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We measure the magnetoconductance through a micron-sized quantum dot hosting about 500 electrons in the
quantum Hall regime. In the Coulomb blockade, when the island is weakly coupled to source and drain contacts,
edge reconstruction at filling factors between 1 and 2 in the dot leads to the formation of two compressible regions
tunnel coupled via an incompressible region of filling factor ν = 1. We interpret the resulting conductance pattern
in terms of a phase diagram of stable charge in the two compressible regions. Increasing the coupling of the dot
to source and drain, we realize a Fabry-Pérot quantum Hall interferometer, which shows an interference pattern
strikingly similar to the phase diagram in the Coulomb blockade regime. We interpret this experimental finding
using an empirical model adapted from the Coulomb-blockaded to the interferometer case. The model allows
us to relate the observed abrupt jumps of the Fabry-Pérot interferometer phase to a change in the number of
bulk quasiparticles. This opens up an avenue for the investigation of phase shifts due to (fractional) charge
redistributions in future experiments on similar devices.
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I. INTRODUCTION

Quantum dots with a few hundred electrons operated in the
quantum Hall regime are a laboratory of intricate quantum
Hall physics. This is particularly evident at filling factors ν

between 1 and 2, where two energetically separated spin-
polarized Landau levels exist. Ground-breaking experiments
[1–4] and theory [5] have established the self-consistent re-
construction of the electron distribution inside the quantum
dots into compressible and incompressible regions as a result
of Landau-level quantization and Coulomb interactions. The-
oretical work [6] supported this interpretation and suggested
a phase diagram of stable charge in the parameter plane of
the plunger gate and the magnetic field. Further experimental
work found that the magnetic field tunes the tunnel coupling
across incompressible regions [7,8]. Increasing the magnetic
field reduces the tunnel coupling to such an extent that time-
resolved tunneling between the inner compressible region of
the upper Landau level and the outer compressible region
of the lower Landau level can be detected on timescales of
seconds [8]. Later measurements detected and verified the
predicted phase diagram [9–12].

Complementary interest in this system arose in the context
of interferometry. Coupling the quantum dot strongly to the
leads allowed experimentalists to operate it as a Fabry-Pérot
quantum Hall interferometer in the integer quantum Hall
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regime [13–15]. Some experiments found integer fractions
of Aharonov-Bohm periods [16,17], which the theory in
Ref. [18] describes. Later experiments report the transition
from Coulomb-dominated to Aharonov-Bohm-dominated in-
terference [19–21] when the device size is taken to very large
values. Experiments in the fractional quantum Hall regime
promise opportunities to measure the fractional statistics of
anyonic quasiparticles [20,22–31].

In this paper, we investigate a quantum dot at filling
factors 1 � ν � 2 that can be tuned continuously from the
Coulomb blockade regime into the interferometer regime.
In the Coulomb blockade, only the outermost compressible
region, belonging to the Landau level lowest in energy, cou-
ples to source and drain, and leads to observable conduc-
tance resonances. The electron-by-electron depopulation of
the upper Landau level leads to intermittent shifts of the
observed resonances. From the resulting pattern, we construct
and model the phase diagram of stable charge configurations.
We extract the edge excitation energy from temperature-
dependent measurements and find it to be significantly larger
than the estimated single-particle level spacing at zero mag-
netic field. Reducing the filling factor from 2 to 1 exhibits
signatures of the reduction of tunneling through the incom-
pressible ν = 1 region. This allows us to operate the dot
in a “quenched” regime with a fixed number of electrons
in the upper Landau level, such that the Coulomb blockade
pattern of the outer compressible region can be observed in
isolation. Taking the system gradually to the interferometer
regime, the signatures of the phase diagram remain visible,
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indicating the close relation between the physics in the two
regimes of operation [32] despite the disappearing charge
quantization in the outer compressible region. Conductance
resonances turn into Fabry-Pérot resonances of the inter-
ferometer, and the depopulation of the upper Landau level
leads to characteristic phase jumps in the interference pattern
[21]. The observed value of the phase jump is larger than
π , in agreement with the observation of Coulomb-dominated
interference patterns [33]. Tuning the interferometer to the
quenched regime and thus eliminating phase jumps allows
us to measure the signatures of Aharonov-Bohm interference
in an otherwise Coulomb-dominated regime. Adapting the
model for the weakly coupled dot to the interferometer case
leads to a consistent description of the observed behavior.
Such detailed observation and modeling of interference phase
shifts would allow us to disentangle interaction-induced and
anyonic phase shifts in future fractional quantum Hall devices
even in the Coulomb-dominated regime.

II. EXPERIMENTAL SETUP

We use an AlGaAs/GaAs heterostructure hosting a two-
dimensional electron gas (2DEG) 130 nm below the surface
etched into the shape of a Hall bar. The 2DEG is contacted
by annealed AuGeNi Ohmic contacts. It has the electron mo-
bility μ = 5.3 × 106 cm2/V s at the temperature T = 25 mK
and the electron density n = 1.3 × 1011 cm−2. The electron
density can be changed by applying a voltage to an overgrown
pre-patterned back gate 1 μm below the 2DEG that extends
under the whole Hall bar [34].

