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Surface plasmon polaritons in planar graphene superlattices with one-dimensional periodic mo-dulation of the
band gap were studied. The interminiband contribution to the optical conductivity of this system was found by
the equation of motion method for two cases: the Fermi level falls within one of the minigaps and the Fermi
level is located within one of the minibands. It was shown that the optical conductivity of the system varies
significantly in these cases. The spectra of surface plasmon polaritons in the system differs for them.
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I. INTRODUCTION

Plasmonics has become a rapidly growing field of solid-
state physics over the past two decades. In addition to funda-
mental physics, plasmonics covers a wide range of applica-
tions, such as integrated optical circuits [1,2], transformation
and Fourier optics [3,4], nanophotonics [5,6], photovoltaics
[7,8], single-molecule detection [9], radiation guiding [10,11],
etc. Most of these applications rely on surface plasmon po-
laritons (SPPs). SPPs are evanescent electromagnetic waves
coupled to the collective plasma oscillations (plasmons), prop-
agating along the surface of a conductor.

The initial studies concerning electromagnetic properties
of metal-dielectric boundaries go back to the works by Mi
[12], Fano [13], and Ritchie [14] for small spherical metallic
particles and flat interfaces, respectively. SPPs at a metallic
surface have been intensively investigated both in light of the
fundamental physics and applications [15]. The optical prop-
erties of metal nanoparticles show enormous differences with
respect to their bulk or thin-film optical responses. While the
film absorbs light in all near-infrared and visible regions due
to the free-electron absorption, for nanoparticles this process
is strongly limited for energies below a given value [16].

The attractiveness of plasmonics is primarily that it is pos-
sible with the help of plasmons to concentrate electromagnetic
energy at small scales (in comparison with the wavelength of
light). Possessing a giant dipole moment, plasmons on these
scales play the role of effective intermediaries in the inter-
action of materials with light. In addition, the properties of
plasmons can be controlled within extremely wide limits [17].

One of the main ways to control plasmon is the design
of polariton crystals. Polariton crystals are artificial periodic
media in which, along with photon resonances (arising from
periodic modulation of the dielectric constant), there are
also optically active electron resonances. The first polariton
crystals used the Bragg superlattices (SLs) of semiconductor
quantum wells (QWs) [18,19]. In this case, the role of electron
resonances was played by excitons in QWs. Exciton-polariton
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crystals were later proposed as photonic crystal slabs, which
are planar waveguide layers modulated by one-dimensional
(1D) or two-dimensional (2D) gratings of depressions filled
with a layered semiconductor with strong exciton resonances
[20–22].

However, the most interesting were the polariton effects
in modulated metal-dielectric structures. Here the surface
plasmons play the role of electron resonances. In fact, the
first samples of such “polariton crystal slabs” were diffraction
gratings. The Wood resonant anomalies [23] in the optical
spectra of the gratings on the metal surface were first
explained by the excitation of surface plasmons in Fano’s
work [13].

An interest in such structures was subsequently caused by
the detection of the extraordinary optical transmission through
subwavelength hole arrays in a metal layer [24]. The forma-
tion of plasmon-waveguide polaritons in arrays of metallic
nanoclusters or nanowires on the surface of a planar dielectric
waveguide was also found [25,26], as well as plasmon effects
in metal layers with pore arrays [27,28].

With the discovery of 2D carbon material graphene [29],
new fundamental approaches and technological opportunities
have become available in recent years. Graphene is consid-
ered to be a promising material for 2D nanoelectronics [30].
In plasmonics, it can be operating in the midinfrared and
terahertz frequency ranges [31,32]. Compared to SPPs in
noble metals, SPPs in graphene show stronger mode confine-
ment and relatively greater distance of propagation [33–35].
Graphene also has an attractive property of electrical or chem-
ical tuning [29,36].

A frequency of the surface plasmons in doped graphene
is proportional to the ¼power of the charge carrier density,
a feature of single-layer graphene, and the ½power of the
wave number as in 2D electron gas [37,38]. The latter ceases
to be true for plasmons in planar graphene SLs due to the
modification of the Coulomb interaction: The plasmon fre-
quency becomes linear in the wave number nearly in the
whole plasmon band [39].

