfrequencies for a YIG micromagnet (see Table I) as a
function of B0 for all the magnon modes with l � 3. Note that
not all the possible triplets {lmn} correspond to a physical
mode; for instance, there is no {32̄0} mode (here, the bar
above an index denotes a negative value). Note also that, in the
vertical axis of Fig. 3, we have subtracted ω0(B0) ≡ |γ |μ0HI

so that horizontal lines in the figure reflect linear dependencies
with the external field. The shaded area in Fig. 3 corresponds
to a region of negative internal field HI , where some of the
solutions become imaginary, i.e., unstable [61]. In this paper
we consider solutions without this instability. Finally, note
that the energy does not monotonically depend on the mode
indices, and that the lowest-order mode {110} (the celebrated
Kittel mode [9,12–14,16–18,25,27–30,62]) does not have the
lowest energy. Within the magnetostatic dipolar spin wave
approximation, the modes with the lowest energy are the {l10}
modes, whose frequency tends to the absolute lower bound
ωl10 → ω0 as l tends to infinity [60].1

1Note that in practice, the description in terms of Walker modes
breaks down for modes with sufficiently large l , as their mode
functions display short-wavelength spatial oscillations, and thus do
not fulfill some underlying assumptions of the theory.
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As detailed in Ref. [61], the Walker modes can be quan-
tized by using, on the one hand, the micromagnetic energy
functional generating the Landau-Lifshitz equations,

Em({m}, {h}) = μ0

2

∫
dV m(r, t ) ·

[
HI

MS
m(r, t ) − h(r, t )

]
,

(10)

and, on the other hand, the orthogonality relations be-
tween different magnonic eigenmodes, the so-called Walker
identities [59,61,63] (see Appendix A for details). With
the bosonic ladder operators, [ŝβ, ŝ†

β ′ ] = δββ ′ , the resulting
magnon Hamiltonian is given by

Ĥm = h̄
∑

β

ωβ ŝ†
β ŝβ, (11)

and the spin-wave magnetization operator in the Schrödinger
picture can be written as

m̂(r) =
∑

β

M0β[m̃β (r)ŝβ + H.c.]. (12)

Here, the zero-point magnetization is given by

M0β ≡
√

h̄|γ |MS

̃β

, (13)

m̃β (r) is the mode function of the spin wave, and
̃β ≡ 2Im

∫
dV m̃∗

x (r)m̃y(r) its normalization constant (see
Appendix A).

III. MAGNETOELASTIC INTERACTION

In this section we derive the magnetoelastic interaction
Hamiltonian, namely Ĥm-p in Eq. (2), starting with the exact
form of this Hamiltonian up to second order in magnon
operators. Then, we focus on the small-particle limit, and we
analytically compute the coupling rates and selection rules
between every acoustic phonon mode and selected magnon
modes.

A. Magnetoelastic Hamiltonian

The magnetic energy density depends microscopically on
the positions and orientations of individual spins inside the
material. As a consequence, elastic deformations of the lattice
modify the energy density yielding the magnetoelastic inter-
action between magnons and phonons. The general expression
for the magnetoelastic energy density is well known [64] and
can be easily derived assuming only time-reversal invariance
[65]. For a cubic material such as YIG, and neglecting ex-
change effects in the spirit of the Walker mode approximations
(see Appendix A), the lowest-order contribution to the energy
density takes on the form [19,66]

Ume(r, t ) =
∑

i, j=x,y,z

B2 + δi j (B1−B2)

M2
S

Mi(r, t )Mj (r, t )εi j (r, t ).

(14)

Here, Mi(r, t ) ≡ ei · M(r, t ) are the Cartesian components of
the total magnetization field, B1 and B2 are the magnetoelastic

coefficients of the material (see Table I), and we define the
adimensional strain tensor

εi j (r, t ) ≡ 1

2

[
∂ui(r, t )

∂r j
+ ∂u j (r, t )

∂ri

]
, (15)

which is symmetric in i and j. From Eq. (14), one can derive
all the magnetoelastic energy terms to first and second order
in (m/MS). Although the relevant physics in this work will
stem only from the former, it is insightful to compute both of
them in order to compare with previous works. We first write
the magnetization in the spin-wave limit, Eq. (8), as

M(r, t ) = mx(r, t )ex + my(r, t )ey

+
√

M2
S − m2

x (r, t ) − m2
y (r, t )ez,

(16)

where the inclusion of second-order terms in the z component
is necessary to correctly account for all the second-order
magnetoelastic contributions [19]. Combining Eqs. (14) and
(16), and neglecting all terms of order (mj/MS )3 or higher,
we rewrite the magnetoelastic energy density in terms of our
dynamical variables, m(r, t ) and u(r, t ), as

Ume(r, t ) ≈ 2B2

MS

∑
i=x,y

mi(r, t )εiz(r, t )

+
∑

i, j=x,y

B2 + δi j (B1 − B2)

M2
S

mi(r, t )mj (r, t )

× [εi j (r, t ) − εzz(r, t )δi j]. (17)

The first term in the above equation describes the first-order
contribution to the magnetoelastic energy density, whereas the
remaining two lines describe the second-order contribution.

In order to obtain the quantum magnon-phonon interaction
Hamiltonian in the Schrödinger picture, Ĥm-p, we substitute
in Eq. (17) the corresponding quantum operators, namely
û(r) in Eq. (4), and m̂(r) in Eq. (12), and integrate over the
micromagnet volume, V . The resulting Hamiltonian can be
split into two contributions,

Ĥm-p = Ĥ (1)
m-p + Ĥ (2)

m-p. (18)

The first term, originating from the first line in Eq. (17),
contains only single-magnon operators,

Ĥ (1)
m-p = h̄

∑
αβ

ŝβ (g̃αβ âα + gαβ â†
α ) + H.c. (19)

Here, the single-magnon coupling rates are given by[
g̃αβ

gαβ

]
= g0

αβ

1

V

∑
i

∫
dV m̃βi(r)

[
ε̃

(α)
iz (r)

ε̃
(α)∗
iz (r)

]
, (20)

and for convenience we introduce the bare coupling rate

g0
αβ ≡ 2

B2V

h̄

U0α

R

M0β

MS
, (21)

and the adimensional strain tensor for acoustic mode α,

ε̃
(α)
i j ≡ R

2

[
∂ fα,i(r)

∂r j
+ ∂ fα, j (r)

∂ri

]
. (22)
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The second term in Eq. (18) stems from the second and third
lines of Eq. (17), and contains two magnon operators:

Ĥ (2)
m-p

h̄
=

∑
αββ ′

[
ŝβ ŝβ ′

(
�α

ββ ′ âα + �̃α
ββ ′ â†

α

) + H.c.
]

+
∑
αββ ′

[
ŝ†
β ŝβ ′

(
�α

ββ ′ âα + �̃α
ββ ′ â†

α

) + H.c.
]
. (23)

The two-magnon coupling rates �α
ββ ′ can be written com-

pactly as

�α
ββ ′ = g0

αβ

2

M0β ′

MS

1

V

∫
dV m̃β (r)T Ã(α)

ε (r)m̃β ′ (r), (24)

where we defined the adimensional matrix[
Ã(α)

ε (r)
]

i j ≡
[

1 + δi j

(
B1

B2
− 1

)][
ε̃

(α)
i j (r) − δi j ε̃

(α)
zz (r)

]
.

(25)

The coupling rate �α
ββ ′ has an expression similar to Eq. (24),

with Ã(α)
ε → Ã(α)∗

ε . Finally, the corresponding couplings with
tildes, �̃α

ββ ′ and �̃α
ββ ′ , are given by the same expressions

as �α
ββ ′ and �α

ββ ′ under the substitution m̃β → m̃∗
β . The

expressions derived above are so far exact up to second order
in the spin-wave magnetization m/MS .

B. Acoustomagnonics in the small-particle limit

Once the magnetoelastic interaction has been computed,
we can write the total internal Hamiltonian, Eq. (2), in terms
of bosonic operators, by adding up Eqs. (3), (11), and (18).
The internal Hamiltonian is usually simplified by a rotating-
wave approximation. However, this approximation depends
on the particle size and differs radically between small and
large particles. For very large particles (R � 100–1000 μm),
the acoustic mode frequencies ωα ∝ R−1 are negligibly small
compared to the magnon frequencies ωβ (see Fig. 2). Conse-
quently, one can neglect the first-order magnetoelastic cou-
pling H (1)

m-p as |ωβ ± ωα| ≈ ωβ 
 gαβ, g̃αβ . Neglecting also
the largely energy-nonconserving terms in the second-order
contribution Ĥ (2)

m-p, one obtains

Ĥin

∣∣
RWA, large R

≈ Ĥp+Ĥm + h̄
∑
αβ

[
ŝ†
β ŝβ

(
�α

ββ âα + �̃α
ββ â†

α

) + H.c.
]
. (26)

This is the dispersive magnon-phonon interaction employed
so far in acoustomagnonics [19–22]. Note that, precisely
because it stems from a second-order contribution, the corre-
sponding interaction rates are small, usually in the ∼10 mHz
range for R ∼ 100 μm [19].

In this paper, we focus on the opposite limit, namely
the small micromagnet limit R ≈ 10 nm to 10 μm where the
acoustic eigenfrequencies lie in the �1 GHz range, as evi-
denced by Fig. 2. We will assume that the frequency of a
specific magnon ŝβ0 is brought close to resonance with one
of the acoustic phonons âα0 through the external magnetic
field B0 (see Fig. 3). In this situation, we can disregard
any contribution to the first-order interaction Ĥ (1)

m-p except for

the quasiresonant contribution ∼ŝ†
β0

âα0 , since, for any other

magnon-phonon pair, |ωα ± ωβ | � GHz 
 gαβ, g̃αβ . The en-
tire second-order contribution Ĥ (2)

m-p can also be neglected un-
der a rotating-wave approximation (RWA), as | ± ωβ − ωβ ′ ±
ωα| � GHz 
 �α

ββ ′ , �
α
ββ ′ , �̃

α
ββ ′ , �̃

α
ββ ′ . The resulting small-

particle Hamiltonian in the RWA then reads

Ĥin

∣∣
RWA, small R ≈ Ĥp + Ĥm + h̄

(
gα0β0 ŝβ0 â†

α0
+ H.c.

)
. (27)

This beam-splitter interaction is the key component of our
work. As we will see below, its magnon-phonon coupling
rates are much stronger than the coupling rates in the large-
particle limit Eq. (26) because they stem from the first-order
magnetoelastic term Ĥ (1)

m-p.
Let us now characterize the two-mode interaction Eq. (27)

in greater detail. More specifically, let us determine the
coupling rates gαβ and the magnon-phonon selection rules.
In general, it is possible to show that the rates scale as
gαβ ∝ R−1/2 and fulfill the azimuthal selection rule gαβ ∝
δμm; i.e., the coupling is nonzero only if the acoustic az-
imuthal mode index μ is equal to the magnonic azimuthal
mode index m.2 Note that precisely this selection rule al-
lows us to write the interaction Eq. (27) as a two-mode
coupling, instead of as a sum over all the degenerate acoustic
modes α0 = {σ0, ν0, λ0,−λ0}, . . . , {σ0, ν0, λ0,+λ0}. Aside
from these two, it is not possible to derive more general
properties analytically due to the lack of a general analytical
expression for the magnon mode functions m̃β (r). In order to
continue, one must compute the coupling rates separately for
each magnon mode of interest.

To provide an example, we will focus on two particular
magnonic modes in the following: first, the relevant Kittel
mode β0 ≡ {110} ≡ K , which is widely used in magnonics
and characterized by a homogeneously magnetized mode
function

m̃K(r) = ex + iey, (28)

and second, the β0 ≡ {210} mode, whose mode function is
given by

m̃210(r) = z

R
[ex + iey], (29)

as an example of a nonhomogeneous magnetization wave.
Their respective zero-point magnetizations are

MK = 1√
5
M210 =

√
h̄|γ |MS

2V
, (30)

and their respective eigenfrequencies are

ωK = |γ |B0, ω210 = |γ |(B0 − Boffset ), (31)

where Boffset ≡ 2μ0MS/15 = 49.2 mT for YIG. Note that for
sufficiently low external fields B0 the frequency of the {210}
mode becomes negative, resulting in potential dynamical in-
stabilities [67]. Here we will consider B0 large enough to

2This selection rule is derived by writing gαβ in terms of cylin-
drical mode functions, m̃β±(r) ≡ m̃βx (r) ± im̃βy(r) and ε̃

(α)
± (r) ≡

ε̃(α)
xz (r) ± iε̃(α)

xz (r). One then easily demonstrates that m̃β±(r) =
m̃⊥

β±(r, θ )eiφ(m±1) and ε̃
(α)
± (r) = ε̃

(α)
±⊥(r, θ )eiφ(μ±1). The selection rule

δμm follows directly from the integration over the azimuthal angle φ.
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TABLE II. Summary of the magnetoelastic couplings for the Kittel and the {210} magnon modes. The second column shows the phonons to
which the corresponding magnon can couple according to the selection rules. In the third column, we define zλν ≡ ωs,λνR/cT , z(t )

λν ≡ ωt,λνR/cT ,
and η̃ ≡ cT /cL .

