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Phase-space representation of Landau and electron coherent
states for uniaxially strained graphene
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Recent experimental advances in the reconstruction of the Wigner function (WF) for electronic systems have
led us to consider the possibility of employing this theoretical tool in the analysis of electron dynamics of
uniaxially strained graphene. In this paper, we study the effect of strain on the WF of electrons in graphene
under the interaction of a uniform magnetic field. This mechanical deformation modifies drastically the shape of
the Wigner function of Landau and coherent states. The WF has a different behavior straining the material along
the zigzag direction in comparison with the armchair one and favors the creation of electron coherent states.
The time evolution of the WF for electron coherent states shows fluctuations between classical and quantum
behavior around a closed path as time increases. The phase-space representation shows more clearly the effect
of nonequidistant relative Landau levels in the time evolution of electron coherent states compared with other
approaches. Our findings may be useful in establishing protocols for the realization of electron coherent states
in graphene as well as a bridge between condensed matter and quantum optics.

DOI: 10.1103/PhysRevB.101.125402

I. INTRODUCTION

Quantum systems are traditionally described by using a
probabilistic interpretation of them. From this notion, the
so-called wave function ψ arises, with which we can calculate
the probability of finding a particle in some space region
by taking its square norm |ψ |2 or the probability that a
certain system is in one state or another. Applying the so-
called evolution operator, we can know how the probabilities
change over time [1]. However, this formulation about how
to quantize a system is not unique mainly because many
physicists try to explain the apparent controversy between
the superposition principle of quantum mechanics and the
probabilistic results of the measurement. As a consequence,
there are a variety of formulations of quantum mechanics
based on different interpretations of physical reality. Among
such formulations, the phase-space representation places the
position and momentum variables on equal footing [2–19]. In
this formulation of quantum mechanics, one leaves the wave-
function idea to adopt the quasiprobability distribution and
the operator action is replaced by a star product [18]. Nowa-
days, the Wigner function (WF) constitutes one of the most
important theoretical tools for describing quantum systems
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in the phase-space representation [4–13,17]. This function
widely appears in different physics and chemistry branches
[17]. Experimental reconstruction in quantum tomography
experiments evidenced the significant role of the WF in
quantum physics [20–25]. In interference phenomena, the WF
allows recognizing the pure states and their interacting parts,
which is useful for studying quantum information processes
[26–28]. Recently, there has been a significant increment in
the employment of the WF for electronic systems [29–36],
especially in the study of electron transport [30,32,36]. These
works exhibit that this quantum mechanics formulation con-
nects different physics areas, treating indistinctly electrons
and photons due to their wave nature. Likewise, interesting
analogies between the effective Dirac-like approach depicting
low-energy excitations in graphene and the Jaynes-Cummings
model in quantum optics have been pointed out [37–43].

On the other hand, the emergence of strain engineering
has opened an important platform for exploiting the outstand-
ing electronic, transport, and optical properties in graphene
[44–89]. This topic started with the possibility of obtaining a
gap opening [44,47,79], but later multiple interesting effects
were predicted such as the generation of pseudomagnetic
fields [69,70,74] through the application of inhomogeneous
strain [69–76] and the modulation of physical properties
without detriment to the Dirac cones in a wide deforma-
tion range, giving rise, for instance, to the contraction of
Landau levels (LLs) [58], optical absorption [46,64,68], and
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magnetostrain-driven quantum heat engines [90]. In this con-
text, the realization of exotic ballistic transport phenomena
was also predicted as the collimation effect of electrons [45],
valley beam splitters [53–57], Klein tunneling deviation, and
asymmetric Veselago lenses [59]. These inspirational works
motivate us to introduce the Wigner matrix (WM) formalism
for uniaxially strained graphene under the presence of a
uniform magnetic field, to describe the electron dynamics in
the phase-space representation. The recent advances about the
quantum tomography of an electron [33] might stimulate the
experimental reconstruction of the WF in two-dimensional
materials, particularly for uniaxially strained graphene due
to the existing important experimental contributions so far
[82–86]. Moreover, the resemblance of electron and light
quantum optics is more evidenced by the WF analysis.

For these motivations, we propose the study of quasiprob-
ability distributions for describing the time evolution of elec-
tron dynamics in uniaxially strained graphene under a uniform
and perpendicular magnetic field. We start by developing an
effective Dirac-Weyl (DW) model based on the tight-binding
(TB) approach to nearest neighbors around a Dirac point.
We relate the geometrical parameters of the elliptical Dirac
cones with the components of the strain tensor, showing a
good agreement with recent density functional theory (DFT)
calculations [58]. Such parameters allow us to modulate
successfully the shape of the WF through the tensile strain.
We calculate the Landau states from our effective model.
Using the integral representation of the WF, we determine
the components of the WM as a function of the tensile
strain and the magnitude of the magnetic field. We also build
electron coherent states from the Landau quantization through
the eigenstates of annihilation operators of pseudo-spin-1/2
systems and obtain the corresponding WM. We find that
stretching along the zigzag (Z) direction favors the observa-
tion of electron coherent states. From the time evolution of
the WM of electron coherent states, we identify aspects of
electron classical motion in a uniform magnetic field as well
as evidence of fluctuations in the quasiprobability distribution,
where negative values indicate a nonclassical behavior of
these states. At the time this paper has been developed, the
analysis of time evolution of electron dynamics in phase
space for strained two-dimensional materials has not yet been
performed.