The planar graphene SLs can be formed by alternat-
ing strips of gapless graphene and of its gapped modifica-
tions [40]. These modifications explore the main property
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FIG. 1. An example of a system under consideration: a graphene-
graphane SL on a SiO2 substrate (the positions of hydrogen atoms are
shown by blue circles).

of graphene, namely, its 2D nature. For this, there exist two
possible ways: (i) choosing the material of the substrate,
e.g., hexagonal boron nitride (hBN) [41] on which graphene
is deposited, and (ii) depositing atoms or molecules, e.g.,
hydrogen atoms [42] or CrO3 molecules [43] on the surface
of a graphene sheet, although the former way manifests de-
pendence on the method of applying a graphene sheet to the
substrate and gives a small resulting band gap (� 100 meV).
The Moiré structure, arising from the lattice mismatching
between graphene and substrate, leads to the formation of the
secondary Dirac points in the energy spectrum of graphene
[44,45]. In addition, in graphene/hBN heterostructures,
the existence of specific collective excitations such as sur-
face plasmon-phonon polaritons due to the strong coupling
between SPPs and surface phonon polaritons appears possible
[46]. Nevertheless, we consider the latter way to be technolog-
ically more attractive to obtain gapped graphene (with using,
for example, the masking techniques).

Several gapped modifications of graphene with the band
gap ranging from about 53 meV to 5.4 eV have been already
demonstrated [41–43]. In principle, it is possible to form
regions of them with semiconductor or dielectric properties
on a single sheet of graphene, creating planar heterostructures.
The use of gapped graphene to create potential barriers opens
up additional possibilities for band gap engineering in carbon-
based materials [47].

An important step in theoretical research of electron prop-
erties of planar graphene SLs was Ref. [48], where the con-
ditions for arising the secondary Dirac points in the energy
spectrum of such heterostructures were found. The dispersion
law and renormalized group velocities around these points
were calculated. At some parameters of the system, interface
states can exist near the top of the valence miniband.

In this paper, we consider a problem of the dispersion
relation for SPPs in the planar graphene SLs with 1D periodic
modulation of the band gap (one version of such a SL is
shown in Fig. 1). A few years earlier, SPPs in graphene
were discussed in some detail in Ref. [49]. Among other
things, the electromagnetic radiation coupling to graphene
with 1D periodic modulation of conductivity was considered.
The standard approach was used when electric and magnetic
fields satisfy the Bloch theorem and they can be written in the
form of Fourier-Floquet series. In our case, we proceed from
the fact that there are minibands in the energy spectrum of
the planar graphene SL (the optical conductivity is calculated
as for 2D semiconductors with such energy spectrum), and
the fields are also represented in the form of Fourier-Floquet
series.

FIG. 2. Periodic alternating stripes of gapless graphene (regions
I) and its gapped modifications (regions II) leads to periodic alter-
nating of the band gap in the space along the x axis. The band gaps
in regions II are potential barriers (they are highlighted in orange on
the bottom panel), which form 1D periodic Kronig-Penney potential
of SLs.

The paper is organized as follows. A model for planar
graphene SLs is presented in Sec. II. An effective description
of charge carriers in these SLs is introduced in Sec. III. The
optical conductivity of the system is analyzed in Sec. IV.
The dispersion relation for SPPs is obtained in Sec. V. The
estimation of losses at excitation of these plasmons is given in
Sec. VI. Finally, the results of the work are summarized and
briefly discussed in Sec. VII.

II. MODEL DESCRIPTION OF THE
PLANAR GRAPHENE SL

The main concepts concerning planar SLs based on gapless
graphene and on its gapped modifications were reported in
Ref. [40]. In this section, we revisit some fundamentals of the
model description of charge carriers in these heterostructures.