Magnon Allowed phonons (selection rules) gαβ/g0
αβ

Kittel Sν21
6
5

[
η̃z2ν j1(η̃z2ν ) − 6z2ν j1(z2ν ) j2(η̃z2ν )−η̃z2ν j3(η̃z2ν )

(6−z2
2ν

) j2(η̃z2ν )+2z2ν j3(z2ν )

]
{210} Tν21

3i
5 j2(z(t )

2ν )
Sν11

3
5

[
2
3 η̃z1ν j2(η̃z1ν ) − 1

2
j1(η̃z1ν )
j1(z1ν ) z1ν j2(z1ν )

]
Sν31 − 3

5

[
8
7 η̃z3ν j2(η̃z3ν ) − 64

7
2 j3(η̃z3ν )−η̃z3ν j4(η̃z3ν )

[16−(z3ν )2] j3(z3ν )+2z3ν j4(z3ν )
z3ν j2(z3ν )

]

avoid these instabilities. We have analytically calculated the
magnetoelastic couplings gαβ for both of the above magnons
as detailed in Appendix C. The magnetoelastic couplings and
selection rules for the Kittel and {210} magnons are compiled
in Table II. As evidenced by these results, the Kittel mode is
subject to strict selection rules, and only couples to the Sν21

acoustic phonons. In contrast, the selection rules for the more
complex {210} magnon are less restrictive. Specifically, it
interacts with the Tν21, the Sν11, and the Sν31 phonon families.
The coupling rates gαβ versus acoustic mode frequency are
plotted in Fig. 4 for the Kittel magnon–Sν21 interaction (a),
the {210} magnon–Tν21 interaction (b), the {210} magnon–
Sν11 interaction (c), and the {210} magnon–Sν31 interaction
(d), for the first 30 acoustic modes (ν = 1, . . . , 30) of each
family. In the upper axis of each panel we show the exter-
nal magnetic field B∗

0 required to tune the involved magnon
in resonance with the corresponding acoustic phonon. Note
that the horizontal and vertical axes are multiplied by R
and

√
R, respectively, such that the information displayed

in the figure is size independent. In Fig. 4, we observe that

the coupling rates can reach very large values regardless of
the chosen magnon, especially for spheroidal acoustic modes.
For instance, for R = 100 nm we find |g| ≈ 2π × 36 MHz for
the Kittel magnon–to–S121 phonon coupling and |g| ≈ 2π ×
32 MHz for the {210} magnon–to–S231 phonon coupling,
eight orders of magnitude larger than the dispersive couplings
reported for magnets with R = 250 μm [19]. Moreover, the
couplings decrease slowly with the acoustic energies, allow-
ing us to couple each magnon efficiently to several acoustic
modes within experimentally feasible requirements on the
external magnetic fields. As an example, for R = 100 nm and
B0 � 5 T, the magnon-phonon resonance condition can be
met for the Kittel magnon and acoustic modes up to S10,21,
and for the {210} magnon and spheroidal modes up to S831

and S911. We conclude that strong magnon-phonon interaction
can be reached for multiple magnon-phonon pairs.

The results in Table II and Fig. 4 show that the micro-
magnet represents a flexible acoustomagnonic system where
two modes, one magnonic and one acoustic, can be tuned into
resonance and can interact coherently. In order to characterize

(a)

(c)

(b)

(d)

FIG. 4. Magnetoelastic couplings gαβ for the Kittel magnon–Sν21 phonon (a), the {210} magnon–Tν21 phonon (b), the {210} magnon–Sν11

phonon (c), and the {210} magnon–Sν31 phonon pairs (d), versus acoustic mode frequency and for YIG parameters (see Table I). The discrete
acoustic modes ν = 1, 2, 3, . . . are represented by solid circles. The upper axes show the external field B0 required to tune the magnon in
resonance with the corresponding acoustic phonon [see Eq. (31)]. All axes are normalized to be size independent. The contour plots show the
normalized acoustic mode intensities corresponding to ν = 1, i.e., to the lowest-frequency acoustic mode in each panel.
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the coherent interaction, we estimate the acoustomagnonic
cooperativity

Cαβ ≡ 4g2
αβ

γαγβ

≡ 4g2
αβ

ωαγβ

Qα, (32)

where γα and γβ are, respectively, the decoherence rates of the
phonon and the magnon, and Qα represents the quality factor
of the acoustic mode α. Regarding the magnon, linewidths
γβ ≈ 2π × 1 MHz have been reported at cryogenic temper-
atures and magnon frequencies of ∼10 GHz for the Kittel
mode [10,13,68], and even lower for inhomogeneous modes
such as the {210} magnon [10,31,68]. Regarding the acoustic
quality factors, no measurements have been performed in mi-
cromagnets, although unusually high values (Qp ≈ 105–107)
have been reported for larger samples [19,69]. Moreover,
for sufficiently isolated micromechanical resonators, Qα is
known to be limited by indirect (i.e., environment-mediated)
interactions with other acoustic modes, and reportedly reaches
values up to Qα � 5 × 1010 when consecutive acoustic modes
are, as in the present case, largely detuned (�GHz) [70]. Even
for moderate values Qα ≈ 106–107, the high-cooperativity
regime Cαβ > 1 can be reached between either the Kittel or
the {210} magnons and multiple acoustic modes. Moreover,
for Qα ∼ 109, several magnon-phonon pairs reach cooper-
ativities above 100. These results show that the acoustom-
agnonic system introduced in this paper can reach the strong-
coupling regime, where the experimentally elusive acoustic
phonons could be probed and coherently manipulated through
the magnonic degrees of freedom, which are experimen-
tally accessible, for example through cavities [9,11,13,14,17–
19,28–30,34,35,62], waveguides [10,23], or near-field mag-
netic probes [31,48,50]. Additionally, as we will see in the
next section, and originally proposed in Ref. [42], the acoustic
modes could also be probed by the much narrower center-
of-mass degrees of freedom, since the center-of-mass motion
can be coupled to the Kittel mode through an oscillating
inhomogeneous magnetic field (see Fig. 5).

IV. QUANTUM ACOUSTOMECHANICS

In this section, we consider the interaction between the ex-
ternal and the internal degrees of freedom. First, in Sec. IV A,
we derive the coupling between the center-of-mass motion of
the micromagnet and its magnonic modes, induced by an in-
homogeneous magnetic driving field. In Sec. IV B we provide
a case study for a specific driving field. In Sec. IV C we derive
the acoustomechanical Hamiltonian of Ref. [42], and extend
our previous result to higher-order acoustic phonons. These
modes are particularly attractive, because, at a given tem-
perature, the entropy of the high-frequency acoustic phonons
is lower than the entropy of the fundamental mode, which
improves the acoustic cooling of the center-of-mass motion.

A. Magnon-motion coupling through inhomogeneous
magnetic driving field

Let us derive the coupling between the center-of-mass
motion of the micromagnet and its magnonic modes. We
assume that the micromagnet is trapped in a three-dimensional
harmonic potential with frequencies ωtx, ωty, and ωtz, either

(a) (b)

FIG. 5. (a) A weak inhomogeneous magnetic field drive Hd (r, t )
(blue), superposed with the homogeneous bias field H0ez (red),
results in an interaction between the center-of-mass motion of a
harmonically trapped micromagnet and its internal magnetization
field m(r, t ) (green), i.e., its magnonic modes. (b) Some potential se-
tups for nonmagnetic trapping of the micromagnet: quasielectrostatic
levitation (top), tethering to a cantilever (middle), and deposition on
a carbon nanotube (bottom).

by levitation [45,47,48,51] or by weak clamping to a high-Q
micromechanical oscillator [6,37–41] [see Fig. 5(b)]. In the
former case, we assume for simplicity the levitation to be
nonmagnetic, for instance by optical levitation or by levitation
in a Paul trap. We remark, however, that our results could also
apply to magnetic levitation [40,45,47,48,50,51], by appropri-
ately including any additional magnetic fields in the Landau-
Lifshitz equations. In the case of a clamped micromagnet,
the weak-clamping condition amounts to assuming that the
expressions for acoustic modes computed under zero-stress
boundary conditions remain valid [19]. The external Hamilto-
nian in Eq. (1) is thus given by

Ĥex = h̄
∑

j=x,y,z

ωt j b̂
†
j b̂ j, (33)

in terms of bosonic ladder operators, [b̂ j, b̂†
j′ ] = δ j j′ , which

describe annihilation and creation of a motional quantum
along the direction j. Note that, throughout this work, we will
not refer to the motional quanta as phonons to avoid confusion
with the acoustic phonons described by the operators âα . Note
also that the micromagnet rotation can be neglected within our
approximations.3

In order to couple the center-of-mass motion of the micro-
magnet to its magnetic degrees of freedom, we apply an ex-
ternal driving field Hd (r, t ) which is spatially inhomogeneous
and time dependent. This method has been used to couple
different phononic reservoirs through a spin qubit [71]. We
consider the driving field Hd (r, t ) as a classical degree of

3Indeed, under the assumption of a cubic material undertaken in
Sec. II, the magnetocrystalline anisotropy can be neglected (see
Appendix A), and with it the main mechanism enabling the inter-
action between the micromagnet rotation and its internal degrees of
freedom [45,46].
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freedom, and assume that it fulfills the weak-driving and the
small-curl conditions

|Hd (r, t )| � H0 ∀ rmagnet, t, (34)

|∇ × Hd (r, t )||r| � |Hd (r, t )| ∀ rmagnet, t, (35)

where the subindex “magnet” above indicates that these con-
ditions must be fulfilled for all spatial positions occupied by
the micromagnet during its dynamical evolution. We include
the magnetic driving in the theory by adding it to the total
magnetic field, i.e., by redefining Eq. (7) as H(r, t ) = H0ez +
h(r, t ) + Hd (r, t ).

The addition of the driving magnetic field Hd (r, t ) in-
creases the total energy by

�E = �Estatic + �Emagnons, (36)

where the first and second terms describe the interaction
between the driving field and, respectively, the static mag-
netization, MSez, and the magnetization of the spin waves,
m(r, t ). The former contribution is given by the well-known
electrodynamical expression [72]

�Estatic(t ) = −μ0MS

2

∫
V (RCM )

dV ez · Hd (r, t ), (37)

where V (RCM) is a spherical volume of radius R centered
at the center-of-mass position of the micromagnet, RCM(t ).
The calculation of the second contribution to Eq. (36) is less
straightforward, because the micromagnetic energy functional
for the magnons, Eq. (10), is phenomenological, like the
Landau-Lifshitz equations generated by it (see Appendix A).
Hence, it cannot be generalized directly to arbitrary driving
fields. However, for driving fields satisfying the two condi-
tions Eqs. (34) and (35), it is possible to show that4

�Emagnons(t ) = Em({m}, {h + Hd}) − Em({m}, {h})

= −μ0

2

∫
V (RCM )

dV m(r−RCM, t ) · Hd (r, t ).

(38)

The derivation from the Landau-Lifshitz equations coincides
in this case with the purely electrodynamical expression
Eq. (37). The total variation in magnetic energy can thus be
written as

�E (t ) = −μ0

2

∫
V (0)

dV [MSez + m(r, t )]·Hd (r + RCM, t ),

(39)
where we have changed the integration variable from r to
r − RCM. Substituting in the equation above the dynamical

4This can be proven by following a reasoning analogous to that
in Appendix A: First, we linearize the Landau-Lifshitz equations
also in the variable Hd/H0, which is small by virtue of the as-
sumption Eq. (34). The derivation is then analogous to that in
Appendix A 3, with the substitution h → h′ ≡ h + Hd , as all the
assumptions undertaken in the derivation of the magnons still hold,
including ∇ × h′ ≈ 0 due to Eq. (35). It is then possible to show
that the micromagnetic energy under driving is modified to Em({m},
{h + Hd}).

variables by their corresponding quantum operators in the
Schrödinger picture, we obtain the quantum Hamiltonian
describing the interaction between the center-of-mass motion
R̂CM ≡ (X̂ , Ŷ , Ẑ ) and the spin-wave magnetization,

V̂ (t ) = −μ0

2

∫
dV [MSez + m̂(r)] · Hd (r + R̂CM, t ), (40)

where from now on we omit the explicit specification of the
integration domain, namely a spherical volume with radius R.