II. EFFECTIVE TIGHT-BINDING HAMILTONIAN IN
UNIAXIALLY STRAINED GRAPHENE

A. Tight-binding approach to nearest neighbors

For describing the WM in strained graphene, we start
using the TB approach to an anisotropic hexagonal lattice
[44,59,62,88,91]. In this approach, the pz orbital of the carbon
atom is decoupled with the σ ones. Other approximations con-
sist of neglecting the overlap between pz orbitals and second
nearest-neighbor interactions. Since there are two atoms per
unit cell and we assume an infinity extended layer, the TB is
simplified considerably and reduced to a model of two energy
bands [59,92,93]. This effective model only depends on two
hopping parameters t1 and t2 for quinoid type deformations,
which quantify the probability amplitude that an electron

hops to the nearest atom. Most of the properties of strained
graphene depend strongly on the value of these parameters.
For instance, an excessive value of one of them can cause a
gap opening [44,47]. These parameters are related directly to
the bond lengths through an exponential decay rule. With the
application of a uniaxial tension T to graphene, the atomic
sites are displaced and modify the hopping parameter values,
as shown in Fig. 1. The positions of nearest neighbors are
denoted by �δ1, �δ2, and �δ3 on the underlying sublattice A, where
the Cartesian system is set with the x axis along with the Z
bond. The lattice vectors �a1 and �a2 allow connecting the whole
positions in the deformed hexagonal lattice. From elasticity
theory [44,49,50,94], the uniaxial strain tensors along Z and
armchair (A) directions are, respectively,

εZ =
(

1 0
0 −ν

)
ε, εA =

(−ν 0
0 1

)
ε, (1)

where ν is the Poisson ratio of graphene [45,49] and the
tensile strain ε is proportional to the magnitude of tension T .
This quantifies the percentage of deformation [44]. According
to Eq. (1) and applying positive (negative) deformation ε

along a particular axis, the perpendicular direction contracts
(expands) by −νε. The atomic positions in uniaxially strained
graphene are �r = (I + ε̄)�r0, where �r0 indicates the sites on the
pristine graphene, I denotes the 2 × 2 unity matrix, and ε̄ is
the deformation tensor. Thus, the deformed lattice vectors for
uniaxial strain in the Z direction are

�aZ
1 =

√
3a0x̂(1 + ε), (2a)

�aZ
2 =

√
3

2
a0[x̂(1 + ε) +

√
3ŷ(1 − νε)], (2b)

while for the A direction they are

�aA
1 =

√
3a0x̂(1 − νε), (3a)

�aA
2 =

√
3

2
a0[x̂(1 − νε) +

√
3ŷ(1 + ε)], (3b)

where a0 is the bond length in pristine graphene [51]. Since
the nearest-neighbor sites are given by �δ1 = 2�a1/3 − �a2/3,
�δ2 = 2�a2/3 − �a1/3, and �δ3 = −�δ1 − �δ2, they are also related
with the tensile strain.

To obtain an effective model based on the TB approach,
we develop the following TB Hamiltonian in the Fourier basis
from a plane-wave ansatz [59,91,92]:

HK
TB =

3∑
j=1

[
0 t jei�k·�δ j

t je−i�k·�δ j 0

]
. (4)

The hopping parameters t j can be modeled using an expo-
nential decay rule t j = texp[−β(δ j/a − 1)], where β is the
Grüneisen constant, t is the hopping in pristine graphene, and
δ j are the deformed bond lengths [44,51,59,95]. The relation
of t j as a function of strain parameters is completed when we
express the deformed lengths in terms of tensile strain, which
for Z deformations are given by

δZ1 = δZ3 = a0

√[
1 + 1

4
(3 − ν)ε

]2

+ 3

16
(1 + ν)2ε2, (5a)

δZ2 = a0(1 − νε), (5b)
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FIG. 1. (a) Schematic representation of uniaxially strained graphene where red and blue circles indicate the sites of triangular sublattices
A and B, respectively. Uniaxial strain along the zigzag or armchair direction has two different nearest-neighbor hopping parameters t1 and t2.
The lattice vectors are denoted by �a1 and �a2. (b, c) Energy contour of the conduction band near the first Brillouin zone for deformation of 20%
along the zigzag and armchair direction, respectively.

while for uniaxial strain along the A direction

δA1 = δA3 = a0

√[
1 + 1

4
(1 − 3ν)ε

]2

+ 3

16
(1 + ν)2ε2, (6a)

δA2 = a0(1 + ε). (6b)

The electronic band structure of uniaxially strained
graphene is obtained from the eigenenergies of the Hamilto-
nian (4):

Es(�k) = s

∣∣∣∣∣∣
3∑

j=1

t je
−i�k·�δ j

∣∣∣∣∣∣, (7)

where the band index s = 1 (−1) corresponds to the con-
duction (valence) band. The energy bands can be modified
applying uniaxial strain, as shown in Figs. 1(b) and 1(c). DFT
and TB calculations have an excellent agreement within the
low-energy regime [48]. For that reason, the TB Hamiltonian
(4) is expanded around the Dirac point performing �k = �q +
�KD and the Dirac point position �KD satisfies

∑
j t jexp(−i �KD ·

�δ j ) = 0. Thus, the effective Dirac-Weyl-like Hamiltonian in
the continuum approximation is

HD = vF

[
0 apx − ibpy

apx + ibpy 0

]
, (8)

where the quantities

a = 2

3

3∑
j=1

δ jx

a0

t j

t
sin( �KD · �δ j ), (9a)

b = 2

3

3∑
j=1

δ jy

a0

t j

t
cos( �KD · �δ j ) (9b)

are expressed as functions of the lattice vectors and hopping
parameters. Taking into account the relation

cos[ �KD · (�δ1 − �δ2)] = − t2
2t1

, (10)

which is obtained from the Dirac points equation∑3
j t je−i �KD·�δ j = 0, it is possible to show that

a = 2

3a0t

√
a2

1xt2
1 + (a2x − a1x )a2xt2

2 ,

b = 2

3a0t

√
a2

1yt
2
1 + (a2y − a1y)a2yt2

2 . (11)

It is important to mention that the parameters a and b can be
related to the extremal angle of the elliptical Dirac cones [58].
This shows clearly that the physical properties of strained
graphene can be modulated by the geometrical parameters of
the Dirac cone through the strain using the relation (11). These
quantities depend on the strain direction by evaluating the
corresponding expressions of lattice vectors (2) and (3) and
bond lengths (5) and (6) for Z and A directions, respectively.
In the geometrical approach, the parameters a and b are
fitted to the energy bands obtained from DFT calculations
[58]. The behavior of a and b is similar to the elastic strain
observed from the geometrical approach [58] [see Fig. 2(a)].
We can observe that for strain values up to 10% the geo-
metrical parameters satisfy aZ ≈ bA and bZ ≈ aA. Beyond
this range, these geometrical parameters are different. This
behavior is following the stress-strain relationship of graphene
[49]; the elastic response is isotropic (anisotropic) and linear
(nonlinear) for ε < 10% (ε > 10%). Therefore, the analytical
formulas (11) indicate how the strain affects the geometrical
parameters a and b as well as other electronic properties, such
as effective Fermi velocity v′

F = vF

√
ab [see Fig. 2(b)] and the

supersymmetric potential parameter ζ = a/b [see Fig. 2(c)].
Likewise, we will show the effect of strain on the WF of
Landau and coherent states in forthcoming sections.