Let x and y axes be, respectively, normal and parallel to
the interfaces between gapless and gapped graphenes. As
in a single graphene sheet, the SL electronic structure is
determined by a low-energy dynamics of charge carriers in
the vicinity of the Dirac points of the Brillouin zone (BZ).
Mathematically, the carriers are described by the envelope
wave function �(x, y) obeying the Dirac equation in 2D
space,

[vF σp̂ + σz�(x) + V (x)]�(x, y) = E�(x, y), (1)

where vF ≈ 108 cm/s is the Fermi velocity, σ = (σx, σy) and
σz are the Pauli matrices, and p̂ = −i∇ is the momentum
operator (here and below h̄ = 1). The half width of the band
gap is a periodic piecewise constant function

�(x) =
{

0, d (n − 1) < x < −dII + dn
�0, −dII + dn < x < dn,

where n is an integer enumerating the supercells, dI and dII

are the widths of strips of the gapless and gapped graphenes,
respectively, and d = dI + dII is the SL period, i.e., the size of
the supercell along the x axis (see Fig. 2).
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The periodic scalar potential V = V (x) can appear due to
the difference between the energy positions of the middle of
the band gap of the gapped graphene and the Dirac points of
BZ for gapless graphene

V (x) =
{

0, d (n − 1) < x < −dII + dn
V0, −dII + dn < x < dn.

To avoid the production of electron-hole pairs, SL is the first
type and the inequality |V0| � �0 must be satisfied.

In the general case, the Fermi velocity can differ in
graphene modifications. We neglect here the dependence vF

on x. We have previously considered SLs with alternating
Fermi velocity in Ref. [50].

Since a free motion of charge carriers is realized along the
y axis, the solution of Eq. (1) for the first supercell has the
form

�(x, y) = ψ (x)eikyy, 0 < x < d,

where the wave function ψ (x) is a two-component spinor:

ψ (x) =
(

ψu(x)
ψl (x)

)
.

For the nth supercell, in view of the periodicity of the
system,

ψn(x) = ψ (x + (n − 1)d ).

In the QW region 0 < x < dI (region I), the solution of Eq. (1)
is a linear combination of two spinors with plane waves

ψ (I)
n (x) = N

(
a(I)

n

b(I)
n

)
eikIx + N

(
c(I)

n

d (I)
n

)
e−ikIx, (2)

where N is a normalization factor.
The substitution of the expression Eq. (2) into Eq. (1)

provides the relation between the lower and upper spinor
components

b(I)
n = λ+a(I)

n and d (I)
n = −λ−c(I)

n ,

where

λ± = vF (kI ± iky)

E
.

The relation of the charge carrier energy E with kI and ky has
the form

E = ±vF

√
k2

I + k2
y

(plus for electrons and minus for holes).
It is convenient to represent Eq. (2) in a more compact form

[51]:

ψ (I)
n (x) = �I(x)

(
a(I)

n

c(I)
n

)
,

�I(x) = N

(
1 1
λ+ −λ−

)
eikIxσz .

(3)

When the inequality

�2
0 + v2

F k2
y − (E − V0)2 � 0 (4)

is satisfied, the solution of Eq. (1) in the barrier region dI <

x < d (region II) is a linear combination of two spinors with

increasing and damped exponents and it can be rewritten in the
form analogous to the expression Eqs. (3) (with an accuracy
to the substitution kI → ikII),

ψ (II)
n (x) = �II(x)

(
a(II)

n

c(II)
n

)
,

�II(x) = N

(
1 1
λ̃+ −λ̃−

)
e−kIIxσz ,

(5)

where

λ̃± = ivF (kII ± ky)

E + �0 − V0
, kII = 1

vF

√
�2

0 + v2
F k2

y − (E − V0)2.

When the condition Eq. (4) is not satisfied, the solution of
Eq. (1) in the barrier region becomes oscillating.

The dispersion relation is derived using the transfer matrix
method. The transfer matrix T relates the spinor components
for the nth supercell to the spinor components of the solution
of the same type for the (n + 1)th supercell. For example, for
the solution in the QW region:(

a(I)
n+1

c(I)
n+1

)
= T

(
a(I)

n

c(I)
n

)
. (6)

To determine the T matrix, we use the following boundary
conditions:

ψ (I)
n (dI−) = ψ (II)

n (dI+),

ψ (II)
n (d−) = ψ

(I)
n+1(0+),

(7)

which express the continuity of the solution of the Dirac
Eq. (1).