The inner structure of the device is shown in Fig. 1(a).
We lithographically define metallic top gates (light gray) on
the surface of the heterostructure (dark gray). By applying
negative voltages to the top gates, we deplete the electron gas
underneath and form a quantum dot (QD). Depletion occurs
around −0.4 V. We place an additional top gate covering
the area of the QD in a second gate layer insulated by a
15 nm thick Al2O3 oxide layer from the other top gates. This
additional top gate as well as the back gate are kept grounded
for all the measurements shown in this paper.

The presence of the back and the additional top gate
influences the electrostatics of the device, leading to a flatter
potential in the quantum dot interior, and sharper confinement
at its edges. In addition, they tend to reduce the electron-
electron interaction by screening. In previous experiments,
gating potentials and capacitances of similar samples were
optimized in such a way [28,31,35,36].

Our sample is measured in a wet dilution refrigerator at
the electronic temperature Te = 25 mK. All measurements
presented are performed on the same sample. However, the
results were reproduced on another sample fabricated on a
different wafer. The sample presented here was measured in
three different cool-downs. While the general behavior of the
device was the same in all cool-downs, the gate voltage values
needed to reproduce a specific regime varied between the
three cool-downs.

III. SYSTEM CHARACTERIZATION

In a first characterization step, we demonstrate the pres-
ence of quantum Hall states in the two-dimensional electron
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FIG. 1. (a) Scanning electron micrograph of the quantum dot
(QD) device before evaporation of the second top gate layer. The
top gates appear in light gray, the uncovered AlGaAs/GaAs het-
erostructure in dark gray. A magnetic field B is applied perpendicular
to the sample surface. The added schematic shows compressible
edge regions (blue) for a filling factor νb ≈ 2, the arrangement
of Ohmic contacts, the applied source-drain voltage VSD, and the
measured voltages Vxx , Vxy (bulk), and Vlong, Vdiag (across the QD). In
addition, we measure the current ISD. (b) Longitudinal and transverse
resistances Rxx = Vxx/ISD and Rxy = Vxy/ISD across the bulk (dark
blue and dark green) with all gate voltages at zero, compared to
Rlong = Vlong/ISD and Rdiag = Vdiag/ISD measured with all gates en-
ergized except RB and LB. (c) Conductance Gdiag = ISD/Vdiag as a
function of VLB and VRB at B = 2.8 T (νb ≈ 1.9). Blue points indicate
gate voltage settings, where later measurements in Fig. 6 are taken.
(d) and (e): Line cuts of panel (c) with conductance Gdiag vs VLB or
VRB, with the respective other barrier gate transmitting the quantized
conductance e2/h.

gas, in particular in the region of the QD, and quantify the
density reduction arising from the application of confining
gate voltages to the top gates. In Fig. 1(b), we show the
longitudinal and transverse resistances Rxx and Rxy of the
electron gas measured outside the QD region as a function of
a magnetic field B applied perpendicular to the sample plane
[see schematic in Fig. 1(a)]. In Rxy (dark blue) we observe
quantized Hall plateaus for integer bulk filling factors νb = 1
and 2 at magnetic fields, where Rxx (dark green) vanishes. We
also observe fractional quantum Hall states at νb = 4/3, 5/3
between νb = 1 and 2. Additionally, we measure the diagonal
and longitudinal resistances Rdiag and Rlong (shown in light
blue and green) through the QD region with voltages VRB =
VLB = 0 (open barriers), VLLB = VLRB = −0.75 V, and VPG =
−0.5 V. This voltage setting allows us to probe quantum
Hall states in the strongly confined spatial region, where the
quantum dot will later be tuned into the Coulomb blockade or
the interferometer regime. The diagonal resistance Rdiag ex-
hibits quantum Hall plateaus at integer filling factors slightly
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shifted to lower magnetic fields compared to the bulk curve,
corresponding to a few-percent reduction of the density in the
region where the QD is formed due to the voltages applied to
the top gates. We do not observe clear fractional states in the
transport through the QD region.

Simulations of the zero magnetic field electron density and
electrostatic potential distribution in the device (not shown)
are performed using COMSOL. They are based on a numer-
ical solution of Poisson’s equation in three dimensions and
treat the screening properties of the electron gas within the
Thomas-Fermi approximation. The simulations confirm the
experimentally detected reduction of the electron density in
the quantum dot region by a few percent as compared to the
bulk, given the gate voltages applied in the experiment. They
also predict that the peak density in the quantum dot region is
reduced by at most 10% compared to the bulk, when negative
voltages are applied to the gates LB and RB in order to tune
the QD region into the Coulomb blockade regime. Throughout
the paper, we always quote the bulk filling factor νb when
describing the measurements, because the exact filling factor
in the QD is experimentally unaccessible. The values of νb

will overestimate the true filling factor in the QD by 5%–10%.
The simulations further indicate that the QD is populated with
400–650 electrons for all measurements shown in this paper.