B. Dirac-Weyl equation under uniaxial strain

The effective Dirac-Weyl Hamiltonian (8) has validity in
the energy range of 0–0.3 eV, where DFT and TB calculations
agree very well [48]. It is important to mention that there
exist other models for depicting the electronic properties
of strained graphene using a pseudovector potential. Such
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FIG. 2. Geometrical parameters a and b (a), effective Fermi velocity v′
F = vF

√
ab (b), and supersymmetric potential parameter ζ = a/b

(c) as a function of the tensile strain parameter ε along the zigzag and armchair directions.

theoretical works have been useful for studying graphene
under inhomogeneous deformations [61]. However, in the
uniform strain case it has been shown that those models do
not describe correctly the electron dynamics because the high-
symmetry point K in the first Brillouin zone is far away from
the Dirac point, where the dispersion relation can be nonlinear
[62]. For that reason, an effective Dirac-Weyl model around
the Dirac point is more adequate for studying the physical
properties of uniaxially strained graphene instead of one in
the high-symmetry points. Moreover, this model constitutes a
simple way to promote the Fermi velocity to a tensor character
preventing the generation of pseudomagnetic fields by the
homogeneity of the deformation. An analogous procedure can
be implemented at the K ′

D valley to obtain the corresponding
effective Dirac-like Hamiltonian.

Now, let us consider the DW equation under uniform
uniaxial strain:

H	(x, y) = vF(aσxπx + bσyπy)	(x, y) = E	(x, y), (12)

where the geometrical parameters a and b are given by
Eq. (11) and the linear momentum in the presence of a
magnetic field and under the Peierls substitution is πx,y =
px,y + eAx,y, with �p being the kinetic momentum in free field
and �A the vector potential that generates a magnetic field
aligned perpendicularly to the graphene sample. In a Landau-
like gauge,

�A(x, y) = Ay(x)ŷ, �B = ∇ × �A = B(x)ẑ, (13)

the linear momentum py = h̄k, with k the wave vector in y, is
conserved and therefore we can write the pseudospinor ansatz
as

	(x, y) = exp(iky)

(
ψ+(x)
ψ−(x)

)
. (14)

Substituting (14) into (12), two coupled equations arise,
namely,

{apx ± ib[kh̄ + eAy(x)]}ψ±(x) = E

vF
ψ∓(x). (15)

These equations are decoupled to obtain[
−ζ

d2

dx2
+ V ±

ζ (x)

]
ψ±(x) = ε±2ψ±(x), (16)

where ε± = E/(vF h̄
√

ab) and

V ±
ζ (x) = ζ−1

(
k + eAy(x)

h̄

)2

± e

h̄

dAy(x)

dx
. (17)

This effective one-dimensional potential has been discussed
in a supersymmetric point of view [96] and we show how
this potential through the parameter ζ is tuned with the tensile
strain ε in Fig. 2(c). In the case of an inhomogeneous magnetic
field, there is a little number of vector potential profiles that
allow obtaining exact and analytical solutions of energy-level
spectra and wave functions of the electron [96,97]. In gen-
eral, it is necessary to solve numerically the Sturm-Liouville
problem given by the decoupled systems (16). For a uniform
magnetic field �B = Bẑ we can obtain an exact solution using
the Landau gauge �A = Bxŷ. In this way, the Hamiltonians
and effective potential in the supersymmetric approach are,
respectively,

H±
ζ = −ζ

d2

dx2
+ V ±

ζ (x), (18a)

V ±
ζ (x) = ζω2

ζ

4

(
x + 2k

ζωζ

)2

± ζωζ

2
, (18b)

where ωζ is a frequency defined by ωζ = 2eB
ζ h̄ . Since this prob-

lem is very similar to solve the quantum harmonic oscillator,
the LL spectra are straightforwardly obtained [58]:

En = sv′
F

√
2neh̄B, (19)

where v′
F = vF

√
ab is the effective Fermi velocity. The

Landau-level index n runs over 0, 1, 2, . . . and the positive
(negative) energy corresponds to electrons in the conduc-
tion (valence) band, as given by the band index s. When
one performs the same analysis in the other elliptical Dirac
cone K ′

D, the LL spectra are very similar to those shown
in (19). However, each valley contributes differently for the
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Landau state with n = 0 [92], namely, the zeroth Landau state
receives a contribution of the sublattice A (B) in the valley
KD (K ′

D). This important fact gives rise to the anomalous
quantum Hall effect [98–100]. Furthermore, the quantity

√
ab

is always less than 1 for positive deformations [see Fig. 2(b)],
causing the contraction of LL spectra [58,101]. In contrast,
for compressing a graphene lattice the quantity

√
ab increases

and we can expand the LL spectra. It is important to mention
that the LLs in Eq. (19) are only valid for low magnetic
fields and energies [92,93]. Such an observation is useful if
one considers building electron coherent states in uniaxially
strained graphene since the largest possible number of LLs is
needed within the energy range, where the dispersion relation
is linear. In this way, the most convenient route for a tentative
developing of electron coherent states is stretching graphene
along the Z direction and using low magnetic fields. As seen
in Fig. 2(b), the Fermi velocity is lower in the Z direction than
in the A direction for positive deformations and therefore the
LL spectra are compressed more efficiently.

The exact solution for the wave function of electrons in
strained graphene with a uniform magnetic field turns out to
be

	n(x, y) = exp (iky)√
2(1−δ0n )

(
(1 − δ0n)ψn−1(x)

i λs ψn(x)

)
, (20)

and the components of the pseudospinor are given by

ψn(x) =
√

1

2nn!

(ωζ

2π

)1/2
exp

[
−ωζ

4

(
x + 2k

ζωζ

)2
]

× Hn

[√
ωζ

2

(
x + 2k

ζωζ

)]
. (21)

The quantity δmn denotes the Kronecker delta, ψ−
n ≡ ψn,

ψ+
n ≡ ψn−1, and λ = +/− describes Dirac fermions at the

KD/K ′
D valley. It is worth remarking that the wave function

in the upper (lower) component of the pseudospinor (20)
corresponds to an electron at the KD valley in the sublattice A
(B), while at the K ′

D valley the roles of upper and lower com-
ponents are interchanged. These wave functions will be used
for determining the coherent states and WM from an integral
representation. In all our calculations, we set the following
physical constants h̄ = e = 1. Also, without loss of generality
in the next sections, we will focus on the conduction band
(s = 1).