B. Case study

As a specific example, we now discuss the efficient cou-
pling of the center-of-mass motion to a particular magnon
mode, namely the Kittel mode. We also assume the following
specific form for the driving field,

Hd (r, t ) = b

μ0
[−xex + zez] cos(ωdt ), (41)

i.e., a harmonic oscillation at frequency ωd that is
parametrized by the field gradient b (dimensions [T/m]). The
above spatial profile can be realized, for instance, close to the
center of a zero-bias Ioffe-Pritchard trap, or, if the center-
of-mass is highly confined along the Y axis, a quadrupole
trap [73–75]. Conveniently, the above field has exactly zero
curl, i.e., ∇ × Hd (r, t ) = 0, thus automatically satisfying the
condition Eq. (35). Furthermore, for bias field B0 � 0.1 T
(see Fig. 3), the weak-driving assumption Eq. (34) is also
fulfilled even for large field gradients b � 105 T/m, as the
average displacement of the center of mass at room tem-
perature, namely 〈X̂ 2〉1/2 ≈ (kBT/ρV ω2

t j )
1/2, remains small

for the usual parameters; e.g., it remains below 200 nm for
R � 10 nm and ωt j � 2π × 50 kHz.

Using the field Eq. (41) and the selection rule∫
dV m̃β (r) ∝ δβ,{110}, derived in Appendix D, we write the

interaction Eq. (40) as

V̂ (t ) = bV

2
cos(ωdt )

[
MK X̂ (ŝK + ŝ†

K ) − MSẐ

+
∑
l even

∑
m=0,±2

∑
n

M0β (Lβ ŝβ + H.c.)

]
, (42)

where the selection rules in the last term are easily obtained
from the coupling integral Lβ ∼ V −1ex

∫
dV xm̃β (r) by fol-

lowing a procedure similar to that in Appendix D 1. According
to Eq. (42), three distinct terms arise from the driving: first,
a quadratic coupling between the Kittel magnon and the
center-of-mass motion along the x axis; second, a coherent
driving of the center of mass along the z axis; third, a coherent
driving of a subset of magnons, from which the Kittel mode
(l = 1) is excluded. Let us remark that these interactions
are by no means general, as one can choose a driving field
configurations that couples the CM motion to other magnons
than the Kittel mode, albeit usually with weaker coupling
rates.

We are finally in a position to write explicitly the whole
system Hamiltonian, Eq. (1), by combining the free center-of-
mass Hamiltonian, Eq. (33), the internal Hamiltonian describ-
ing magnons and phonons, Eq. (27), and the interaction with
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the driving, Eq. (42). As discussed above, we will assume a
bias field H0 such that the Kittel magnon is close to resonance
with a single acoustic phonon of the family Sν21, namely âα0 ,
while the remaining magnon-phonon pairs are far detuned. We
emphasize that, within the Sν21 family, the choice of acoustic
phonon is free, and in the following we will characterize the
system for different acoustic modes. In the scenario described
above, the total Hamiltonian of the system is

Ĥ (t )

h̄
=

∑
j

ωt j b̂
†
j b̂ j + ωα0 â†

α0
âα0

+
∑

β

ωβ ŝ†
β ŝβ + (

gα0,K ŝK â†
α0

+ H.c.
)

+ bV

2h̄
cos(ωdt )

[
MK X̂ (ŝK + ŝ†

K )+

−MSẐ +
∑
l even

∑
m=0,±2

∑
n

M0β (Lβ ŝβ +H.c.)

]
. (43)

We focus on the regime ωd ∼ ωK , where the contribution
∝ X̂ (ŝK + H.c.) cos(ωdt ) oscillates slowly in the interaction
picture, thus maximizing the interaction between the center
of mass and the Kittel mode. In this regime, the rapidly
oscillating terms ∝ cos(ωdt )Ẑ and ∝ cos(ωdt )ŝβ can be ne-
glected under a rotating-wave approximation, since ωd �
2π × 1 GHz 
 ωtx for typical trapping frequencies, and
since consecutive magnon modes are largely detuned, |ωd ±
ωβ | ∼ ωK (see Fig. 3).5 Under this approximation, Eq. (43)
reduces to a three-mode Hamiltonian involving the selected
acoustic phonon âα0 , the Kittel magnon ŝK , and the motion
along the x axis,

Ĥ (t )

h̄
= ωtxb̂†b̂ + ωpâ†â + ωmŝ†ŝ + (gŝâ† + H.c.)

+ Gx cos(ωdt )(b̂ + b̂†)(ŝ + ŝ†). (44)

This is the starting Hamiltonian in Ref. [42]. Here and in
the following, we drop the indices in the operators and, for
simplicity, relabel the magnon and phonon frequencies and
the magnon-phonon coupling as ωm, ωp, and g, respectively.
We also define the magnon–to–center of mass coupling rate

Gx ≡ bx0MKV

2h̄
= b

4

√
|γ |MS

ρωtx
, (45)

with x0 ≡ (2ρV ωtx/h̄)−1/2. Equation (45) has a straightfor-
ward interpretation as the magnetic dipole moment associated
with the Kittel mode, namely MKV , times the average mag-
netic field felt by the micromagnet on its trajectory along the

5Note that at some particular values of the external field B0 some
magnons become degenerate. In this work we assume B0 does
not take any of these critical values, such that the Kittel mode is
sufficiently detuned from any other magnonic mode. Note also that
the {430} magnon, which is always degenerate with the Kittel mode
[58–60], is not included in the last term of Eq. (43) and can thus also
be ignored.

x axis, namely bx0/2. Note that this coupling does not depend
on the size of the micromagnet.

As detailed in Ref. [42], the density matrix ρ̂ of the three-
mode system described above obeys the dynamical equation

d

dt
ρ̂ = 1

ih̄
[Ĥ (t ), ρ̂]+γmLm[ρ̂] + γpLp[ρ̂] + γxLx[ρ̂], (46)

where Ĥ (t ) is given by Eq. (44), and the remaining three terms
represent the dissipation of the magnon, the phonon, and the
CM motion, respectively, through contact with thermal reser-
voirs at a common temperature Te [42], i.e., L j[ρ̂] = (n̄ j +
1)Lôj [ρ̂] + n̄ jLô†

j
[ρ̂] and Lôj [ρ̂] ≡ ôρ̂ô† − {ô†ô, ρ̂}/2, where

{ôm, ôp, ôx} ≡ {ŝ, â, b̂} and n̄ j ≡ (exp [h̄ω j/kBTe, j] − 1)−1 is
the Bose-Einstein occupation factor. Regarding the corre-
sponding dissipation rates the Kittel magnon linewidth is
on the order of γm ≈ 2π × 1 MHz [10,13,68] for YIG as
discussed in Sec. III, and we will use this value from now
on. To describe the dissipation of the acoustic phonon and
the center-of-mass mode, we introduce their respective quality
factors, Qp = ωp/γp and Qx = ωtx/γx. Expected values for
the former have been discussed in Sec. III. Although the
dissipation of the center-of-mass mode greatly depends on
the trapping mechanism, experimental measurements of Qx �
108 have been reported both in nanofabricated resonators
[76–79] and levitated systems [80,81]. The master equation
Eq. (46) is quadratic, which allows us to solve it exactly in the
following.

C. Acoustomechanics with higher-order acoustic phonons

As detailed in Ref. [42], the parameters of the three-mode
Hamiltonian Eq. (44) can be adjusted to efficiently couple an
acoustic phonon to the center-of-mass motion of the micro-
magnet. Here, we briefly summarize the derivation and extend
our previous results to higher-order Sν21 acoustic modes.

We start by diagonalizing the internal Hamiltonian, i.e., by
writing

ωmŝ†ŝ + ωpâ†â + (gŝ†â + H.c.) =
∑

q=1,2

ωqĉ†
qĉq, (47)

in terms of hybrid magnon-phonon modes described by the
bosonic operators ĉq and ĉ†

q, given by [67]

[
ĉ1

ĉ2

]
= −1√

1 + χ2

[
χ −1
1 χ

][
â
ŝ

]
. (48)

Here, the hybridization parameter is χ = −2g[� − (�2 +
4g2)1/2]−1, with � ≡ ωm − ωp, and the corresponding eigen-
frequencies are ω1 = ωp − g/χ and ω2 = ωm + g/χ , respec-
tively. Both the hybridization parameter and the normal mode
eigenfrequencies are tunable through the magnon frequency,
i.e., through the external bias field H0.

We now invert the transformation Eq. (48), introduce it into
the Hamiltonian Eq. (44), apply the unitary transformation
U (t ) = exp[iωdt

∑
q ĉ†

qĉq], and neglect the rapidly oscillating
terms under the rotating-wave approximation 2ωd 
 |Gx|.
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(a)

(b)

(c)

FIG. 6. (a) Energy level diagram of the proposed acoustome-
chanical system. (b) Magnon fraction of each hybrid magnon-phonon
normal mode as a function of the adimensional parameter g/�.
(c) External bias field B0 = μ0H0 required to achieve χ = χ0 = 10−2

versus micromagnet radius R, for the 10 lowest energy acoustic
modes, that are able to interact with the Kittel magnon.

This leads to the time-independent Hamiltonian

Ĥ

h̄
≈ ωtxb̂†b̂ +

∑
q=1,2

�qĉ†
qĉq

+ (b̂ + b̂†)
∑

q=1,2

Gxq(ĉq + ĉ†
q ), (49)

where we defined �q ≡ ωq − ωd and Gx1 = −Gx2/χ =
Gx(2

√
1 + χ2)−1. This simplified Hamiltonian allows to tailor

a step-by-step recipe for devising an acoustomechanical sys-
tem, which couples the center-of-mass motion of the micro-
magnet to a hybrid, predominantly acoustic, normal mode [see
Fig. 6(a)]: First, we set the hybridization parameter to a small
value, say χ = χ0 = 10−2 for definiteness, by tuning the
external magnetic bias B0 to fulfill � ≡ |γ |B0 − ωp = g(χ0 −
χ−1

0 ). In this case, the mode ĉ2 is predominantly acoustic, with
only a small magnon fraction χ2

0 /(1 + χ2
0 ) ≈ χ2

0 = 10−4,
while the mode ĉ1 is mainly magnonic.6 As shown in Fig. 6(c),

6Note that this magnon fraction can be attained by other choices
of χ such as χ = −10−2, or χ = ±102, the latter of which would

the external field B0 required to reach χ0 = 10−2 lies within
experimentally achievable values B0 < 10 T for a wide range
of particle sizes and numerous acoustic modes. Second, we
tune the mainly acoustic mode ĉ2 in resonance with the center-
of-mass motion by tuning the driving frequency ωd , i.e., by
setting �2 ≡ ω2 − ωd = ωtx. The third and final step is to
increase the coupling rate Gx2 [Eq. (45)] between the center-
of-mass motion and the mode ĉ2 by increasing the magnetic
field gradient b. Since b is still a free parameter, it allows us
to compensate for the decrease of Gx2 with χ . In this way, we
engineer an effective two-mode system where the center of
mass is coupled to the largely (99.99%) acoustic mode ĉ2. The
remaining, mainly magnonic mode ĉ1 is detuned with respect
to these two modes by |δ12| ≡ |�1 − �2| =

√
�2 + 4g2 ≈

|g|/χ0 ≈ 100|g| 
 Gx1 for all values of R and b consistent
with our approximations, and thus plays a negligible role in
the dynamics.