In the next step, we demonstrate how we control and
quantify the tunnel coupling between the quantum dot region
and the bulk electron gas. To this end, we keep the gate
voltages on the gates LLB, LRB, and PG as before, and
control the coupling of the QD to the source and drain regions
by changing the voltages applied to the barrier gates LB and
RB [see Fig. 1(a)]. Figure 1(c) shows the conductance Gdiag =
1/Rdiag of the QD as a function of VLB and VRB at B = 2.8 T
corresponding to the bulk filling factor νb = 1.9. The bright
region (upper right) has conductance e2/h indicating that both
barriers fully transmit the ν = 1 edge channel. Reducing the
voltage on either of the barrier gates pinches off the respective
barrier and results in a vanishing QD conductance. The QD
is in the Coulomb blockade regime when both barriers are
close to pinch-off and exhibit a transmission well below 1.
In contrast, the system is a quantum Hall interferometer if the
transmission of both barriers and thereby the transmission of
the whole device is close to 1, resulting in a total conductance
close to e2/h. The measurements shown later in Fig. 6 are
performed with the barrier gate voltages marked by the blue
points, which span the range from the Coulomb-blockaded to
the interferometer regime.

At a given gate voltage setting (VLB,VRB) we estimate the
transmission of each individual barrier using the line cuts of
Fig. 1(c) shown in panels (d) and (e) of the same figure. The
two cuts are taken at extreme voltages, where the transmission
of one barrier is 1, while the other barrier transmission is
tuned from 0 to 1. The transmission of the right (left) bar-
rier at a specific voltage VRB (VLB) is read from Fig. 1(d)
[Fig. 1(e)] as the conductance value at this voltage divided
by the conductance quantum e2/h. This procedure assumes
that the cross-talk between the gate LB (RB) and the right
(left) barrier transmission is weak. This assumption is justified
based on the almost perfectly horizontal (vertical) orientation
of lines of constant Gdiag in Fig. 1(c), best discernible at
Gdiag ≈ e2/2h.

IV. COULOMB BLOCKADE REGIME

We now study the quantum dot coupled weakly to source
and drain with transmissions much smaller than 1. Figure 2(a)
shows the two-terminal conductance G = ISD/VSD of the QD
as a function of the plunger gate voltage and the magnetic
field around a filling factor ν � 2. In this regime, the contact
resistances are negligible compared to the device resistance
and the two-terminal measurement gives an accurate con-
ductance of the QD. Bands of conductance resonances are
observed that shift to more positive gate voltages as the mag-
netic field increases. They are decorated by finer conductance
resonances with a slightly negative slope that are tuned mainly
by the magnetic field. Vertical cuts at constant VPG would
give bunches of closely spaced conductance resonances as a
function of magnetic field, separated by larger regions of zero
current, as reported in Ref. [37]. Horizontal cuts at constant
magnetic field lead to closely spaced double peaks (see again
[37]).

The zoom into a small magnetic field range is shown in
Fig. 2(b). On this scale, the observed conductance resonances
form a highly periodic pattern similar to those reported in
Ref. [10] in a similar device at filling factors 2 < ν < 4, in
Ref. [11] for ν < 3, where a single-electron transistor was
employed as a charge detector, and in Ref. [21] at filling
factors 1 < ν < 2.

Coulomb blockade diamond measurements at constant
magnetic field [see Fig. 2(c)] confirm that single-electron
charging of the quantum dot is responsible for the observed
resonances. The charging energy of the quantum dot of about
200 μ eV is plausible for the given dot size. The plunger gate
period of about 6 meV per electron is in agreement with our
zero magnetic field COMSOL simulations. The plunger gate
lever arm extracted from the experiment is αPG = 0.036.

Our interpretation of the data in Fig. 2 follows the insights
of the seminal Ref. [3], which showed experimentally that
the commonly used constant-interaction model for a quantum
dot cannot account for the observations at ν < 2. The charge
distribution inside the QD is influenced by the occupation
of two spin-split Landau levels. Their bare Zeeman splitting
may be enhanced by exchange effects [38]. In an attempt to
closely mimic the charge distribution at B = 0 in the quantum
dot, which minimizes the electrostatic energy, the quantum
dot reconstructs self-consistently into compressible and in-
compressible regions. In particular, the Landau level higher
in energy tends to form a compressible region, separated by
an incompressible region of filling factor ν = 1 from a com-
pressible ring formed by states of the lower-energy Landau
level [see Fig. 1(a)]. This reconstruction was theoretically
described within a capacitance model by Evans, Glazman,
and Shklosvskii [6]. They suggested a phase diagram with
hexagon-shaped regions of stable integer charge (in units
of e) in the two Landau levels, describing the one-by-one
redistribution of single electrons from the upper to the lower
Landau level with increasing magnetic field, and the addition
of single electrons to the dot with increasing gate voltage. This
phase diagram was later successfully used for the qualitative
interpretation of experimental data [9,11,12,39].

Like these authors, we assume that the incompressible ν =
1 region in the quantum dot has a quantized Hall conductance
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FIG. 2. (a) Conductance of the QD as a function of the plunger gate voltage and the perpendicular magnetic field. (b) Close-up of (a) for a
smaller range in magnetic field interpreted as a charge stability diagram (CSD). The lines separate regions of constant charge (N1, N2), where
N1 and N2 correspond to the electron number in the outer and inner compressible region, respectively. Three different transitions are indicated.
(c) Coulomb diamond at νb ≈ 2 showing the current through the QD on a logarithmic scale (sign-conserving, cut off at ±10 fA) as a function
of the plunger gate voltage and the applied bias voltage.