III. ELECTRON COHERENT STATES
OF STRAINED GRAPHENE

A. Annihilation operator

First, for obtaining coherent states in electronic systems,
we introduce the definition of creation and annihilation op-
erators for electrons of strained graphene in the presence of
a uniform magnetic field. Thus, let us define the following
dimensionless differential operators:

θ± = 1√
2

(
∓ d

dξ
+ ξ

)
, θ+ = (θ−)†, (22a)

ξ =
√

ωζ

2

(
x + 2k

ζωζ

)
, (22b)

that satisfy the commutation relation

[θ−, θ+] = 1. (23)

This relation implies that the set of operators {θ+, θ−, 1}
generates a Heisenberg-Weyl (HW) algebra [102–104].

Now, the action of the operators θ± on the eigenfunctions
ψn in (21) is

θ−ψn = √
nψn−1, θ+ψn = √

n + 1ψn+1, (24)

so that θ− (θ+) is the annihilation (creation) operator. In terms
of these ladder operators, we can define the following dimen-
sionless 2 × 2 Hamiltonian H that acts on the x-dependent
pseudospinors in Eq. (20):

H =
[

0 −iθ−
iθ+ 0

]
. (25)

To build coherent states in graphene, one can define a
generalized annihilation operator �− as

�− =
[

cos(δ)
√

N+2√
N+1

θ− λ sin(δ) 1√
N+1

(θ−)2

−λ sin(δ)
√

N + 1 cos(δ)θ−

]
, (26a)

�+ = (�−)†, (26b)

such that

�−	n(x, y) = exp(i δ)√
2δ1n

√
n	n−1(x, y), n = 0, 1, 2, . . . ,

(27)

where N = θ+θ− is the number operator. The parameter δ ∈
[0, 2π ] in Eq. (26) allows us to consider either a diagonal
or nondiagonal form for such an operator in order to mix,
exchange, or not mix or exchange the components that belong
to different sublattices (A or B) in the pseudospinor.

On the other hand, the operators �± satisfy the following
commutation relation:

[�−,�+] = I, (28)

that also generates the HW algebra.

B. Coherent states as eigenstates of �−

We obtain the coherent states 	α (x, y) as eigenstates of the
operator �−:

�−	α (x, y) = α	α (x, y), α ∈ C, (29)

where α is the eigenvalue of �−. The |α|2 indicates the
average electron number, while the α phase is the polar angle
in phase space. The electron coherent states are expanded in
the Landau states basis (21) as

	α (x, y) = a0	0(x, y) +
∞∑

n=1

an	n(x, y). (30)

Upon inserting these states into the corresponding eigen-
value equation, we get the following relations:

a1 =
√

2α̃a0, an+1

√
n + 1 = α̃an, (31)

where α̃ = α exp (−i δ). This means that the δ parameter
translates as a phase factor, that will affect the eigenvalue
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α, and a0 is a free parameter that can be determined by the
normalization process.

After straightforward calculations, the coherent states turn
out to be [103]

	α (x, y) = 1√
2 exp(|α̃|2) − 1

[
	0(x, y)+

∞∑
n=1

√
2α̃n

√
n!

	n(x, y)

]

= eiky√
2 exp(|α̃|2) − 1

(
ψ ′

α (x)
iψα (x)

)
, (32)

where

ψ ′
α (x) =

(ωζ

2π

)1/4
exp

(
−ξ 2

2

) ∞∑
n=1

(α̃/
√

2)n

n!

√
2nHn−1(ξ ),

(33a)

ψα (x) =
(ωζ

2π

)1/4
exp

(
−ξ 2

2
− α̃2

2
+

√
2α̃ξ

)
. (33b)

Equation (33b) corresponds to the wave function of an un-
normalized standard coherent state.

IV. PHASE-SPACE REPRESENTATION

A. Properties of the Wigner function in quantum mechanics

The Wigner function W (�r, �p) is the cornerstone of quan-
tum mechanics in phase space. It is a quasiprobability distri-
bution defined as [2,3,9,14]

W (�r, �p)= 1

(2π h̄)n

∫ ∞

−∞
exp

(
i

h̄
�p · �r′

)〈
�r − �r′

2

∣∣∣∣ρ
∣∣∣∣�r + �r′

2

〉
d�r′,

(34)

where ρ is the density matrix; �r = (r1, r2, . . . , rn) and �p =
(p1, p2, . . . , pn) are n-dimensional vectors representing the
classical phase-space position and momentum values, re-
spectively; and �r′ = (r′

1, r′
2, . . . , r′

n) is the position vector
in the integration process. The normalization condition is
given by ∫ ∞

−∞

∫ ∞

−∞
W (�r, �p)d�r d �p = 1. (35)

It is a real function that can take negative values, in con-
trast with the probability density of any quantum state. Such
negativity has no physical meaning if it is thought of like a
probability distribution. In several works, the negativity in the
WF has been considered as an indicator of the nonclassicality
of a state and is interpreted as a sign of quantumness. This
feature has been tested experimentally [105–113]. However
in two-dimensional phase space, for instance, the WF can be
used for obtaining the x and p probability distributions:∫ ∞

−∞
W (x, p)d p = |ψ (x)|2,

∫ ∞

−∞
W (x, p)dx = |ϕ(p)|2.

(36)

1. Wigner function for Landau states in
uniaxially strained graphene

To calculate the Wigner matrix for the Landau state n in the
valley KD, we have to take into account that the n �= 0 level
presents a fourfold degeneracy due to the pseudospin of the
sublattice and valley, while the ground state n = 0 has only
twofold degeneracy [98,99]. We perform our analysis in the
KD valley finding a 2 × 2 WM when we substitute the nth
eigenstate in Eq. (20) into the Wigner representation (34):

Wn(�r, �p) = 1

2(1−δ0n )
W (y, py )

(
(1 − δ0n)Wn−1,n−1(x, px ) −i λ(1 − δ0n)Wn−1,n(x, px )
i λ(1 − δ0n)Wn,n−1(x, px ) Wn,n(x, px )

)
, (37)

where the components Wα,β (x, px ) and W (y, py ) are given,
respectively, by

Wα,β (x, px ) = 1

π h̄

∫ ∞

−∞
e2 i

h̄ pxz1ψα (x − z1)ψ∗
β (x + z1)dz1,

(38a)

W (y, py) = 1

π h̄

∫ ∞

−∞
e2i(

py
h̄ −k)z2 dz2 ≡ δ(py − kh̄),

(38b)

ψα and ψβ being the wave functions of the quantum harmonic
oscillator (21).