The dissipators in Eq. (46) are transformed in a fashion
similar to that in the derivation of Eq. (49); namely we express
them in terms of the hybrid normal modes ĉq, and apply the
same unitary transformation to obtain

γmLm[ρ̂] + γpLp[ρ̂]

=
∑

q

(
γq+Lĉ†

q
[ρ̂] + γq−Lĉq [ρ̂]

)
+�12

(
e−iδ12t Lĉ1 ĉ2 [ρ̂] + eiδ12t Lĉ2 ĉ1 [ρ̂]

)
+ (�12 + δ�)

(
eiδ12t Lĉ†

1 ĉ†
2
[ρ̂] + e−iδ12t Lĉ†

2 ĉ†
1
[ρ̂]

)
. (50)

Here, the second line corresponds to the individual
decoherence of each hybrid mode, with emission and
absorption rates γq+ = (n̄mγm[δq1 + χ2δq2] + n̄pγp[δq2 +
χ2δq1])/(1 + χ2) and γq− = ([n̄m + 1]γm[δq1 + χ2δq2] +
[n̄p + 1]γp[δq2 + χ2δq1])/(1 + χ2), respectively. As can
be readily checked from the equations of motion for 〈ĉq〉
generated by Eq. (46), the differences γq ≡ γq− − γq+ =
(γm[δq1 + χ2δq2] + γp[δq2 + χ2δq1])/(1 + χ2) correspond
to the linewidths of the normal modes, which are also
hybridized linewidths composed by a magnonic and
a phononic contribution. The third and fourth lines in
Eq. (50) correspond to an incoherent interaction between
the two normal modes, described by the generalized
Lindblad dissipator Lâb̂[ρ̂] ≡ âρ̂b̂† − {b̂†â, ρ̂}/2, and the
rates �12 = (γp[1 + n̄p] − γm[1 + n̄m])χ/(1 + χ2) and
δ� = χ (γm − γp)/(1 + χ2). According to the equations of
motion for 〈ĉq〉 generated by Eq. (46), these dissipators induce
an incoherent coupling between the two normal modes ĉ1 and
ĉ2 characterized by a time-dependent rate (δ�/2) exp(±iδ12t ).
This allows us to neglect the dissipative interaction terms
in Eq. (50) under a rotating-wave approximation, as
|δ�/δ12| ≈ χ2|(γm − γp)/g| � 1 for Qp � 102, R � 10 μm
and for all acoustic modes Sν21 up to at least ν = 20. The
final master equation of the acoustomechanical system thus

result in the mode ĉ1 becoming mainly acoustic instead of ĉ2. All
these routes are experimentally feasible albeit slightly more resource
demanding, as the required external fields B0 are larger.
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(a)

(b)

FIG. 7. Acoustomechanical figures of merit versus acoustic qual-
ity factor Qp, for Qx = 108 and ωtx = 2π × 200 kHz. (a) Coupling
between center of mass and mode ĉ2 normalized to magnetic field
gradient b and linewidth γ2 (left), and ratio of center-of-mass fre-
quency to linewidth γ2 (right). (b) Cooperativity C = 4G2

x2/(γxγm )
normalized to square of the field gradient b2. The solid lines for
each radius correspond to the S121 acoustic mode, whereas the lower
ends of the shaded areas correspond to the S10,21 acoustic mode. The
curves for all the acoustic modes with 1 � ν � 10 lie, in descending
order, within the shaded area.

reduces to

d

dt
ρ̂ ≈ 1

ih̄
[Ĥ , ρ̂] + γxLx[ρ̂]

+
∑

q

(
γq+Lĉ†

q
[ρ̂] + γq−Lĉq [ρ̂]

)
, (51)

with Ĥ given by Eq. (49).
As detailed in Ref. [42], we can draw an analogy between

our acoustomechanical system and a linearized optomechan-
ical system where a low-frequency mechanical mode, in
our case the center-of-mass motion of the micromagnet, is
linearly coupled to a high-frequency optical mode, in our
case the hybrid mode ĉ2, which for simplicity we will re-
fer to as the acoustic mode from now on. The three most
common optomechanical figures of merit [82], namely the
resolved sideband parameter ωtx/γ2, the normalized coupling
rate |Gx2|/γ2, and the cooperativity C ≡ 4|Gx2|2/(γ2γx ), were
shown in Ref. [42] to be high and tunable when the chosen
acoustic phonon for the acoustomechanical system is the S121

mode. In Fig. 7, we show the same figures of merit for
the first 10 acoustic Sν21 modes and typical parameters in a
levitation setup, namely ωtx = 2π × 200 kHz and Qx = 108.
As evidenced by Fig. 7, all the figures of merit decrease
for higher-frequency phonons, because the acoustic linewidth
γp, and thus the linewidth γ2, increases for a given quality
factor Qp. Aside from this effect, the strong performance
and tunability of the acoustomechanical system reported in
Ref. [42] clearly extends to higher-order phononic modes.
Specifically, both the resolved sideband regime (ωtx > γ2),
the weak and strong coupling regimes (|Gx2|/ max[γx, γ2] =

(a)

(b)

FIG. 8. Steady-state center-of-mass occupation versus acoustic
quality factor, for the S121 acoustic phonon and three different
values of field gradient b. The parameters are Qx = 108, ωtx =
2π × 200 kHz, and R = 100 nm [panel (a)] or R = 1 μm [panel
(b)]. The three upper (lower) curves in each panel correspond to
environments at Te = 300 K (Te = 100 mK). The dashed lines depict
the approximation Eq. (52). The shaded area corresponds to ground-
state cooling, 〈b̂†b̂〉ss < 1.

|Gx2|/γ2 < 1 and |Gx2|/γ2 > 1, respectively), and the high-
cooperativity regime (C > 1) can be attained for all Sν21

acoustic modes up to ν = 10, even for moderate values
Qp ∼ 106–107, R � 100 nm, and feasible magnetic gradients
[83,84] b � 103 T/m. Similarly, the strong quantum cooper-
ativity regime C > n̄pn̄x can be achieved at cryogenic tem-
peratures (n̄pn̄x < 104 at Te = 100 mK) with slightly more
demanding, but still feasible [84] field gradients on the order
of b ≈ 103 T/m.

Since the large acoustomechanical coupling extends to
the higher-order acoustic modes, they can be used for the
same applications as the ones we envisioned for the fun-
damental mode S121 in Ref. [42], namely acoustic cool-
ing of the center-of-mass motion and probing the acoustic
modes through displacement sensing. We begin our discussion
with the acoustic cooling of the micromagnet, which is effi-
cient in the resolved-sideband, high-cooperativity, and weak-
coupling regime [85–87]. First we briefly revisit the steady-
state occupation of the motional mode when it is coupled to
the S121 acoustic phonon, shown in Fig. 8. As discussed in
Ref. [42], lower center-of-mass occupations are reached in
cryogenic environments (Te = 100 mK) and smaller micro-
magnet sizes due to the lower occupation n̄p of the cooling
mode, namely the acoustic phonon. Larger acoustomechanical
couplings, enabled by larger field gradients b, also enhance the
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motional cooling. For R = 100 nm, ground-state cooling is
attained at b = 103 T/m and T = 100 mK. The dashed lines
in Fig. 8 represent the approximate expression

〈b̂†b̂〉ss ≈ 1

C + 1
n̄x + C

C + 1

(
γ2+ + γxn̄x

γ2

)
, (52)

obtained by neglecting the far-detuned mode ĉ1 and the coun-
terrotating terms ∝ b̂ĉ2 in the master equation, and in the
limit γx � γ2, γ2+. This approximation is very accurate (see
Fig. 8) except at very low values of Qp (very large acoustic
linewidths), where the counterrotating terms ∝ b̂ĉ2 become
relevant. Thus, Eq. (52) allows us to identify the factors that
limit the lowest possible occupation. At room temperature or
considering large sizes R (i.e., lower acoustic frequencies),
and for sufficiently high cooperativity, the second term in
Eq. (52) dominates, and 〈b̂†b̂〉ss ≈ γ2+/γ2, indicating that the
limiting factor is the thermal occupation n̄p of the environ-
ment. In contrast, for R = 100 nm and lower temperatures,
e.g., Te = 100 mK, the higher acoustic frequencies result in a
negligible acoustic occupation (n̄p ≈ 10−3), and the remain-
ing two terms in Eq. (52) dominate. In this case, the minimum
occupation is very well approximated by n̄x(C−1 + γx/γ2) =
n̄x(γx/γ2)[1 + (γ2/2|Gx2|)2] ≈ 0.026 for b = 103 T/m and
Qp = 107. This corresponds to a cooperativity-limited min-
imum occupation; i.e., the occupation is limited by the de-
coherence rates of each component of the acoustomechanical
system.

Since most of the curves in Fig. 8 are limited by the thermal
occupation of the acoustic mode, the cooling improves by
choosing higher-frequency acoustic modes Sν21, which are
less occupied. Figure 9 shows the steady-state center-of-
mass occupation for b = 103 T/m and four different acoustic
modes. Indeed, all the occupations that were thermally limited
for the S121 mode are significantly reduced for the higher-
frequency acoustic modes. For example, for R = 1 μm and
T = 300 K the occupation remains thermally limited even
beyond ν = 20, due to both the high-temperature environment
and the low acoustic mode frequencies. However, once the
thermal occupation of the acoustic mode becomes negligible
we enter the cooperativity-limited regime and coupling to
higher frequency acoustic modes is not advantageous any-
more. The transition into the cooperativity-limited regime is
evidenced in Fig. 9 by a saturation of the curve minima, which
become independent of the acoustic mode for ν ≈ 7–10, for
example in the case (R, Te) = (100 nm, 300 K) and (R, Te) =
(1 μm, 100 mK). Finally, note that at cryogenic tempera-
tures, the improved cooling through higher-order phonons
allows for ground-state cooling even for relatively large mag-
nets. The larger bias fields needed to work with these higher-
order modes are still well within experimental capabilities;
e.g., for coupling to the S10,21 phonon one needs B0 ≈ 5 T for
R = 100 nm and B0 ≈ 0.5 T for R = 1 μm [see Fig. 6(c)].

The second acoustomechanical application studied in
Ref. [42] relies on the strong hybridization between the
center-of-mass motion and the acoustic phonons in the strong-
coupling regime. For the Sν21 mode, this results in a drastic
modification of the center-of-mass dynamics, specifically a
peak splitting in the position power spectral density Sxx(ω) ≡
(2π )−1

∫ ∞
−∞ dτeiωτ 〈X̂ (0)X̂ (τ )〉ss. This is shown in Fig. 10,

(a)

(b)

FIG. 9. Steady-state center-of-mass occupation versus acoustic
quality factor, for different acoustic Sν21 modes, and for R = 100 nm
[panel (a)] or R = 1 μm [panel (b)]. We take the same parameters as
in Fig. 8, and b = 103 T/m. The four upper (lower) curves in each
panel correspond to environments at Te = 300 K (Te = 100 mK).
The shaded area corresponds to ground-state cooling, 〈b̂†b̂〉ss < 1.

where we display the power spectral density at Te = 300 K,
Qp = 107, and a moderate value Qx = 105, reachable in most
experimental platforms [80,88–92]. Upon increasing the mag-
netic field gradient b, the power spectral density transitions
from a single peak, corresponding to a single mechanical
oscillator, at zero coupling, i.e., at b = 0 (orange curves),
to a widening of the peak at moderate values b = 103 T/m
(blue curves), which indicates motional cooling, to a doubly
peaked shape at b = 104 T/m (red curves), evidencing the
hybridization of the center-of-mass motion and the acoustic
mode [93]. As shown by the right insets of Fig. 10, the fre-
quency difference between these two peaks is given by 2|Gx2|,
which confirms the strong coupling between the center-of-
mass motion and the mainly acoustic ĉ2 mode.

The peak splitting offers a way to probe the acoustic
phonons of the micromagnet by measuring the two peaks in
its position power spectral density. According to the left inset
of Fig. 10, this measurement is experimentally feasible, espe-
cially for acoustic quality factors Qp > 107, as the two peaks
reach values ∼1 pm/Hz1/2, even when the center-of-mass
motion is only driven by thermal noise. This is within the sen-
sitivity regime of most state-of-the-art ultrasensitive displace-
ment sensors [79,80,88,90,91,94–98] and the signal-to-noise
ratio in the power spectral density can be largely increased by
resonant excitation of the center-of-mass mode. Remarkably,
probing the internal modes remains feasible for higher-order
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(a)

(b)

FIG. 10. Position power spectral density for a micromagnet with
R = 100 nm [panel (a)] or R = 1 μm [panel (b)], for Te = 300 K,
Qp = 107, Qx = 105, and coupling to the S121 acoustic mode. In
the main panels, different curves correspond to b = 0 (orange), b =
103 T/m (blue), and b = 104 T/m (red). The left insets show the
power spectral density near ω = ωtx at b = 104 T/m, for different
values of the acoustic quality factor Qp. The right insets show the
power spectral density in normalized units as a function of frequency
ω and magnetic field gradient b. The dashed curves correspond to
±|Gx2| as a function of b.

acoustic phonons, as evidenced by Fig. 11. As the quality
factor Qp = 107 is kept constant across all panels of the figure,
the linewidth γp, and thus the linewidth γ2, increases for
higher-order acoustic modes, resulting in a widening of the
two peaks and a smoothing out of the curves as the ratio
2|Gx2|/γ2 becomes closer to 1, i.e., as the system moves closer
to the weak-coupling regime. This effect is especially obvious
for R = 100 nm where the linewidth γ2 is entirely dominated
by the large acoustic phonon linewidths. The dependence
of the power spectral density on the acoustic linewidth γp,
combined with the possibility of addressing many distinct
internal acoustic modes, represents an experimental approach
to shed light on the hitherto unknown acoustic relaxation rates
of extremely isolated mesoscopic bodies [99].