of e2/h, whereas the Corbino conductance between the inner
compressible region of the upper Landau level and the outer
compressible region of the lower Landau level is small com-
pared to e2/h, such that the electron numbers in these regions
are integer numbers. The observed conductance resonances
in Fig. 2 arise from single-electron tunneling between the
leads and the outer ring-shaped compressible region of the
quantum dot. Direct tunneling between the lead and the inner
compressible region is not observed, because the presence of
the incompressible ν = 1 region reduces the rate of these pro-
cesses below observable values. However, single electrons can
redistribute (tunnel) between the inner and outer compressible
regions on sufficiently large timescales, which are still smaller
than the timescale of the measurement in Fig. 2, in order to
establish thermodynamic equilibrium within the dot. Within
the picture of spin-split Landau levels, such a tunneling event
requires the reversal of the spin of the tunneling electron,
which reduces the tunnel rate below that of hypothetical
spinless electrons. Since tunneling through a potential barrier
usually conserves the spin of the tunneling electron, further
ingredients such as spin-orbit interaction [40,41] or hyperfine
interaction [42,43] are required to enable spin-flip tunneling
processes. The net result of the charge transfer from the inner
to the outer compressible region with increasing magnetic
field is the gradual depopulation of the energetically higher
spin-split Landau level.

We describe the phase diagram of our system using a model
in the spirit of Ref. [18], which incorporates ideas similar to
those of Ref. [6]. We consider the system in thermodynamic
equilibrium at a magnetic field B0 and gate voltage V (0)

PG ,
where it minimizes its electrostatic energy by establishing
a particular charge distribution in the QD. When either the
magnetic field changes by δB, or the gate voltage by δVPG,
a charge imbalance will arise between the two compressible
regions, which is given by

δQ1 = �n1 − δBĀ/φ0 − C1δVPG/e,

δQ2 = �n2 + δBĀ/φ0 − C2δVPG/e. (1)

Here δQi (i = 1, 2) describes the electron charge imbalance
of the outer (i = 1) and inner (i = 2) compressible region in
units of the elementary charge e; �ni is the discrete change of
charge in the respective region by single-electron tunneling.
The terms ±δBĀ/φ0 account for the flow of Hall current
across the incompressible ν = 1 region upon a change in
magnetic field, where Ā is the area enclosed by the incom-
pressible region at B0 and φ0 = h/e is the magnetic flux
quantum. The Ci > 0 are effective capacitances between the
two compressible regions and the plunger gate. The system
will react to a change in gate voltage δVPG by increasing the
charge imbalance in both compressible regions while simul-
taneously expanding the area enclosed by the incompressible
region [33]. The effective capacitances take these effects into
account to leading order. The total capacitance between the
plunger gate and the QD is CPG = C1 + C2. The change in the
electrostatic energy of the system compared to the situation at
(B0,V (0)

PG ) is to leading order given by

δE = 1
2 K1δQ2

1 + 1
2 K2δQ2

2 + K12δQ1δQ2, (2)

where the Ki are the charging energies of the two compressible
regions, and K12 describes the mutual capacitive coupling be-
tween them. In general, K1, K2 > K12. The system minimizes
the energy functional (2) at given δB and δVPG by choosing
appropriate values �n1 and �n2 in Eqs. (1).

This model allows us to interpret the data in Fig. 2(b) in
terms of the indicated phase diagram. Charge rearrangements
between the inner and the outer compressible region occur
along horizontal white solid lines 3©. Crossing a dashed white
line 1© adds an electron to the outer compressible region;
crossing a dotted white line 2© adds one to the inner compress-
ible region. The hexagon-shaped regions of stable charge have
a characteristic magnetic field period of one flux quantum per
area Ā in agreement with Ref. [3], which allows us to extract
Ā = 0.48 μm2. This value is in good agreement with the zero
magnetic field COMSOL simulations, if we calculate Ā as the
area enclosed by the contour line of constant density nL =
eB0/h. The characteristic gate voltage period of the phase
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diagram predicted by Eqs. (1) is e/CPG. From the experimen-
tally observed period of about 6 mV we extract CPG = 27 aF.
Equations (1) predict lines of constant total electron number N
in the QD to run exactly vertically, as approximately observed
in Fig. 2(b). They further predict lines of constant �n1 to have
the (negative) slope δB/δVPG = −C1φ0/eĀ, whereas lines of
constant �n2 have the (positive) slope

δB

δVPG

∣∣∣∣
�n2=const

= C2φ0

eĀ
, (3)

which allows us to estimate C1 = 16 aF and C2 = 11 aF. With
K1 = 220 μeV from the diamond measurement in Fig. 2(c),
we further determine the remaining model parameters K2 =
250 μeV and K12 = 143 μeV.

On a larger magnetic field scale, the valleys of constant
electron number N in Fig. 2(a) have a finite slope rather than
being exactly vertical as predicted by the model. This obser-
vation implies a gradual redistribution of electrons between
the quantum dot and the leads. Such an effect is due to the
concerted action of the single-particle energies in dot and
leads, which increase with magnetic field, and the capacitive
coupling between dot and leads. The effect could be captured
in a model that adds a term proportional to magnetic field and
total electron number in the dot to the energy functional in
Eq. (1), which we omit here for simplicity.