For computing the function Wα,β (x, px ), we define the
following quantities:

ξ =
√

ωζ

2

(
x + 2k

ζωζ

)
, y =

√
ωζ

2

z1

h̄
, s =

√
2

ωζ

px.

(39)

Hence, by substituting Eq. (21) in Eq. (38a) and using the
definitions (39), we get

Wα,β (χ ) = exp
(− 1

2 |χ |2)
π

×
⎧⎨
⎩

(−1)α
√

α!
β!χ

β−αLβ−α
α (|χ |2), if α � β,

(−1)β
√

β!
α! χ

∗α−βLα−β

β (|χ |2), if α � β,

(40)

where the functions Lm
n (x) are the associated Laguerre poly-

nomials and the quantity χ = √
2(ξ + is) is defined. Thus, the

components of the 2 × 2 WM turn out to be

Wn−1,n−1(χ ) = 1

π
(−1)n−1e− 1

2 |χ |2 Ln−1(|χ |2), (41a)

Wn−1,n(χ ) = W ∗
n,n−1(χ ) = (−1)n−1

π
√

n
χe− 1

2 |χ |2 L1
n−1(|χ |2),

(41b)

Wn,n(χ ) = 1

π
(−1)ne− 1

2 |χ |2 Ln(|χ |2). (41c)
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FIG. 3. Qualitative behavior of the classical energy E for different values of the tensile strain ε along the zigzag direction. B = 1 and k = 0.

An identical solution for the WM in Eq. (41) is found in the
Appendix using the Moyal star product. In these components
we can identify the quantity E = 1

2 |χ |2 = ξ 2 + s2 or, more
explicitly,

E = 2

ωζ

p2
x + ωζ

2

(
x + 2k

ζωζ

)2

= exp (2τ )p2
x + exp (−2τ )

(
x + 2k

ζωζ

)2

, (42)

where τ = ln
√

2/ωζ . Equation (42) is the classical energy of
a particle with linear momentum px moving in an oscillator
potential the center of which is depending on k. As it occurs
in classical mechanics, E is represented by ellipses in phase
space. The effect of uniaxial strain is to change the length
of the semimajor axis according to the value of ε through
the amount τ in Eq. (42), as shown in Fig. 3. This fact is
recognizable in the WF for the Landau states of uniaxially
strained graphene.

The elements of W (�r, �p) also have a direct physical in-
terpretation. As seen in wave function (20), the electron in
sublattice A (B) has a quantum harmoniclike oscillator form
(1 − δn0)ψn−1 (ψn). Therefore, Wnn and Wn−1n−1 are the WFs
for the electrons with energy En and which belong to the
sublattice A and B, respectively. Meanwhile, Wn−1,n can be
recognized as the mixed WF of an electron in the sublattices
A and B. This term can be very important for the case where
e-e interaction is considered for the description of interference
phenomena. However, our analysis is restricted to a single-
particle model. Therefore, we only address the diagonal terms
in the WM. Moreover, due to the fact that one can choose an
adequate representation in which the WM is diagonal [114],
we will just focus on analyzing the trace of matrix Wn(�r, �p) in
(37) that is an invariant quantity.

Figures 4 and 5 show that the surface of the Wigner
function is distorted differently for deformations along the
Z and A directions with strain values close to 20%. This
evidences that the WF changes following the stress-strain
relationship of graphene [49,50], where anisotropic and non-
linear elastic behavior is obtained for strains up to 20%, as
shown in Figs. 4(d) and 5(d) for the particular case n = 3,
while the isotropic behavior occurs for small strain values
up to 10%. It is important to mention that this same effect

of strain on the trace of the WM also emerges for n = 0
and other excited Landau states, as shown in Figs. 4(a), 4(b)
and 4(c). From the Landau level n = 2, we observe negative
values in the WF that indicate nonclassicality. This feature
usually appears for the WF of single-photon states in quantum
cavities [115]. The resemblance between the effective Dirac-
Weyl model in graphene and the Jaynes-Cummings model
established in Refs. [37–43] shows an important connection
between quantum optics systems and graphene, and it can be
useful as a key point in the preparation of electron coherent
states. For that reason, in the next subsection, we study the
phase-space representation of electron coherent states as well
as its time evolution from the Heisenberg picture.

2. Wigner function for electron coherent states �α(x, y)

To observe the effect of strain on the WM for electron
coherent states, we substitute the components of coherent
states (33a) and (33b) into the integral matrix representation
(34):

Wα (�r, �p) = δ(py − kh̄)

[2 exp(|α̃|2) − 1]

×
(

W11(x, px ) −i λW12(x, px )
i λW21(x, px ) W22(x, px )

)
, (43)

where, by using properly Eq. (40), the matrix components are
given by

W11(χ ) = −exp
(− 1

2 |χ |2)
π

∞∑
n=1

[
(−|α̃|2)n

n!
Ln−1(|χ |2)

+ 2
∞∑

m=n+1

(−1)n

m!
Re(α̃nα̃∗mχm−n)

√
m

n
Lm−n

n−1 (|χ |2)

]
,

(44a)

W12(χ ) = W ∗
21(χ ) = 1

π
exp

(
−1

2
|χ |2 + α̃∗χ

)

×
∞∑

n=1

α̃n

n!