V. CONCLUSION

In this work, we derived in detail the acoustomechanical
Hamiltonian reported in Ref. [42]. The acoustomechanical
interaction is enabled by the strong magnetoelastic coupling
between magnons and acoustic phonons in small isolated mi-
cromagnets. We uncovered a magnon-phonon interaction that
is not only qualitatively different from but also significantly

(a)ν = 1

(b)ν = 4

(c)ν = 7

(d)ν = 10

FIG. 11. Position power spectral density for Qp = 107, b =
104 T/m, and two different micromagnet sizes, R = 100 nm (green
curves) and R = 1 μm (purple curves). The different panels (a) to
(d) correspond to different acoustic phonons Sν21 coupled to the
center-of-mass motion.

stronger than in millimeter-sized samples [19]. In future
research, this could be exploited together with a magnonic
Kerr nonlinearity [62] to devise a cavity QED analog with
a magnonic “qubit” and an acoustic cavity with ultranarrow
linewidth [70]. A second research direction enabled by this
strong acoustomechanical coupling is to probe the acous-
tic modes using magnetometry, for instance via nitrogen-
vacancy centers as recently reported for levitated micromag-
nets [48,50].

In addition, we extended our previous results [42] on engi-
neering a tunable acoustomechanical interaction between the
fundamental acoustic phonon and the center-of-mass motion
of a micromagnet to higher-order acoustic phonon modes.
Furthermore, we demonstrated how cooling through higher-
frequency acoustic phonons, which have a lower thermal
occupation, results in a more efficient acoustic cooling of
the center-of-mass motion. Finally, we showed how several
acoustic modes of a microparticle can be probed by measuring
their impact on its mechanical motion within experimentally
feasible displacement sensitivities.
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APPENDIX A: MAGNONIC EIGENMODES OF A SPHERE

In this Appendix, we summarize the derivation and quan-
tization of the magnon eigenmodes in a spherical magnet.
First, in Sec. A 1, we detail the simplification of the general
Landau-Lifshitz equation into the magnetostatic dipolar spin
wave equations. Then, we compute the spin-wave eigenmodes
in Sec. A 2. We then prove the adequacy of the magnetostatic
energy functional in Sec. A 3, which allows us to quantize the
spin waves into magnon modes in Sec. A 4.

1. Magnetostatic dipolar spin wave equations

As detailed in the main text, the spin waves supported by
a magnet are described by a continuous magnetization field
M(r, t ) and its associated electromagnetic fields E(r, t ) and
H(r, t ). To compute these fields, we combine Maxwell equa-
tions with the phenomenological nonlinear Landau-Lifshitz
equation [55,57],

d

dt
M(r, t ) = −|γ |μ0M(r, t ) × Heff (M, r, t ). (A1)

Here, the effective field Heff (M, r, t ) = H(r, t ) +
�H(M, r, t ) is composed of the Maxwell field H(r, t )
and an extra contribution given by [55]

�H(M, r, t ) = Hx(M, r, t ) + Han(M, r, t ) + Hdm(M, r, t ),

(A2)

where the three terms represent the exchange field, the
magnetocrystalline anisotropy field, and the demagnetizing
field arising from the magnetic dipole-dipole interaction,
respectively. In general, all the above contributions depend
on the magnetization field M(r, t ), rendering the Landau-
Lifshitz equation (A1) nonlinear. The nonlinearity hinders the
straightforward definition of eigenmodes and consequently
their quantization. This section is devoted to simplifying the
problem using the approximations detailed in Sec. II, which
result in the well-known magnetostatic dipolar spin wave
equations.

To simplify the magnetization wave equations, we under-
take the following approximations:

(1) First, we take the spin-wave approximation; i.e., we
assume that a large field H0 is applied along the z axis,
which results in the magnet being fully magnetized. We then
consider only small fluctuations around the fully magnetized
state,

H(r, t ) = H0ez + h(r, t ), (A3)

M(r, t ) = MSez + m(r, t ), (A4)

where m � MS and h � H0 are the dynamical variables
whose eigenmodes we will calculate and quantize. Using
the above expressions, we write the Landau-Lifshitz equation
(A1) as

ṁ(r, t )

|γ |μ0MSH0
− ez ×

[
m(r, t )

MS
− h(r, t )

H0

]
+

[
ez + m(r, t )

MS

]

×�H(m, r, t )

H0
= h(r, t )

H0
× m(r, t )

MS
. (A5)

The first two terms in the first line of Eq. (A5) are of first order
in the small variables m/MS and h/H0, whereas the right-hand
side is of second order and can be neglected. In the following
we will fully linearize the Landau-Lifshitz equations by also
keeping only the first-order terms in the third term of Eq. (A5).
Note that, to first order in (m/MS ), the dipolar spin wave
magnetization fulfills m(r, t ) · ez = 0.

(2) We now simplify the contribution �H through further
approximations. First, the exchange field can be neglected,
Hx ≈ 0, for micromagnet sizes 2R larger than the usual do-
main wall length (∼10 nm), since the magnetization waves
are dominated by dipole-dipole interaction [55,57]. Second,
for a cubic material, the magnetocrystalline anisotropy can
also be neglected,7 Han ≈ 0, as its lowest-order contribution
to the Landau-Lifshitz equations is quadratic in (m/MS )
[10,55,57]. Third, we note that, within these assumptions, the
demagnetizing field for a spherical magnet takes the simple
form Hdm = −(MS/3)ez [57,72]. The above approximations
allow us to write the fully linearized Landau-Lifshitz equa-
tions as [55][

ṁx(r, t )
ṁy(r, t )

]
=

[−ω0my(r, t ) + ωMhy(r, t )
ω0mx(r, t ) − ωMhx(r, t )

]
. (A6)

Here, we have defined the two relevant system frequencies

ωM ≡ |γ |μ0MS, ω0 ≡ |γ |μ0HI , (A7)

where the internal field is defined as HI ≡ H0 − MS/3.
(3) Finally, we apply the magnetostatic approximation

∇ × h(r, t ) ≈ 0. The simplifications stemming from this
long-wavelength approximation are twofold: On the one hand,
the electric field of the spin wave is eliminated as a variable,
as it is uncoupled from h in the Maxwell equations [55].
On the other hand, this approximation allows one to de-
fine a magnetostatic potential through h(r, t ) = −∇ψ (r, t ).
The problem thus reduces to solving for three coupled
scalar fields, mx(r, t ), my(r, t ), and ψ (r, t ), whose equa-
tions are given by the linearized Landau-Lifshitz equations
(A6) and by the zero-divergence condition for the magnetic
field of the spin wave, b(r, t ) ≡ μ0[h(r, t ) + m(r, t )], or
equivalently [55],

∇2ψ (r, t ) = ∂xmx(r, t ) + ∂ymy(r, t ), (A8)

which naturally implies ∇2ψ = 0 outside the micromagnet.
These equations are complemented by the boundary condi-
tions at the surface of the magnet, namely the continuity of
h × en and b · en, where en is the unit vector normal to the
surface of the micromagnet.

The simplified equations obtained above are the starting
point for the calculation of the spin-wave eigenmodes. These
eigenmodes are known in the literature as magnetostatic dipo-
lar spin waves or Walker modes [55,57].

7Note that including the lowest-order contribution in the magne-
tocrystalline anisotropy, i.e., considering the next higher order in the
spin-wave expansion Eq. (8), leads to the well-known magnon Kerr
nonlinearity in the Hamiltonian [55,62].
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2. Walker modes

Let us calculate the Walker modes for a spherical magnet.
We start by expressing the corresponding fields in terms of
eigenmodes,

m(r, t ) =
∑

β

[sβmβ (r)e−iωβ t + c.c.], (A9)

h(r, t ) =
∑

β

[sβhβ (r)e−iωβ t + c.c.], (A10)

where sβ is a complex amplitude, and mβ (r) and hβ (r) =
−∇ψβ (r) are the fields corresponding to an eigenmode,
characterized by a set of mode indices β and an oscillation
frequency ωβ .

The calculation of these modes is summarized as follows;
see Refs. [58,60] for more details. We start by considering the
linearized Landau-Lifshitz equations for a given eigenmode,
namely

iωmx(r) = ωM∂yψ (r) + ω0my(r), (A11)

iωmy(r) = −ωM∂xψ (r) − ω0mx(r). (A12)

By introducing these equations into Eq. (A8) we obtain an
equation for the magnetostatic potential only. Outside the
micromagnet, we have

∇2ψout (r) = 0, (A13)

whereas inside the micromagnet the potential fulfills

(1 + χp)

(
∂2

∂x2
+ ∂2

∂y2

)
ψin(r) + ∂2

∂z2
ψin(r) = 0, (A14)

where χp(ω) is the diagonal element of the Polder suscepti-
bility tensor [55],

χp(ω) ≡ ωMω0

ω2
0 − ω2

. (A15)

The general solution for the potential outside the sphere in
spherical coordinates is given by

ψout(r) =
∑
lm

[
Alm

rl+1
+ Blmrl

]
Y m

l (θ, φ), (A16)

where Alm and Blm are expansion coefficients and Y m
l (θ, φ)

are spherical harmonics. In order to solve for the potential
inside the sphere, we express it in the set of nonorthogonal
coordinates {ξ, η, φ} defined by

x = √
χpR

√
ξ 2 − 1 sin η cos φ, (A17)

y = √
χpR

√
ξ 2 − 1 sin η sin φ, (A18)

z =
√

χp

1 + χp
Rξ cos η. (A19)

In these coordinates, Eq. (A14) can be solved in terms of
associated Legendre polynomials and spherical harmonics
[58,60] as

ψin(r) =
∑
lm

ClmPm
l (ξ )Y m

l (η, φ), (A20)

with expansion coefficients Clm. Importantly, the new coordi-
nates take a very simple form on the surface of the sphere,
namely

ξ → ξ0 =
√

1 + χp

χp
, {η, φ} → {θ, φ}. (A21)

This allows us to impose the boundary conditions in a rel-
atively simple way. First, we require the potential ψ to be
regular at infinity, Blm = 0. Then, we impose the continuity
of the tangential component of h, which is equivalent to
imposing continuity of the potential ψ across the surface,

Alm = ClmPm
l (ξ0)Rl+1. (A22)

The final boundary condition, namely the continuity of the
normal component of the b field, can be expressed as [58]

∂ψout

∂r

∣∣∣
r=R

= ξ0

R

∂ψin

∂ξ

∣∣∣
r=R

− i
κp

R

∂ψin

∂φ

∣∣∣
r=R

, (A23)

where iκp(ω) is the off-diagonal element of the Polder suscep-
tibility tensor [55],

κp(ω) = ωMω

ω2
0 − ω2

. (A24)

By combining the above boundary condition with Eq. (A22)
we obtain the Walker mode eigenfrequency equation [58,60]

ξ0(ω)
P′m

l (ξ0(ω))
Pm

l (ξ0(ω))
+ mκp(ω) + l + 1 = 0, (A25)

some of whose solutions are displayed in Fig. 3. Note that this
equation for ω does not depend on the radius R, and has no
positive, i.e., physical, solutions for many pairs {l, m}, such as
for l = 0 or for {l, m} = {1, 0}. In general, the eigenfrequency
equations will have a set of discrete solutions for each {l, m},
which we label with the mode index n, starting at n = 0
following historical conventions [60].

For each mode {lmn}, the magnetization profile is obtained
by expressing the potential ψin(r), Eq. (A20), in Cartesian
coordinates, introducing the result in the linearized Landau-
Lifshitz equations (A11) and (A12) and solving the corre-
sponding algebraic system of equations. To our knowledge,
no general form of the magnetization field is known for
all modes. However, the corresponding mode functions have
been explicitly calculated for l � 10 in Ref. [58].