The measurements of the conductance as a function of
magnetic field show a dependence on the previous history
of the magnetic field sweeping. The general pattern of the
Coulomb oscillations in Fig. 2(a) is conserved while the exact
peak positions shift. We assume that this form of hysteresis
could be connected to dynamic nuclear spin polarization ef-
fects originating from the different spin polarization of the two
spin branches of the lowest Landau level [42]. Tunneling be-
tween the two compressible regions is associated with a spin
flip and changing the magnetic field monotonically causes
only spin flips to one spin direction. We carefully checked
that the measurements shown here are fully reproducible for
sweeping the magnetic field in the same way. In this paper, we
only present data sets that are comparable and measured with
the same sweep direction.

We now study the temperature dependence of the conduc-
tance resonances in Fig. 2 to find out whether a single or
multiple levels contribute. Figure 3(a) shows the temperature
dependence of the conductance resonance measured along the
blue arrow in Fig. 2(b) at a bulk filling factor νb ≈ 2. The
magnetic field is carefully tuned around B ≈ 2.6 T such that
the Coulomb resonance is crossed in the middle between two
charge rearrangements between inner and outer compressible
regions. The width of the resonance indicates thermal broad-
ening. Fitting the measurements with the line shape valid for
single-level transport [44,45]

G = G0 cosh−2

[
eαPG(VPG − V0)

2kBTe

]
, (4)

where G0 = e2�cl/4kBTe, with fitting parameters V0, G0, and
Te, leads to the temperatures indicated in the figure legend.
Here, V0 is the resonance position in gate voltage, αPG the
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FIG. 3. (a) Conductance around filling factor νb ≈ 2 as a func-
tion of the plunger gate voltage converted to energy measured for
different electron temperatures Te. Solid lines denote fits according
to Eq. (4). (b) Conductance peak height G0 as a function of inverse
electron temperature 1/Te for two different coupling strengths of
the QD to the leads. The lines correspond to least-squares fits
of the expected linear dependence yielding the effective dot-lead
coupling �cl.

plunger gate lever arm, Te is the electron temperature, and
�cl is the (temperature-independent) classical tunneling rate
through the dot. Surprisingly, increasing the electron tem-
perature reduces the peak amplitude G0 of the conductance
resonance. Figure 3(b) shows for two different values of �cl

that G0 is a linear function of 1/Te, as expected for single-
level transport. For multilevel transport, one would expect G0

to be independent of temperature as more and more levels
contribute to the conductance resonance, thereby canceling
the 1/Te dependence of the individual levels [45].

Taking the previously determined Ā as the approximate
size of the QD, we estimate the order of magnitude of the
zero magnetic field excitation energy to be � = π h̄2/m	Ā ≈
7.4 μeV, which is comparable to or even smaller than the
thermal smearing of about 3.55kBTe in our experiment. This
energy spacing is not compatible with the observed single-
level transport. Alternatively, in agreement with Ref. [46],
we estimate the typical energy spacing � of edge excitations
in a single-particle picture using the flux quantization rule
B�A = φ0, where �A is the difference of area enclosed
by two edge excitations neighboring in energy. Assuming a
circular QD with the steepness V ′ of the edge potential leads
to �0 = hV ′/eBL = hv0/L, with v0 being the drift velocity
of edge excitations and L the perimeter of the QD. While
our derivation of this result uses the single-particle picture,
which involves the steepness V ′ of a Hartree potential, the
final result expressing �0 in terms of a velocity v0 does
also hold in a Luttinger-liquid description [47] when the
drift velocity is replaced by the full velocity v, which in-
cludes interaction effects. In such a description, v has the
meaning of the propagation velocity of edge magnetoplasmon
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excitations arising under the assumption of short-range intra-
edge Coulomb interactions, and is given by v = v0 + vC

with vC = (e2/4π2h̄εε0) ln(d/�c). Here, ε denotes the relative
dielectric constant of the host material, d the distance to a
screening gate, and �c = √

h̄/eB the magnetic length. For
d/�c = 10 one finds vC = 1.23 × 105 m/s in GaAs. Using
Luttinger liquid theory to compute the electrostatic charging
energy K1 from the zero-mode energy, one finds that K1 ≡
� = hv/L. Using the value for K1 discussed above, one can
estimate the level spacing to be on the order of 220 μeV, much
larger than the thermal energy, in agreement with the observed
single-level transport. This relation also provides a value
for the velocity v = 1.33 × 105 m/s (using L = 2

√
πA =

2.5 μm for a circular QD with area A), somewhat larger
than the Coulomb velocity vC discussed above. Alternatively,
taking the highest measured electronic temperature of 162 mK
as a lower limit for �, we obtain � > 50 μeV, and thereby
v > 0.29 × 105 m/s. We see that the edge excitation energy
of a large QD in the quantum Hall regime can exceed the
zero-field excitation energy by almost an order of magnitude.

In Ref. [48], the relation � = hv/L was used to esti-
mate the velocity of edge excitations in a QD, giving v ≈
1 × 105 m/s for a magnetic field of 1 T which is comparable
with our value based on the Luttinger theory. In Ref. [28],
a velocity between v = 4 × 104 m/s and 8 × 104 m/s around
B = 2 T was found, which is also comparable with our lower
bound discussed above.