√
n(χ∗ − α̃∗)n−1, (44b)

W22(χ ) = 1

π
exp

(
1

2
|χ |2 − |χ − α̃|2

)
, (44c)
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FIG. 4. Trace of the Wigner matrix Wn(�r, �p) in Eq. (37) for different values of n and ε along the zigzag direction. B = 1 and k = 0.

where Re(z) and Im(z) denote the real and imaginary part
of a complex number z, respectively. Expression (44c) cor-
responds to the scalar WF of un-normalized coherent states
as expected. The off-diagonal components indicate a sign
of interference by the superposition of the electron wave
function from the sublattices A and B. Figure 6 shows the
trace of Wα (�r, �p) for strains applied in the Z and A direc-
tion, respectively. We observe that the trace of the WM also
behaves as the stress-strain relationship of graphene. Since the

compression of LLs favors the realization of electron coherent
states, we only consider positive strain values for the WM.
By comparing deformations along the Z and A direction,
the shape of the Wα (�r, �p) is different in the nonlinear elastic
regime. We can observe for ε < 10% that the WF has an
identical response under the application of uniaxial strain in Z
and A directions but with a difference of 90o. Thus, the strain
affects the uncertainty relation, such as distorting the classical
energy orbits (see Fig. 3). Further, the coherent states keep

FIG. 5. Trace of the Wigner matrix Wn(�r, �p) in Eq. (37) for different values of n and ε along the armchair direction. B = 1 and k = 0.
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FIG. 6. Trace of the Wigner matrix Wα (�r, �p) from Eq. (43) for deformations in zigzag (a, c, e) and armchair directions (b, d, f) using the
set of values α = 3 exp(iπ/4), B = 1, k = δ = 0, and different values of ε.

their minimum values of uncertainty in position and linear
momentum [19]. Herein, the positive strains along the Z (A)
direction increase (decrease) the uncertainty of px, causing
simultaneously a decrease (increase) in the uncertainty of x,
according to the amount τ in Eq. (42). Therefore, the action
of strain on electron coherent states in graphene is similar to
the effect found in the squeezing of light coherent states in
quantum optics [19].

On the other hand, when we change the parameter α it
is possible to identify two main effects on the WF. First,
the increasing of |α|2 shifts the maximum of the WF far
away from the phase-space origin. This is identical to the
displacement observed in light coherent states, where |α|2 also

corresponds to the average photon number [19]. Therefore, the
quantity |α|2 is proportional to the distance of the maximum
of the WF for an electron coherent state. Second, we also
observe that the phase of α causes rotations of the WF around
the phase-space origin. However, we will show that the time
evolution of electron states is very different from those of
quantum optics.

3. Time evolution of the Wigner matrix for electron coherent states

Now, we investigate the time evolution of the coherent
states in phase space by applying the time evolution uni-
tary operator U (t ) = exp (−iHt/h̄) on the states 	α (x, y) in
Eq. (32):

	α (x, y, t ) = U (t )	α (x, y) = 1√
2e|α̃|2 − 1

[
	0(x, y) +

∞∑
n=1

√
2 α̃n

√
n!

e−iEnt	n(x, y)

]
, (45)

where En are the LLs (19).
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By substituting Eq. (45) in Eq. (34), the expressions in (44) are recalculated and written, respectively, as

W11(χ, t ) = −exp
(− 1

2 |χ |2)
π

∞∑
n=1

[
(−|α̃|2)n

n!
Ln−1(|χ |2) + 2

∞∑
m=n+1

(−1)n

m!
χm−nAnm(t )

√
m

n
Lm−n

n−1 (|χ |2)

]
, (46a)

W12(χ, t ) = W ∗
21(χ, t ) = exp

(− 1
2 |χ |2)

π

∞∑
n=0

[
α̃|α̃|2n

n!
√

n + 1
(−1)nei(En−En+1 )t Ln(|χ |2)

+ 2
∞∑

m=n+1

(−1)n

m!
√

n + 1
χm−nAn+1m(t )Lm−n

n−1 (|χ |2)

]
, (46b)

W22(χ, t ) = exp
(− 1

2 |χ |2)
π

[
J0(2i|α̃χ |)e−|α̃|2 + 2

∞∑
n=0

∞∑
m=n+1

(−1)n

m!
χm−nAnm(t )Lm−n

n (|χ |2)

]
, (46c)

where the identity

Jν (2
√

xz) exp (z)(xz)−ν/2 =
∞∑

n=0

zn

�(n + ν + 1)
Lν

n (x), ν > −1 (47)

is implemented and the temporal function Anm(t ) =
Re(α̃nα̃∗mei(Em−En )t ) has been defined. Setting t = 0, we
recover the expressions (44). The Anm(t ) indicates that
the trace of the WM changes its shape when the time
increases due mainly to the fact that En ∝ √

n. Since positive
deformations tend to compress the LL spectra, the time scale
[0, T ] (T denotes the rotation period) is also contracted as
[0,

√
abT ], while in light coherent states such a contraction

does not exist because En ∝ n and the eigenvalue α evolves
as α(t ) = α exp(iωt ). For light coherent states, the variation
of the phase of α̃ causes only rotation of the corresponding
WF around the phase-space origin without changing its
shape [19]. However, the LL dependency

√
n not only

produces rotation of the WM when the time increases but
also it generates oscillations, as shown in Fig. 7. The linear
feature in the effective Dirac-Weyl Hamiltonian causes these
oscillations in the WF, while in conventional semiconductors
it is absent by the quadratic dispersion relation of electrons.
As in the Jaynes-Cummings model and Rydberg atoms for
a Gaussian wave packet, collapses and revivals begin to
manifest during the time evolution of the WF of electron
coherent states [116]. We can observe that in the interval
0 � t � 30 [Figs. 7(a)–7(f)] the maximum value of the
WF remains in the time evolution, changing its numerical
value and turning around the origin, while negative values
emerge through oscillations. This fact represents an important
difference between the WFs of electron coherent states in
graphene and the light ones in quantum optics. In the former
case, we observe that electron coherent states exhibit quantum
behavior, while in the latter the WF is always positive in any
point of phase space. Nevertheless, the maximum value of
the WF for both electron and photons describes closed orbits
in phase space. In the present case, this absolute maximum
disappears for some values of t , as shown in Fig. 7(g).
However, it is recovered again after a period [see Fig. 7(h)].
Such an effect is comparable to the collapses and revivals of
electron wave packets in graphene [116]. Furthermore, the
time evolution of the WM trace recalls in a sense that of a
particle in a Morse potential [117].