3. Magnetostatic energy density

The quantization of the Walker modes requires the defi-
nition of a magnetic energy functional reproducing the lin-
earized Landau-Lifshitz equations (A6). Such micromagnetic
energy functional, which, like the Landau-Lifshitz equation,
is phenomenological, is given in the main text by Eq. (10),
i.e.,

Em({m}, {h}) = μ0

2

∫
dV m(r, t ) ·

[
HI

MS
m(r, t ) − h(r, t )

]
.

(A26)

In this section, we prove that the above micromagnetic energy
functional is adequate, namely that it reproduces the linearized
Landau-Lifshitz equations (A6).
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The equations of motion for m and h are those which make
the energy functional stationary,

Ėm = μ0
HI

MS

∫
Va

dV m(r, t ) · ṁ(r, t )

−μ0

2

d

dt

∫
Va

dV m(r, t ) · h(r, t ) = 0, (A27)

where we extend the integration volume to an arbitrary vol-
ume Va containing the magnet, by exploiting the fact that the
magnetization field is zero outside the material. We now use
the identity [63,72]

∫
Va

dV b · h = 0, with b = μ0(h + m),
which holds for fields satisfying the long-wavelength condi-
tion ∇ × h = 0, and for a sufficiently large integration volume
Va containing all the sources, in this case the micromagnet
and the free current density distribution j f (r, t ) responsible
for generating the external fields. Using the above identity we
readily find

d

dt

∫
Va

dV m(r, t ) · h(r, t )

= 2
∫
Va

dV h(r, t ) ·
[

ṁ(r, t ) − ḃ(r, t )

μ0

]
. (A28)

Finally, assuming no permanent electric polarization in the
magnet and that the magnetic field b does not grow indefi-
nitely with time, we can use Maxwell equations for magneto-
static fields (∇ × h = 0) to express

ḃ(r, t ) = − 1

ε0ε

∫ t

dt ′∇ × j f (r, t ′), (A29)

where ε0 is the vacuum permittivity and ε the relative per-
meability of the medium. Using this expression, the vec-
tor identity ∇ · (A × B) = (∇ × A) · B − A · (∇ × B), the
divergence theorem

∫
Va

dV ∇ · A = ∫
∂Va

dSa · A, and choos-
ing a volume Va including all the sources, the last term in
Eq. (A28) cancels out, and we arrive at

Ėm = 1

|γ |MS

∫
dV ṁ(r, t ) · [ω0m(r, t ) − ωMh′(r, t )] = 0.

(A30)

This equality is satisfied if and only if the fields m and
h fulfill the linearized Landau-Lifshitz equations (A6), thus
demonstrating that the micromagnetic energy functional is
correct.

4. Quantization of the magnetostatic dipolar spin wave modes

The magnetostatic dipolar spin wave modes are quantized
following Ref. [61]. We commence by using Eq. (A6) to cast
the micromagnetic energy functional in the more convenient
form

Em({m}) = 1

2MS|γ |
∫

dV

(
mx(r, t )

∂my(r, t )

∂t

− my(r, t )
∂mx(r, t )

∂t

)
. (A31)

We now introduce the magnetization expanded in terms of
eigenmodes, Eq. (A9), and make use of the orthogonality

relations between eigenmodes, also called Walker identities
[59,61,63], to finally reduce the energy to

Em = 1

2MSh̄|γ |
∑

β

h̄ωββ[sβs∗
β + s∗

βsβ], (A32)

where sβ are the expansion coefficients in Eq. (A9) and we
define

β ≡ 2Im
∫

dV mβy(r)m∗
βx(r). (A33)

Equation (A32) is equivalent to the energy of an ensem-
ble of harmonic oscillators, which is expected, since the
Walker modes describe small perturbations of the magneti-
zation about a fully magnetized state. The quantization is
then carried out, first, by promoting the expansion coefficients
to bosonic magnon operators, sβ → ŝβ and s∗

β → ŝ†
β , and

second, by defining the zero-point magnetization through an
adequate choice of the eigenmode normalization, i.e., such
that the factor β/(MS|γ |h̄) in Eq. (A32) cancels out. In other
words, we perform the substitution[

mβ (r)
hβ (r)

]
→ M0β

[
m̃β (r)
h̃β (r)

]
. (A34)

Here, we have defined new adimensional mode functions
m̃β (r) and h̃β (r), as well as the zero-point magnetization
Eq. (13). We can finally write the magnetization and magnetic
field operators in the Schrödinger picture as

m̂(r) =
∑

β

M0β[m̃β (r)ŝβ + H.c.], (A35)

ĥ(r) =
∑

β

M0β[h̃β (r)ŝβ + H.c.]. (A36)

As a final remark, let us emphasize that all the derivations
in this section can be extended to cases where both magne-
tocrystalline anisotropy and exchange interactions are taken
into account [61,100].

APPENDIX B: ACOUSTIC EIGENMODES OF A SPHERE

In this Appendix, we summarize the derivation of the Lamb
acoustic modes for a homogeneous spherical sample. At low
energies, the dynamics of the continuous displacement field
u(r, t ) is described by the theory of linear elastodynamics,
through the equation of motion [52–54]

ρüi =
∑
jkl

Ci jkl∂ j∂kul ({i, j, k, l} = 1, 2, 3), (B1)

where Ci jkl is the elasticity tensor. For a homogeneous and
isotropic material, only two components of the tensor are
independent, i.e., Ci jkl = ρ(c2

L − 2c2
T )δi jδkl + ρc2

T (δikδ jl +
δilδ jk ) [52,53], where δi j is the Kronecker delta. Equation (B1)
is simplified by decomposing the displacement field in terms
of acoustic eigenmodes,

u(r, t ) =
∑

α

[uαfα (r)e−iωαt + c.c.], (B2)

where uα is the complex amplitude of mode α, which is
characterized by a set of mode indices α and an oscillation
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frequency ωα . The adimensional mode functions fα (r) are
orthogonal, i.e.,∫

dV fα (r)∗ · fα′ (r) = Nαδαα′ , (B3)

where Nα ≡ ∫
dV |fα (r)|2 is the norm of mode α. Each of the

eigenmodes obeys the simpler time-independent equation

−ρω2
α fα,i(r) =

∑
jkl

Ci jkl∂ j∂k fα,l (r). (B4)

The linear elastodynamics problem is thus reduced to com-
puting the corresponding eigenmodes and eigenfrequencies
using the above equation and an appropriate set of boundary
conditions.

Following Ref. [53], we solve Eq. (B4) by decomposing
the displacement field of a given mode into scalar and vector
potentials,

f = ∇ϕp + ∇ × L + ∇ × ∇ × N. (B5)

By construction, the three components above are orthogonal.
This representation largely simplifies the equations since it is
possible to demonstrate that, for any f satisfying Eq. (B4), we
can choose L = rψp(r)er and N = rξp(r)er so that, by choos-
ing the convenient gauge [53] ∇ × [(c2

T ∇2 + ω2)L(r, ω)] =
0, the three unknown scalar functions (ϕp, ψp, ξp) satisfy
independent Helmholtz equations,

∇2

⎛
⎝ϕp

ψp

ξp

⎞
⎠ = −

⎛
⎝α̃2ϕp

β̃2ψp

β̃2ξp

⎞
⎠, (B6)

where we define the two acoustic wave numbers α̃ = ω/cL

and β̃ = ω/cT . The solutions of the above equations in spher-
ical coordinates read⎛

⎝ϕp

ψp

ξp

⎞
⎠ =

⎛
⎝A jλ(α̃r)

B jλ(β̃r)
C jλ(β̃r)

⎞
⎠Pμ

λ (cos θ )eiμφ, (B7)

where jλ(z) and Pμ
λ (z) are spherical Bessel functions of the

first kind and associated Legendre polynomials, respectively.
The general solution for an eigenmode is therefore given by
Eq. (B5) up to three arbitrary constants A, B,C determining
the contribution of the potentials ϕp, L, and M, respectively.
In an infinite bulk with no boundary conditions, the three
components are independent resulting in three families of
modes, one longitudinally and two transversely polarized.
Here, however, we impose stress-free boundary conditions at
the surface of the sphere [53],

σ (R, θ, φ) · er = 0, (B8)

where σ is the stress tensor [σ̄i j ≡ ∑
kl Ci jkl ε̄kl with ε̄i j given

by Eq. (15)]. These boundary conditions mix the amplitudes
A, B,C and the different polarizations couple to each other,
resulting in two independent phonon families, the torsional
and the spheroidal, respectively.

The torsional modes correspond to A = C = 0, and are
therefore purely transverse, ∇ · u = 0. Their dispersion rela-
tion is given by [53]

(λ − 1) jλ(β̃λνR) − (β̃λνR) jλ+1(β̃λνR) = 0, (B9)

where the index ν labels the discrete set of solutions and β̃λν =
ωλν/cT . The corresponding mode functions read

ft,νλμ(r) = eiμφ

⎛
⎝ 0

iμ
sin θ

jλ(β̃νλr)Pν
λ (cos θ )

− jλ(β̃νλr) d
dθ

Pμ

λ (cos θ )

⎞
⎠, (B10)

where the vector components are ordered in the usual way,
namely (er, eθ , eφ ). The norm of these modes is

Nt,νλμ = 3V

4
λ(λ + 1)

2(λ + μ)!

(2λ + 1)(λ − μ)!

× j2
λ(β̃λνR)

(β̃λνR)2 + 3λ(λ − 1)

(β̃λνR)2
. (B11)

Note that no torsional mode with λ = 0 exists, as the mode
function vanishes, i.e., ft,ν00 = 0.

The spheroidal modes correspond to B = 0, and C being
a given function of A. Their eigenfrequency equation can be
written in compact form as [53]

T (a)
λν T (b)

λν − T (c)
λν T (d )

λν = 0, (B12)

where the coefficients Tλν are given by

T (a)
λν =

(
λ(λ − 1) − β̃2

λνR2

2

)
jλ(α̃λνR)

+2α̃λνR jλ+1(α̃λνR), (B13)

T (b)
λν =

(
λ2 − 1 − β̃2

λνR2

2

)
jλ(β̃λνR)

+β̃λνR jλ+1(β̃λνR), (B14)

T (c)
λν = λ(λ + 1) × [(λ − 1) jλ(β̃λνR)

−β̃λνR jλ+1(β̃λνR)], (B15)

T (d )
λν = (λ − 1) jλ(α̃λνR) − α̃λνR jλ+1(α̃λνR), (B16)

and α̃λν = ωλν/cL. The corresponding mode profile is given
by

fs,νλμ(r) = eiμφ

⎛
⎜⎝

G̃νλ(r)Pμ

λ (cos θ )

F̃νλ(r) d
dθ

Pμ
λ (cos θ )

F̃νλ(r) iμ
sin θ

Pμ
λ (cos θ )

⎞
⎟⎠, (B17)

where the two radial mode functions read

r

R
F̃νλ(r) = jλ(α̃λνr) − T (d )

λν

T (b)
λν

[(λ+1) jλ(β̃λνr)

− β̃λνr jλ+1(β̃λνr)], (B18)

r

R
G̃νλ(r) = λ jλ(α̃λνr) − α̃λνr jλ+1(α̃λνr)

−T (d )
λν

T (b)
λν

λ(λ + 1) jλ(β̃λνr). (B19)

Finally, the norm of the spheroidal modes is

Ns,νλμ = 2π
2(λ + μ)!

(2λ + 1)(λ − μ)!
Jνλ, (B20)
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where the radial integral

Jνλ =
∫

drr2
[
G̃2

νλ(r) + λ(λ + 1)F̃ 2
νλ(r)

]
(B21)

can be analytically expressed as a lengthy combination of
hypergeometric functions.

The quantization of the displacement field is straightfor-
ward given the quadratic nature of the elastodynamic La-
grangian, and will be omitted here since it can be found in
the literature [101,102].