V. EVOLUTION TO FILLING FACTOR νb = 1

With the present understanding of Fig. 2 in mind, we
now proceed with investigating the evolution of the pattern
of conductance resonances with decreasing filling factor in
the range 2 � νb � 1. Generally, we observe that increasing
the magnetic field in this range strongly reduces the tunnel
coupling of the QD to the leads. In order to keep approxi-
mately the same coupling, the gates LB and RB have to be
retuned at each new magnetic field. Figures 4(a)–4(e) show
the conductance as a function of plunger gate voltage and
magnetic field at different filling factors in this range. The
different color scales used for the different filling factors orig-
inate from retuning the tunnel barriers. Figure 4(a) reproduces
Fig. 2(b). In Figs. 4(b) and 4(c), decreasing the filling factor
toward νb = 1, the magnetic field period of the resonances
increases [particularly visible comparing (b) and (c)]. This
observation indicates a contraction of the incompressible ν =
1 region and a concomitant reduction of the area Ā of the inner
compressible region with increasing B.

At the same time, the visible charging lines extend into
the regions of constant total electron number N . While ver-
tical regions of suppressed conductance corresponding to
constant N are still discernible in Fig. 4(b), the lines extend
so strongly in (c) that the number of resonances crossed in
the image at constant B doubles as compared to (a). It has
been experimentally observed [7,8] that the tunneling rate
between the inner and outer compressible regions reduces
dramatically with decreasing filling factor. Eventually, the
processes become so slow that individual tunneling events
occur on timescales of seconds, which can be measured in
real time. An increase of the width of the incompressible
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FIG. 4. (a)–(e) QD operated in the strong Coulomb blockade
regime. Conductance G through the QD plotted as a function of
plunger gate voltage and magnetic field for different magnetic field
ranges between filling factor 2 > νb > 1. (f)–(k) QD operated as
an interferometer with the barriers transmitting one edge channel
(tbarrier ≈ 0.9). Conductance Gdiag measured from the transverse volt-
age across the QD [Vdiag; see Fig. 1(a)] shown as a function of plunger
gate voltage and magnetic field for the same magnetic field ranges as
in (a)–(e).
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ν = 1 region with B also predicted theoretically [49] accounts
for this observation. We interpret the conductance resonances
extending into the regions of constant electron number N as a
result of the competition between the tunneling rate between
inner and outer compressible region, which tends to return
the system to thermodynamic equilibrium after changes of
VPG, and the timescales of the measurements. Slow relaxation
to equilibrium extends the observed charging lines into the
hexagonal regions of the phase diagram, where they would
be absent in thermodynamic equilibrium in the dot. This in-
terpretation is corroborated by the time-resolved observation
of electron tunneling in our experiment (not shown), and by
the increased “noisiness” of the data with increasing magnetic
field, observable in Figs. 4(a)–4(d).

The slope δB/δVPG of the observed resonances in
Figs. 4(a)–4(e) is negative at all filling factors. Its absolute
value, however, decreases from (a) to (b) and then increases
continuously from (b) to (e). Within our model described by
Eqs. (1) and (2), we find

δB

δVPG

∣∣∣∣
res

= − (K1C1 + K12C2)φ0

eĀ(K1 − K12)
. (5)

The detected decreasing area Ā will tend to increase the
magnitude of the slope as observed in Figs. 4(b)–4(e). We
speculate that the initial decrease between (a) and (b) is due
to the interaction parameters K1, K12, C1, and C2, for which a
quantitative theory is not available.

In the limit of filling factor ν = 1 in the quantum dot,
we expect Ā → 0, leading within our model to an infinite
magnetic field period, and an infinite negative slope of the
resonances, as observed in Fig. 4(e). The observation leads
to the conclusion that the filling factor in the dot ν ≈ 1 has
been reached, despite the somewhat higher bulk filling factor
νb = 1.23. The relatively strong density reduction in the dot
compared to Fig. 1(b) is the result of the strong negative
voltages on the gates RB and LB [cf. Fig. 1(a)]. The spacing
of the resonances in gate voltage that was given by e/CPG

close to νb = 2 is about the same at νb = 1. This is due to
the fact that the decrease in C2 with increasing magnetic field
is compensated by an increase of C1, such that their sum CPG

stays roughly constant.
The depopulation of the inner Landau level can be seen

very clearly by looking at the resonances on an extended
magnetic field scale as it is shown in Fig. 5. At magnetic
fields below 4.22 T the Coulomb resonances show a pattern
reminiscent of the phase-diagram near νb = 2 indicating the
presence of charge transfer from the upper to the lower Lan-
dau level. Beyond B = 4.22 T the behavior changes abruptly,
presumably because the upper Landau level is essentially
depopulated.

VI. INTERFEROMETER

We now change the transmission of the quantum point
contacts (QPCs) that form the barriers of the QD such that we
almost completely transmit one of the edge channels inducing
only weak backscattering [Fig. 1(c)]. Thereby we operate the
device as a quantum Hall interferometer [19,28,33,46,50].
This is achieved using VLB = −0.86 V and VRB = −1.43 V
[cf. Fig. 1(c)]. The transmissions of the outermost edge

-4 -1log10(G/(e2/h))

ν 
< 

1
ν 

> 
1

FIG. 5. Logarithm of the conductance through the QD as a
function of plunger gate voltage and magnetic field. Dashed lines
indicate the trend of the resonances. Around 4.22 T the upper Landau
level becomes completely depopulated.

channel of the left and right QPC are tL = 0.997 and
tR = 0.998, respectively, giving the incoherent transmission
t = 0.995 according to

t = tLtR
1 − (1 − tL)(1 − tR)

. (6)

Since the device resistance is relatively small in this regime,
on the order of the resistance quantum h/e2, we switch to a
four-terminal measurement of Gdiag.