Note that, in contrast to that discussed in [116], we have
implemented a propagation algorithm that has been applied
to a restricted set of problems, for instance [40,43,118],
through the lack of known analytical solutions of the Dirac
equation. Hence, due to the uniformity of the magnetic field,
we are able to obtain the time evolution of the Wigner matrix
by using the integral representation, allowing us to observe
that both schemes show revivals like in the time evolution
whether in the wave packet or in the WF. Nevertheless, for
inhomogeneous magnetic fields and electrostatic potentials,
the use of the propagator from Chebyshev polynomials could
be very suitable.

V. CONCLUSIONS AND FINAL REMARKS

We studied the electron dynamics in uniaxially strained
graphene in the presence of a uniform and perpendicular
magnetic field to the layer from a phase-space representation
perspective. The Wigner matrix is a powerful theoretical
tool that has been very useful for investigating quantum
optics systems and quantum information, and so far has
been scarcely used for condensed matter. Since mechanical
deformation modifies the atomic positions in the lattice and
distorts the reciprocal space, Wigner matrix representation
allows evidence of the effect of strain on the electron dy-
namics simultaneously in both spaces. Moreover, it indicates
which electronic states present a nonclassical behavior. This
is of relevant importance for the realization of entanglement.
By using a tight-binding approach to nearest neighbors, it
was possible to derive an effective Dirac-Weyl model, where
we obtained Landau-level spectra and their corresponding
wave functions. This effective model has a direct connection
with other methods frequently used for studying strained
materials such as the geometrical approach [58], where we
find an analytical expression of the geometrical parameters
a and b as a function of the strain tensor components, as
well as connection with the supersymmetric potential model
[96]. Employing a generalized annihilation operator, we can
build the electron coherent states from Landau ones and
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FIG. 7. Time evolution of the trace of the WM Wα (�r, �p, t ) with α = 3 exp(−iπ/2) and ε = 0.2 in the Z direction by using the components
in Eq. (46). B = 1, k = δ = 0, and t ′ ≡ t/(v′

F

√
2eh̄B).

demonstrate that stretching along the zigzag direction favors
the observation of electron coherent states. We have found
that the trace of the Wigner matrix for Landau and coherent
states has a different response when we apply uniaxial strain
along with the zigzag and armchair directions. Also, the
time evolution of the Wigner function evidences distinctive
features between electronic and light quantum systems. We
observe that the maximum value of this function describes

closed orbits but, as time increases, the Wigner function
shows negative values. This fact contrasts with light coherent
states, where positive values of the Wigner function are
observed in the whole phase space.

We think that our findings might help to establish pro-
tocols for the preparation of electron coherent states in the
laboratory. Moreover, these results suggest the possibility
of a feedback between electron and light quantum optics
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due to the analogy of approaches in condensed matter and
quantum optics. Also, it is worth remarking that the phase-
space representation presented in this paper has an advantage
over canonical quantization, since it has allowed us to inves-
tigate the time evolution of electronic coherent states, which
is difficult to perform using the notion of the wave function
because the energy spectrum (19) is not equidistant. Also, the
so-called Husimi function [15] is another tool defined in phase
space and used to describe electron dynamics [119,120], so
that its implementation in this system could also provide novel
information for the condensed matter and quantum optics
analogies.
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APPENDIX: WIGNER FUNCTION—THE MOYAL STAR PRODUCT

In this Appendix, we present an alternative procedure to obtain the WF for the DW problem.
As was shown in the above sections, the WF W (�r, �p) is a real function defined in phase space and deformation quantization

formulation (DQF) provides an alternative method to obtain it. The implementation of the DQF on the study of one-dimensional
quantum systems has allowed us, in principle, to recover some previous results obtained from canonical quantization but
described in phase space.

In the DQF, the eigenvalue equation Hψ = Eψ is replaced by a �-genvalue equation, namely,

H � W = W � H = EW, (A1)

for describing the eigenvalue energy E , where the star product (�) represents a deformation performed on the algebraic structure
in phase space of classical mechanics, which carries a noncommutative algebra in that of quantum mechanics.

One of the star products defined in the DQF framework is the so-called Moyal star product (�M) [121,122]:

f �M g ≡ f exp

[
ih̄

2
(
←−
∂�r

−→
∂ �p + ←−

∂ �p
−→
∂�r )

]
g, (A2)

where
←−
∂ (

−→
∂ ) indicates that the derivative acts on the function to the left (right). Alternatively, the Moyal star product can be

rewritten as

f (�r, �p) �M g(�r, �p) = f

(
�r + ih̄

2
−→
∂ �p , �p − ih̄

2
−→
∂�r

)
g(�r, �p), (A3a)

f (�r, �p) �M g(�r, �p) = f (�r, �p)g

(
�r − ih̄

2
←−
∂ �p , �p + ih̄

2
←−
∂�r

)
. (A3b)

Thus, the WF satisfies the �M-genvalue equations

H (�r, �p) �M W (�r, �p) = H

(
�r + ih̄

2
−→
∂ �p , �p − ih̄

2
−→
∂�r

)
W (�r, �p)

= EW (�r, �p), (A4a)

H (�r, �p) �M W (�r, �p) = W (�r, �p)H

(
�r − ih̄

2
←−
∂ �p , �p + ih̄

2
←−
∂�r

)
= EW (�r, �p), (A4b)

where E is the energy eigenvalue of Hψ = Eψ .
According to [114], we can solve the Dirac-Weyl equation (12) by applying the Moyal star product:

HD(�r, �p) � W (�r, �p) = EW (�r, �p), (A5)

where

W (�r, �p) =
(

W (a)(�r, �p) 0

0 W (b)(�r, �p)

)
, (A6a)

W (a,b)(�r, �p) =
(

W (a,b)
11 (�r, �p) W (a,b)

12 (�r, �p)

W (a,b)
21 (�r, �p) W (a,b)

22 (�r, �p)

)
. (A6b)

125402-12



PHASE-SPACE REPRESENTATION OF LANDAU AND … PHYSICAL REVIEW B 101, 125402 (2020)

This means that the WF is a 4 × 4 matrix but that in an adequate representation it can be reduced to a diagonal partitioned matrix,
as is shown in Eq. (A6) [114]. Here, the 2 × 2 WM W (a)(�r, �p) corresponds to Dirac fermions at the KD valley, while W (b)(�r, �p)
corresponds to those at the K ′