APPENDIX C: CALCULATION OF SINGLE-MAGNON
MAGNETOELASTIC COUPLINGS

In this section, we compute the single-magnon magnetoe-
lastic couplings given by Eq. (20), for an arbitrary phonon
and two magnon modes, namely the Kittel ({110}) mode
and the {210} mode. Their corresponding adimensional mode
functions are given by Eqs. (28) and (29), whereas their zero-
point magnetizations are given in Eq. (30). Based on these ex-
pressions, the coupling rates for these modes can be written as

(gαK )∗ = g0
αK

1

V

∫
dV

[
ε̃(α)

xz (r) − iε̃(α)
yz (r)

]
, (C1)

(gα,210)∗ = g0
α,210

1

V

∫
dV

z

R

[
ε̃(α)

xz (r) − iε̃(α)
yz (r)

]
. (C2)

The first step toward computing the above rates is to write
the integrand explicitly. By taking the expressions for the
strain tensor components in spherical coordinates [53] and
contracting them with the Cartesian unit vectors, it is possible
to show that

2eiφ

R

[
ε̃(α)

xz − iε̃(α)
yz

]
= sin(2θ )

[
∂r fαr − fαr

r
− ∂θ fαθ

r

]

+ cos(2θ )

[
∂r fαθ + 1

r
∂θ fαr − fαθ

r

]

+i

[
sin θ

r
∂θ fαφ − cos θ∂r fαφ + iμ( fαθ − fαr cot θ )

r

]
,

(C3)

where { fαr, fαθ , fαφ} are the radial, polar, and azimuthal
components of the mode function fα (r). It is evident from
Eqs. (B10) and (B17) that each of these components is
factorizable:

fα j (r) = Rα j (r)�α j (cθ )eiμφ ≡ f (0)
α j (r, cθ )eiμφ, (C4)

where we denote cθ ≡ cos θ , and the radial and polar
functions are defined in the following way:

(1) For torsional modes:

R(T )
αr = 0, R(T )

αθ = R(T )
αφ = jλ(β̃νλr), (C5)

�
(T )
αθ = iμ√

1 − c2
θ

Pμ

λ (cθ ), �
(T )
αφ =

√
1 − c2

θ ∂cθ
Pμ

λ (cθ ). (C6)

(2) For spheroidal modes:

R(S)
αr = G̃νλ(r), R(S)

αθ = R(S)
αφ = F̃νλ(r), (C7)

�(S)
αr =

√
1 − c2

θ

iμ
�

(S)
αφ = Pμ

λ (cθ ), �
(S)
αθ = −�

(T )
αφ . (C8)

From Eq. (C3) and the decomposition (C4) we conclude
that

ε̃(α)
xz (r) − iε̃(α)

yz (r) ∝ RWα (r, cθ )eiφ(μ−1), (C9)

where the function Wα (r, cθ ) depends on the functions
f (0)
α j (r, cθ ) and their derivatives, and has an obvious definition

[see Eq. (C3)]. This factorization allows us to perform the
integrals in the azimuthal angle φ, thus finding the first
selection rules:

g∗
αK

g0
αK

= 2πR

V
δμ,1

∫ R

0
drr2

∫ 1

−1
dcθWα (r, cθ ), (C10)

g∗
α,210

g0
α,210

= 2πR

V
δμ,1

∫ R

0
dr

r3

R

∫ 1

−1
dcθ cθWα (r, cθ ). (C11)

From here on we have to compute each of these coupling rates
separately.

1. Single-magnon couplings for the Kittel mode

We commence with the Kittel mode, for which we must
compute the integral

IK
α ≡

∫ 1

−1
dcθWα (r, cθ ). (C12)

We start by explicitly writing Wα (r, cθ ) inside the integral.
Then, we group together the terms containing f (0)

αr , f (0)
αθ , and

f (0)
αφ , respectively, and integrate by parts to eliminate the

derivatives with respect to cθ . This results in the simplified
expression

IK
α =

∫ 1

−1
dcθ

{
t
√

1 − c2
θ

(
∂r f (0)

αr + 2 f (0)
αr

r

)

+
(

2c2
θ − 1

2
∂r f (0)

αθ + (2c2
θ − 1)

f (0)
αθ

r

)

+ 1

2i
cθ

(
∂r f (0)

αφ + 2

r
f (0)
αφ

)}
. (C13)

Our next step is to explicitly write the mode functions in their
decomposed form using Eq. (C4) and rearrange the above
equation into

IK
α = Iα1

[
∂rRαθ + 2Rαθ

r

]
+

[
∂rRαr + 2Rαr

r

]
Iα2, (C14)

where we used the fact that Rαθ (r) = Rαφ (r), and defined the
integrals

Iα1 ≡
∫ 1

−1
dcθ

2c2
θ − 1

2
�αθ (cθ ) − i

2
cθ�αφ (cθ ), (C15)

Iα2 ≡
∫ 1

−1
dcθ cθ

√
1 − c2

θ�αr (cθ ). (C16)
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With this representation and the explicit expressions given by
Eq. (C6), it is straightforward to show, using integration by
parts, that Iα1 = 0 for torsional modes and, since R(T )

αr (r) =
0, we conclude from Eq. (C14) that torsional modes do not
couple to the Kittel mode, i.e.,

IK
α ∝ δσ,s. (C17)

We thus focus on the spheroidal modes in the following.
Using Eq. (C8) and integration by parts, we reduce the above
integrals to

Iα1 = 3Iα2 =
∫ 1

−1
dcθ 3cθ

√
1 − c2

θPμ
λ (cθ ) = 12

5
δλ2, (C18)

where in the last step we have used the orthogonality relations
of the associated Legendre polynomials, assumed μ = 1 due
to the selection rule δμ1 [see Eq. (C10)], and taken into
account that no mode with λ = 0 and μ = 1 exists. The
angular integral is thus

IK
α = 4

5
δσ,sδλ2

[
3∂rRαθ + 6Rαθ

r
+ ∂rRαr + 2Rαr

r

]
, (C19)

and the coupling rate is

(gαK )∗ = g0
αK

2πR

V

4

5
δσ,sδλ2δμ,1

×
∫ R

0
drr2

[
3∂rR(S)

αθ + 6R(S)
αθ

r
+ ∂rR(S)

αr + 2R(S)
αr

r

]
,

(C20)

which contains all the selection rules stated in the main text;
i.e., the Kittel mode can couple only to spheroidal modes Sν21.
We finally notice that, for λ = 2, the integrand of the radial
integral can be expressed as

r2

[
3∂rR(S)

αθ + 6R(S)
αθ

r
+ ∂rR(S)

αr + 2R(S)
αr

r

]

= R(α̃ν2r)2 j0(α̃ν2r) − 3R
T (d )

2ν

T (b)
2ν

(β̃ν2r)2 j0(β̃ν2r), (C21)

where we used Eq. (C7), Eqs. (B17)–(B19), and the re-
currence relations of the spherical Bessel functions. In this
form, the radial integral is straightforward, and we obtain the
coupling rates given in Table II in the main text.

2. Single-magnon couplings for the {210} mode

To compute the coupling rate for the {210} mode, we need
to solve the integral

I210
α ≡

∫ 1

−1
dcθcθWα (r, cθ ), (C22)

which we do by following steps similar to those above.
First, we explicitly write the integrand, group the terms con-
taining f (0)

αr , f (0)
αθ , and f (0)

αφ , respectively, and integrate each
term by parts to eliminate the derivatives with respect to cθ .

This leads to

I210
α =

∫ 1

−1
dcθ

{(
cθ

2c2
θ − 1

2
∂r + (

3c2
θ − 2

)cθ

r

)
f (0)
αθ

+
(

c2
θ

√
1 − c2

θ ∂r − 6c4
θ − 7c2

θ + 1

2r
√

1 − c2
θ

)
f (0)
αr

− i

2

(
c2
θ ∂r + 3c2

θ − 1

r

)
f (0)
αφ

}
. (C23)

We now introduce the explicit decomposition of the functions
f (0)
α j , namely Eq. (C4) and, using that Rαθ = Rαφ , we rearrange

the above integral into

I210
α =

(
Ĩα1∂rRαθ + Ĩα2

Rαθ

r
+ Ĩα3∂rRαr + Ĩα4

Rαr

r

)
, (C24)

with integrals

Ĩα1 ≡
∫ 1

−1
dcθ

[
cθ

2c2
θ − 1

2
�αθ (cθ ) − i

2
c2
θ�αφ (cθ )

]
, (C25)

Ĩα2 ≡
∫ 1

−1
dcθ

[
cθ

(
3c2

θ − 2
)
�αθ (cθ ) − i

2

(
3c2

θ − 1
)
�αφ (cθ )

]
,

(C26)

Ĩα3 ≡
∫ 1

−1
dcθ c2

θ

√
1 − c2

θ�αr (cθ ), (C27)

Ĩα4 ≡
∫ 1

−1
dcθ

−6c4
θ + 7c2

θ − 1

2
√

1 − c2
θ

�αr (cθ ). (C28)

Let us compute the above integrals for the two different
phonon families.

a. Torsional modes

For torsional modes, we introduce Eqs. (C6) into
Eqs. (C25) and (C26) and integrate by parts to eliminate the
derivatives, thereby obtaining

Ĩ (T )
α1 = 1

3
Ĩ (T )
α2

= i

2

∫ 1

−1
dcθP1

λ (cθ )cθ

√
1 − c2

θ = −2i

5
δλ2, (C29)

where we have used the fact that μ = 1 and used the orthog-
onality relations of the associated Legendre polynomials. Be-
cause R(T )

αr = 0, we can write the desired integral for torsional
modes as

I210
T,νλ1 = −2i

5
δλ2

[
∂rR(T )

αθ + 3
R(T )

αθ

r

]
. (C30)

Alternatively, introducing Eq. (C5) and using the recurrence
relations of the spherical Bessel functions, on can show that

I210
T,νλ1 = −2i

5
δλ2β̃2ν j1(β̃2νr). (C31)
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The coupling rate between the {210} magnon and torsional
phonons thus reads

gtνλμ,210

g0
tνλμ,210

= 4π i

5V
δλ2δμ1β̃2ν

∫ R

0
drr3 j1(β̃2νr)

= 3i

5
δλ2δμ1 j2(β̃2νR), (C32)

which is the expression given in Table II in the main text.

b. Spheroidal modes

Let us now compute the coupling for the spheroidal modes.
We begin with introducing Eq. (C8) into Eqs. (C25)–(C28),
and eliminating all the derivatives with respect to cθ through
integration by parts. We thus obtain the following identities:

Ĩ (S)
α1 =

∫ 1

−1
dcθ

P1
λ (cθ )

2
√

1 − c2
θ

( − 8c4
θ + 9c2

θ − 1
)
, (C33)

Ĩ (S)
α2 =

∫ 1

−1
dcθ

P1
λ (cθ )

2
√

1 − c2
θ

( − 24c4
θ + 29c2

θ − 5
)
, (C34)

Ĩ (S)
α3 =

∫ 1

−1
dcθ c2

θ

√
1 − c2

θP1
λ (cθ ), (C35)

Ĩ (S)
α4 =

∫ 1

−1
dcθ

−6c4
θ + 7c2

θ − 1

2
√

1 − c2
θ

P1
λ (cθ ), (C36)

where we have particularized to the case μ = 1. The above

integrals are solved as follows: for Ĩ (S)
α3 , we write c2

θ

√
1 − c2

θ =
(−1/5)[P1

1 (cθ ) + (2/3)P1
3 (cθ )] and use the orthogonality re-

lations for the associated Legendre polynomials. For the
remaining three integrals, we use the following relation be-
tween the associated Legendre polynomials and the Legendre
polynomials,

P1
λ (cθ )√
1 − c2

θ

= − d

dcθ

Pλ(cθ ). (C37)

We substitute the above into the integrals, eliminate the
derivative through integration by parts, and express the result-
ing polynomials accompanying Pλ(cθ ) in terms of Legendre
polynomials themselves. Then, the integrals are solved by
using the orthogonality relation of the Legendre polynomials,
and we find

Ĩ (S)
α1 = −1

5

[
64

7
δλ3 + 2δλ1

]
, (C38)

Ĩ (S)
α2 = −1

5

[
96

2

7
δλ3 − 2

3
δλ1

]
, (C39)

Ĩ (S)
α3 = −1

5

[
δλ3

16

7
+ δλ1

4

3

]
, (C40)

Ĩ (S)
α4 = −1

5

[
δλ3

48

7
+ δλ1

2

3

]
. (C41)

We now introduce the above expressions into Eq. (C24), sub-
stitute the explicit expressions of the radial functions Eq. (C7),
and using the recurrence relations for the spherical Bessel

functions and the results in Appendix B, we cast the integral
into the simplified form

I210
S,νλ1 = (δλ1 − δλ3)

2R

5

[
κλνβ̃

2
λν j1(β̃λνr)

+ 2λ

2λ + 1
α̃2

λν j1(α̃λνr)

]
, (C42)

where

κ1ν ≡ −1

2

j1(α̃1νR)

j1(β̃1νR)
, (C43)

and

κ3ν ≡ (64/7)[α̃3νR j4(α̃3νR) − 2 j3(α̃3νR)]

[16 − (β̃3νR)2] j3(β̃3νR) + 2β̃3νR j4(β̃3νR)
. (C44)

In the above form, the coupling rate Eq. (C11) can be com-
puted analytically by integrating the radial coordinate r, which
results in the functions given in Table II in the main text.