The diagonal conductance is shown in Fig. 6(a) for a filling
factor νb ≈ 1.9. We choose the color scale in Fig. 6(a) such
that the classical transmission value appears white, while
positive (negative) deviations from this value are shown in red
(blue). The observed conductance shows a periodic pattern
around the classically expected value. Despite the strong
coupling of the outer edge channel to the leads, the pattern
shows striking similarities to the phase diagram in Fig. 2(b)
measured in the weak dot-lead coupling limit. Resonances
appearing in red are reminiscent of the tunneling resonances
into the outer compressible region of the lower Landau level.
They appear to be strongly broadened and their modulation
amplitude is tiny as compared to Fig. 2(b) as a result of the
strong tunnel coupling. Their period in gate voltage is slightly
reduced to 4.4 mV and the magnetic field period of the pattern
is 7.1 mT giving an area Ā = 0.58 μm2, slightly larger than
the area estimated from Fig. 2(b). Both changes are compat-
ible with the larger dot area caused by opening the tunnel
barriers. The similarity between the observed conductance
pattern in the interferometer and in the Coulomb blockade is
one of the main findings of this paper. It agrees qualitatively
with the findings in Ref. [21] and the theoretical prediction in
Ref. [32].

As a consequence, a phase diagram similar to that in
Fig. 2(b) can be constructed in the open regime, as indicated
by the hexagon outlined with a black dotted line in Fig. 6(a).
If we follow lines of a constant electron number �n2 in the
phase diagram [green dashed lines in Fig. 6(a)], the observed
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FIG. 6. (a)–(f) QD operation continuously changed from interferometer to strongly Coulomb-blockaded QD. Conductance Gdiag shown as
a function of plunger gate voltage and magnetic field for different, decreasing transmission of the left and right barrier (tL, tR) corresponding
to set points of the barrier voltages VLB, VRB indicated in Figs. 1(c)–1(e). The classical transmission value t is calculated according to Eq. (6)
and the color scale is chosen around the classical value t (white) for each plot.

conductance oscillations in Fig. 6(a) represent the Fabry-Pérot
resonances of the interferometer. Although the lower Landau
level couples strongly to the leads in this regime, the upper
Landau level remains very weakly coupled to the lead and
to the outer compressible region due to the presence of the
incompressible ν = 1 region, which completely surrounds
it. In contrast to the case of the QD in the weak-coupling
limit, this incompressible region is now no longer confined
inside the QD, but it now extends through the constriction
into the lead regions. Abrupt phase jumps of the interference
pattern arise, whenever the number �n2 changes due to the
electron-by-electron depopulation of the upper Landau level
with increasing magnetic field. These phase jumps have been
theoretically described in Ref. [33] (see also below).

The full evolution from the regime in which the outer
compressible region of the QD is strongly coupled to the
leads to the regime of weak coupling with strong charge
quantization in the outer compressible region is shown in
the sequence of measurements in Figs. 6(a)–6(f). Along this
sequence, the classical transmission t is tuned following the
blue points in Fig. 1(c) from t = 0.995 to t = 0.002, i.e.,
from the Fabry-Pérot quantum Hall interferometer regime to
the Coulomb blockade regime. At each stage of tuning, the
hexagonal phase diagram is discernible indicating that the
physics of the fully Coulomb-blockaded QD in the quantum
Hall regime carries over to the interferometer regime. Similar
observations were made in Ref. [20] in larger interferometers,
in which the phase jumps were not observed.

In the following, we complement the experimental in-
vestigation of the transition from Coulomb-blockaded QD

to interferometer by a comparison to a theoretical model.
Within a slight extension of the existing theory of the Fabry-
Pérot quantum Hall interferometer of Ref. [33], Eqs. (1) are
replaced by

δQ1 = B0(A − Ā)

φ0
− δBĀ/φ0 − C1δVPG/e,

δQ2 = �n2 + δBĀ/φ0 − C2δVPG/e. (7)

The previous change in electron number �n1 of electrons in
the outer compressible region of the QD is in the interferom-
eter case no longer bound to be integer. The system can react
to a change in magnetic field or gate voltage by changing
the interferometer area by A − Ā, which is a continuous
variable. However, the inner incompressible region still has
discrete charge, and �n2 is required to be integer. The system
minimizes the energy functional (2) at given δB and δVPG by
choosing appropriate values for �n2 and (A − Ā).

According to this model, lines of constant �n2 have a
slope δB/δVPG exactly given by Eq. (3), i.e., the same as
in the case of the Coulomb blockade [green dashed lines in
Fig. 6(a)]. The period of resonances as a function of δVPG at
constant magnetic field is found by considering the change of
phase of the interfering electrons upon a change of area, given
by [33]

δθ = 2π
B0(A − Ā)

φ0
. (8)
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Going from one resonance to the next along the green dashed
lines winds the phase by 2π [as indicated in Fig. 6(a)],
which can be caused by a gate-voltage increase of e/CPG

according to Eqs. (7). This means that the vertically aligned
resonances in Fig. 6(a) correspond to the Fabry-Pérot res-
onances. They originate from resonances in the Coulomb-
blockaded QD, where the total electron number N in the
dot changes by 1, as is experimentally evident from the
evolution in Figs. 6(a)–6(f). These resonances represent lines
of constant interferometer phase (area), and their negative
Aharonov-Bohm-like slope is given by Eq. (5), like in the QD
limit.