D valley, so that we will just focus on the former.
Equation (A5) gives rise to two decoupled equations:

vF (aσx[px + eAx] + bσy[py + eAy]) � W (b) = EW (a), (A7a)

vF (aσx[px + eAx] + bσy[py + eAy]) � W (a) = EW (b). (A7b)

After decoupling the above expressions, we obtain the following �-genvalue equation for W (a)(�r, �p):

H (a)
D � W (a) = {vF (aσx[px + eAx] + bσy[py + eAy])} � {vF (aσx[px + eAx] + bσy[py + eAy])} � W (a) = E2W (a), (A8)

where [W (a)(�r, �p)]i j ≡ Wi j (x, px )Wi j (y, py ), i, j = 1, 2.
Considering the Landau gauge �A = B0xêy and Bopp’s shift [Eq. (A3a)], the Hamiltonian H (a)

D yields

H (a)
D = v2

F h̄2

{
aσx

(
px

h̄
− i

2
∂x

)
+ bσy

[(
py

h̄
− i

2
∂y

)
+ eB0

h̄

(
x + ih̄

2
∂px

)]}2

= abv2
F h̄2

{[
ζ

(
p2

x

h̄2 − 1

4
∂2

x

)
+ ζ−1

( py

h̄
+ ωB

2
x
)2

− 1

4
ζ−1

(
ωBh̄

2
∂px − ∂y

)2
]
I + ωB

2
σz

+ i

[
−ζ

px

h̄
∂x + ζ−1

( py

h̄
+ ωB

2
x
)(ωBh̄

2
∂px − ∂y

)]
I

}
, (A9)

where I is the 2 × 2 identity matrix, ωB = ζωζ , and σz is the third Pauli matrix. Here, we could assume that the corresponding
pseudospinor is an eigenstate of the operator σz in order to reduce the WF to a diagonal matrix. However, we will work with the
entire representation.

By defining the quantities

E1 = E2

abv2
F h̄2 − ωB

2
, E2 = E2

abv2
F h̄2 + ωB

2
, (A10)

and using the variables ξ and s defined in (39), we can obtain the following pair of Hamiltonians:

H1 = ωB

2

⎧⎨
⎩s2 +

[√
2

ζωB

( py

h̄
− k
)

+ ξ

]2

− 1

4
∂2
ξ − 1

4

(
∂s −

√
2

ζωB
∂y

)2
⎫⎬
⎭, (A11a)

H2 = ωB

2

{
−s∂ξ +

[√
2

ζωB

( py

h̄
− k
)

+ ξ

](
∂s −

√
2

ζωB
∂y

)}
. (A11b)

Following the ansatz shown in Ref. [18] for the WF Wi j (y, py), the solutions for the problem in Eq. (A8) are given as

W (py) ≡ Wi j (y, py) = δ(py − kh̄), i, j = 1, 2, (A12a)

W1 j (x, px ) = (−1)n−1

π
exp

(
−1

2
|χ |2

)
Ln−1(|χ |2), j = 1, 2, (A12b)

W2 j (x, px ) = (−1)n

π
exp

(
−1

2
|χ |2

)
Ln(|χ |2), j = 1, 2, (A12c)

where again χ = √
2(ξ + is), and the corresponding energy spectrum turns out to be

E2,0 = 0, E2,n = E1,n−1 = sgn(n)v′
F h̄
√

ωB|n|, (A13)

n = 0,±1,±2, . . . , sgn(0) = 1, and v′
F = √

abvF. Meanwhile, the 2 × 2 Wigner matrices in (A6) can be rewritten as

W (a,b)(�r, �p) = 1

2(1−δ0n )

(
W (a,b)

11 (�r, �p) W (a,b)
12 (�r, �p)

W (a,b)
21 (�r, �p) W (a,b)

22 (�r, �p)

)
, (A14)
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where the components are the following WFs:

W (a,b)
11 (�r, �p) = W (a,b)

12 (�r, �p) = (1 − δ0n)
(−1)n−1

π
δ(py − kh̄) exp

(
−1

2
|χ |2

)
Ln−1(|χ |2), (A15a)

W (a,b)
21 (�r, �p) = W (a,b)

22 (�r, �p) = (−1)n

π
δ(py − kh̄) exp

(
−1

2
|χ |2

)
Ln(|χ |2), (A15b)

such that ∫ ∞

−∞

∫ ∞

−∞
Tr[W (a,b)(�r, �p)]d�rd �p = 1. (A16)

Notice that the factor (1 − δ0n) in Eqs. (A14) and (A15a) guarantees that such expressions satisfy the �-genvalue equation (A8)
for the Landau level n = 0.

Comparison with the integral representation

Coming back to the WF obtained by the integral representation [Eq. (37)], we can identify each component in Eq. (41) with
the given ones in (A15), except the off-diagonal terms:

W (a,b)
12 (�r, �p) �= Wn−1,n(�r, �p), (A17a)

W ∗(a,b)
21 (�r, �p) �= Wn,n−1(�r, �p). (A17b)

This is because in both representations the trace of the WF is an invariant, while the off-diagonal terms depend on the
representation considered.

However, we can establish a connection between the two representations as follows. By acting the Hamiltonians in Eq. (A11)
on the above expressions and recalling that f (x)δ(x − a) = f (a)δ(x − a), we get(

H1 + ωB

2

)
Wn−1,n(�r, �p) =

(
n + 1

2

)
ωBWn−1,n(�r, �p), (A18a)

H2Wn−1,n(�r, �p) = i
ωB

2
Wn−1,n(�r, �p), (A18b)

(
H1 − ωB

2

)
Wn,n−1(�r, �p) =

(
n − 1

2

)
ωBWn,n−1(�r, �p), (A18c)

H2Wn,n−1(�r, �p) = −i
ωB

2
Wn,n−1(�r, �p). (A18d)

By taking the complex conjugate of Eqs. (A18c) and (A18d), and adding them to (A18a) and (A18b), respectively, we have that

H1Re[Wn−1,n(�r, �p)] = nωBRe[Wn−1,n(�r, �p)], (A19a)

H2Re[Wn−1,n(�r, �p)] = 0. (A19b)

Therefore, although separately the off-diagonal terms of the WF Wn(�r, �p) in Eq. (37) are not solutions of the �-genvalue
equation (A8), their real part is. Thus, the integral representation of the WF also gives rise to a matrix function but in another
representation.
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