APPENDIX D: FURTHER DERIVATIONS

In this Appendix we add two useful derivations. First,
in Sec. D 1, we prove the key selection rule

∫
dV m̃β (r) ∝

δβ,Kittel for the coupling between the Kittel mode and the
center-of-mass motion. Then, in Sec. D 2, we compute the
power absorbed by the micromagnet due to the inhomoge-
neous magnetic driving field Hd (r, t ).

1. Kittel–to–center of mass selection rule

Here we demonstrate the identity
∫

dV m̃β (r) ∝ δβ,Kittel,
instrumental in the derivation of Eq.(42). We consider the
volume integral of a given Cartesian component of the adi-
mensional magnetization mode function, namely

Fβ j ≡
∫

dV e j · m̃β (r) ≡
∫

dV m̃β j (r). (D1)

Each component is obtained by solving the system of equa-
tions (A11) and (A12), and takes the general form

e j · m̃β (r) = a j∂xψβ + b j∂yψβ, (D2)

where the particular expression of the mode-dependent co-
efficients a j and b j is not relevant for the following deriva-
tion. The magnetostatic potential corresponding to mode β ≡
{nlm} inside the micromagnet has already been calculated in
Appendix A,

ψβ ∝ Pm
l (ξ )Pm

l (cos η)eimφ, (D3)

and is naturally expressed in the coordinate system {ξ, η, φ}
given by Eqs. (A17)–(A19). Our aim is to express the integral
Eq. (D1) in these coordinates. To this end, we remark that
some quantities derived in this coordinate system, such as the
Jacobian of the transformation to Cartesian coordinates, or
the inverse transformation {x(ξ, η, φ), y(ξ, η, φ), z(ξ, η, φ)},
have different qualitative forms depending on the sign of χp

or χp + 1. However, one can verify that the final result Fβ j

does not depend on the sign and we will hereafter consider
only the case χp > 0.

Applying the chain rule, we express the spatial derivatives
of the Cartesian coordinates in terms of derivatives with
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respect to {ξ, η, φ} and write Eq. (D2) as

m̃β j (r) ∝
{

im(a j sin φ − b j cos φ)√
1 − c2

η

√
ξ 2 − 1

+
√

ξ 2 − 1
√

1 − c2
η

c2
η − ξ 2

(a j cos φ + b j sin φ)

×
[
ξ

∂

∂ξ
− cη

∂

∂cη

]}
Pm

l (ξ )Pm
l (cη )eimφ, (D4)

where we used the shorthand cη ≡ cos η to keep the notation
simple. We also express the integral over the micromagnet
volume as an integral over the coordinates {ξ, η, φ}, which
requires computing the full Jacobian of the coordinate trans-
formation. After lengthy but straightforward algebra one can
show that∫

magnet
dV f (r) = χpR3

ξ0

∫ ξ0

0
dξ

∫ 1

−1
dcη

∫ 2π

0

×dφ
(
ξ 2 − c2

η

)
f (ξ, cη, φ), (D5)

for any function f (r), where ξ0 is defined in Eq. (A21).
Combining the above equation with Eq. (D4) we write

Fβ j ∝
∫ ξ0

0
dξ

∫ 1

−1
dcη

∫ 2π

0
dφeimφ

√
(ξ 2 − 1)

(
1 − c2

η

)

×
{

− (a j cos φ + b j sin φ)

[
ξ

∂

∂ξ
− cη

∂

∂cη

]

−m
(
ξ 2 − c2

η

)
(a j sin φ − b j cos φ)

i
(
1 − c2

η

)
(ξ 2 − 1)

}
Pm

l (ξ )Pm
l (cη ).

(D6)

The azimuthal integrals in φ are straightforward and provide
the first selection rule for Fβ j

8:

Fβ j ∝ δ|m|,1
∫ ξ0

0
dξ

∫ 1

−1
dcη

√
(1 − ξ 2)

(
1 − c2

η

)

×
{
ξ

∂

∂ξ
− cη

∂

∂cη

− ξ 2 − c2
η(

1 − c2
η

)
(1 − ξ 2)

}
Pm

l (ξ )Pm
l (cη ).

(D7)

Since the associated Legendre polynomials fulfill P−m
l (z) ∝

Pm
l (z), we will focus on the case m = +1 from now on, with-

out loss of generality. Using the properties of the associated
Legendre polynomials and their relation to the usual Legendre

8Note that, in order to derive this expression, we must fix a sign
convention for the imaginary unit, due to the sign arbitrariness in
ratios of the form

√
1 − ξ 2/

√
ξ 2 − 1 = ±i. The choice of convention

is arbitrary, but must be consistently followed throughout the entire
derivation. In this work we choose the positive sign of the above
equality.

polynomials Pl (z), we recast the integral in the form

Fβ j ∝ δ|m|,1
∫ ξ0

0
dξ

∫ 1

−1
dcη

{(
ξ 2 − c2

η

)
P′

l (ξ )P′
l (cη )

+ ξ

2
[l (l + 1)Pl (ξ ) − (1 − ξ 2)P′′

l (ξ )]
(
1 − c2

η

)
P′

l (cη )

− cη

2
(1−ξ 2)P′

l (ξ )
[
l (l + 1)Pl (cη ) − (

1−c2
η

)
P′′

l (cη )
]}

.

(D8)

We now carry out all the integrals in the variable cη by
combining integration by parts, the orthogonality relations of
the Legendre polynomials, and the parity properties Pl (1) = 1
and Pl (−1) = (−1)l . This integration leads to the second and
final selection rule:

Fβ j =
∫

dV e j · m̃{lmn}(r) ∝ δl1δ|m|,1. (D9)

Note that there is no {1,−1, n} magnon mode, and that
the only solution for l = m = 1 is the {110} mode, namely
the Kittel mode. We thus conclude that the integral of the
spin-wave magnetization mode function, m̃β (r, t ), across the
volume of the micromagnet is exactly zero for all magnon
modes except for the Kittel mode.

2. Driving-induced heating of the micromagnet

In this Appendix we address the unavoidable internal
heating of the micromagnet induced by the time-dependent
magnetic drive Hd (r, t ). Such heating could be detrimental,
especially for a levitated micromagnet where the absence of a
physical thermal contact prevents it from rapidly equilibrating
with its surroundings. The differential equation obeyed by the
internal temperature of the micromagnet, TMM, is [103]

cvV ṪMM = Pabs − Pem(TMM), (D10)

where cv is the specific heat of YIG per unit volume, Pabs is
the total power absorbed from the drive, and Pem(TMM) is the
total power emitted into the electromagnetic field modes by
radiative thermal emission. In the steady state, the micromag-
net temperature does not evolve in time, ṪMM = 0, allowing
us to compute the steady-state temperature by solving the
implicit equation

Pabs = Pem(TMM,ss). (D11)

Assuming the external field is purely magnetic
and monochromatic, i.e., Hd (r, t ) = (1/2)Re[Hd0(r)
exp(−iωdt )], the total absorbed power is given by [103–105]

Pabs = ωdμ0

2
Im[χM (ωd )]|Hd0(r)|2, (D12)

where χM (ωd ) ≡ αM (ωd ) − i(12πc3/ω3
d )−1|αM (ωd )|2, and

αM (ω) = 3V [μ(ω) − 1]/[μ(ω) + 2] is the magnetic polariz-
ability of the micromagnet [72,105], with μ(ω) the relative
permeability of YIG. Note that the absorbed power is approx-
imately proportional to the driving frequency ωd , and thus
depends on the frequency of the acoustic phonon coupled to
the center-of-mass motion. Conversely, the thermally emitted
power is dominated by the fluctuations of the thermally in-
duced electric dipole moment of the micromagnet, and can be
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(a)

(b)

FIG. 12. Increase in the internal temperature of the micromagnet
computed from Eq. (D11) versus homogeneous driving field B, at
Te = 300 K and for radius R = 100 nm [panel (a)] and R = 1 μm
[panel (b)]. Different colors correspond to different values of the
imaginary part of the permittivity, εi. The dashed line in each
panel marks the maximum field felt by the micromagnet under the
inhomogeneous driving Eq. (41), on its thermal motion at a temper-
ature Te and a field gradient b = 104 T/m [Eq. (D14)]. Unspecified
parameters are taken as in the main text.

computed as [99,103]

Pem(TMM) =
∫ ∞

0
dω[n(ω, TMM) − n(ω, Te)]

× h̄ω4

π2ε0c3

Im[αE (ω)]

|1 − iαE (ω)ω3/(6πε0c3)|2 , (D13)

where n(ω, T ) = (exp[h̄ω/kBT ] − 1)−1 is the Bose-Einstein
distribution, and αE (ω) = ε0V [ε(ω) − 1]/[ε(ω) + 2] is the
electric polarizability of the micromagnet, with ε(ω) the rela-
tive permittivity of YIG. In deriving the above expression, we
assumed that the surrounding electromagnetic modes are at
the temperature of the environment, namely Te, and took the
long-wavelength approximation kBTe/h̄ 
 2πc/R. Note that
the emitted power Pem is zero if TMM = Te, and decreases at
low temperatures TMM, following the decrease of the integrand
ω4n(ω, TMM).

We solve Eq. (D11) numerically in the simple scenario of
a homogeneous driving field |Hd0(r)| ≈ B/μ0, and assuming
a constant dielectric permittivity for YIG across the thermal
wavelength range, ε(ω) = ε ≡ εr + iεi. The total increase in
the internal temperature of the micromagnet, TMM,ss − Te,
is shown as a function of the driving field B in Figs. 12

(a)

(b)

FIG. 13. Same as Fig. 12 with Te = 100 mK.

and 13 for Te = 300 K and Te = 100 mK, respectively. In
both plots we assume the driving frequency ωd is tuned to
couple the center-of-mass motion to the S121 acoustic mode as
described in the main text, and take typical values for YIG,
namely [106] εr = 4.4 and μ(ωd ) = 1 + i0.005. The latter is
consistent with drivings far away from the magnon resonance
[107,108], which is a good assumption because ωd = ωm −
ωtx + g/χ0 ≈ ωm + 100g. As evidenced by Figs. 12 and 13,
larger values of the dielectric loss εi result in lower heating, as
the radiative emission is dominated by the intrinsic thermal
fluctuations of the electric dipole moment associated with
larger value of εi. The heating also decreases for higher
values of Te, as the power dissipated via thermal emission
is larger. Finally, the aforementioned dependence of the ab-
sorbed power on the driving frequency ωd , and thus with the
frequency of the chosen acoustic phonon, is responsible for
the approximately linear increase of TMM,ss both with R−1 and
with the acoustic mode index ν (the latter not shown in the
figures).

In the main text, we consider the inhomogeneous driving
field given by Eq. (41). Using this field, we estimate the
maximum field experienced by the micromagnet, at the max-
imum field gradient considered in this work, namely bmax =
104 T/m, as

B(4)
max ≡ bmax〈X̂ 2〉1/2

ss

∣∣
T =Te

. (D14)

This field is marked by the dashed lines in each panel of
Figs. 12 and 13. At these values of the magnetic field, and
assuming a dielectric loss comparable to that of a very low
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loss material such as silica at thermal frequencies (εi ≈ 10−3),
the temperature of an R = 1 μm micromagnet increases by
around 20 K at cryogenic temperatures and by less than 1 K
at room temperature. These final temperatures are not only
low, but also largely overestimate the temperature increase
experienced by the micromagnet under the inhomogeneous
field Eq. (41), for various reasons. First, at low frequencies,
the dielectric loss of YIG usually takes on larger values than
the one for silica [106]. Second, the average field experienced

by the micromagnet is in general much smaller than B(4)
max,

because, on the one hand, the motional amplitude of the
center of mass is significantly reduced when it is cooled,
that is 〈X̂ 2〉ss � 〈X̂ 2〉ss|T =Te

. On the other hand, the required
field gradients for motional cooling are usually at least one
order of magnitude smaller than b = 104 T/m (see Fig. 8).
From these results we safely conclude that the heating of the
nanomagnet is not critical and allows for efficient cooling of
the center-of-mass motion.
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