Furthermore, the model predicts an electron-by-electron
depopulation of the upper Landau level with increasing mag-
netic field, which is responsible for the phase jumps observed
with a period of φ0/Ā as the magnetic field is increased.
As long as �n2 and δVPG are constant, the area of the
interferometer will increase with increasing magnetic field.
Once a single electron redistributes between the upper and
the lower Landau level, the interferometer area jumps by
�A = (K12/K1)(φ0/B0). Thereby, on a larger magnetic field
scale, the interferometer area oscillates around a constant
value with a magnetic field period of one flux quantum. The
discrete jumps in interferometer area correspond to discrete
jumps �θ = 2πK12/K1 of the phase difference between the
interfering electron waves. This phase jump can be directly
read from the measurement in Fig. 6(a) as indicated. The
fact that this phase jump is larger than π indicates that
the interferometer is in the so-called Coulomb-dominated
regime [33].

The vertical alignment of the resonances corresponding to
constant interferometer phase is in agreement with previous
experiments on larger interferometers, in which the phase
jumps were not observed, but vertical Fabry-Pérot resonances
were seen [20]. In our experiment, the observation of the
phase jumps enables the detection of the one-by-one redis-
tribution of quasiparticles from the inner compressible region
into the outer interfering edge channel.

The evolution of the interferometer transmission when
changing the filling factor from 2 > νb > 1 is shown in
Figs. 4(f)–4(k). Like in the quantum dot case, the voltages
applied to the gates LB and RB had to be readjusted, when
the filling factor νb was changed. The measurements in this
figure can be readily interpreted in terms of the observations
and the model discussed before. At all filling factors, except at
νb = 1.23 in Fig. 4(k), the vertical Fabry-Pérot resonances are
clearly discernible. At νb = 1.99 in Fig. 4(f), the phase jumps
in B are strongly washed out, indicating relatively strong
tunnel coupling between the inner and the outer compressible
regions. This coupling is weaker in Fig. 4(g) at νb = 1.71,
where the phase jumps appear to be sharper. Figure 4(h) is par-
ticularly interesting, because the φ0 period in B is visible even
within the Fabry-Pérot minima. At the same time, the phase
jumps along Fabry-Pérot resonances are strongly washed out,
which leads to a superior visibility of these resonances. While
this remains true in Fig. 4(i), the visibility of the Fabry-Pérot
resonances has become somewhat weaker, most likely for the
same reason invoked for explaining the extending Coulomb
resonances in Fig. 4(c), i.e., the tunneling time competing with
the measurement time. This effect appears to be very strong in

Fig. 4(k), where the upper Landau level is close to being com-
pletely depopulated. The fact that the charge redistributions
between the two Landau levels is “quenched” on intermediate
timescales allows for the observation of the Aharonov-Bohm
type of interference in this otherwise Coulomb-dominated
interferometer.

VII. CONCLUSION

In this paper, we have shown transport measurements of a
large quantum dot containing about 500 electrons in the quan-
tum Hall regime for filling factors 2 > ν > 1. We have exper-
imentally investigated both the transition from an open Fabry-
Pérot quantum Hall interferometer to a closed Coulomb-
blockaded quantum dot, as well as the evolution of transport
from ν = 2 to ν = 1. We have compared our experimental
results with theoretical models in the Coulomb-blockaded
and the interferometer regimes and found these models to be
in agreement with the experimental observations, confirming
the validity of the physical ideas presented in recent theo-
retical works [18,33]. A quantitative analysis allowed us to
extract all relevant model parameters from the measurements.
Model and experiment lead to the interpretation in terms
of self-consistently forming compressible and incompressible
regions within the quantum dot. The interplay between the
charge quantization in the quantum dot and the electron-by-
electron depopulation of the higher Landau level leads to a
hexagonal phase diagram in the gate-voltage magnetic field
plane, that bears similarity to the charge stability diagram of
a double-quantum dot at zero magnetic field. In agreement
with previous authors [7,8], we find a strong reduction of
the tunnel coupling between the two compressible regions
relating to the two participating Landau levels with increasing
magnetic field. Temperature-dependent measurements in the
Coulomb blockade regime allowed us to estimate the energy
spacing of edge excitations in the lower Landau level, which
is significantly larger than the single-particle level spacing
of the QD at zero magnetic field. The close similarity be-
tween interferometer data and data in the Coulomb blockade
regime show that the interferometer inherits the properties
of the Coulomb-blockaded quantum dot not withstanding
its strong coupling to the leads. The observed phase jumps
of the Fabry-Pérot resonances in the interferometer, which
are due to the discrete depopulation of quasiparticles from
the inner compressible region of the quantum dot, offer the
opportunity to detect quasiparticle tunneling and the con-
comitant charge redistribution. We anticipate that our results
clarify the close relationship between Coulomb-blockaded
quantum dots and interferometers in the quantum Hall
regime, and thereby enable the design of novel experiments
that extend into the fractional quantum Hall regime in the
future.
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