The boundary conditions Eqs. (7) provide the equalities(
a(II)

n

c(II)
n

)
= �−1

II (dI )�I(dI )

(
a(I)

n

c(I)
n

)
,(

a(I)
n+1

c(I)
n+1

)
= �−1

I (0)�II(d )

(
a(II)

n

c(II)
n

)
.

According to definition Eq. (6) and the last two equalities, we
determine the transfer matrix as

T = �−1
I (0)�II(d )�−1

II (dI )�I(dI ). (8)

The substitution of expressions for �I from Eqs. (3) and �II

from Eqs. (5) with the corresponding arguments into Eq. (8)
yields the expressions for elements of transfer matrix

T11 = αeikIdI [(λ− + λ̃+)(λ+ + λ̃−)e−kIIdII

− (λ− − λ̃−)(λ+ − λ̃+)ekIIdII ],

T12 = 2αe−ikIdI (λ− + λ̃+)(λ− − λ̃−) sinh(kIIdII ),

T21 = T ∗
12, T22 = T ∗

11,

(9)

where

α = 1

(λ+ + λ−)(̃λ+ + λ̃−)
.

It is easy to see that det T = 1 [52].
The dispersion relation is obtained in the form [40,51]

Tr T = 2 cos(kxd ), (10)
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where kx is the x component of the Bloch wave vector, kx ∈
[−π/d, π/d].

Dispersion relation Eq. (10) under condition Eq. (4) gives
the equation [40]

v2
F k2

II − v2
F k2

I + V 2
0 − �2

0

2v2
F kIkII

sin(kIdI ) sinh(kIIdII )

+ cos(kIdI ) cosh(kIIdII ) = cos(kxd ), (11)

where kI and kII are implicit functions of kx and ky.
The passage to the single-band limit is performed in two

ways: First, V0 = �0 (QWs only for electrons) and, second,
V0 = −�0 (QWs only for holes). The result of the passage
coincides with the known nonrelativistic dispersion relation
(see, e.g., Ref. [53]), although the expressions for kI, kII, and
E are different.

For Tamm minibands [54,55], the change kI → iκI should
be made in Eq. (11):

v2
F k2

II + v2
F κ2

I + V 2
0 − �2

0

2v2
F kIkII

sinh(κIdI ) sinh(kIIdII )

+ cosh(κIdI ) cosh(kIIdII ) = cos(kxd ). (12)

Equation (12) has the solution when v2
F k2

II + v2
F κ2

I + V 2
0 −

�2
0 < 0. More detailed analysis [48] showed that Tamm mini-

bands can exist under the condition

v2
F k2

y < �2
0

(
�2

0

V 2
0

− 1

)
. (13)

In case V0 > 0 Tamm minibands can exist only for holes, and
in case V0 < 0, they can exist only for electrons. Formally,
the condition Eq. (13) coincides with the qualitative criterion
for the existence of interface states when intersecting the
dispersion curves of adjoining substances [56].

III. EFFECTIVE DESCRIPTION OF CHARGE CARRIERS

For the further analytical study, it is difficult to use the
exact spectrum of charge carriers determined by finding the
numerical solution of Eq. (11). We suggest using the effective
spectrum as the spectrum of a model 2D narrow-gap semi-
conductor with boundaries of BZ along the kx axis, −π/d
and π/d . Such consideration has been successfully used when
we have determined the plasmon dispersion law in the planar
graphene SLs [39].

We should distinguish two cases: (i) the Fermi level falls
within one of the minigaps and (ii) the Fermi level is located
within one of the minibands.

In the former case, all minibands lying below the Fermi
level are completely occupied and the oscillations of the
electron (hole) density occur only in the direction of the free
motion of charge carriers (along the direction perpendicular
to the Kronig-Penney potential of SLs). This is a quasi-1D
motion.

In the latter case, the miniband containing the Fermi level
is occupied only partially, whereas all lower bands (if such
bands exist) are completely occupied. In the partially occupied
miniband, the oscillations of electron (hole) density can also
occur along the Kronig-Penney potential of SLs. This is a
quasi-2D motion.

Using the electric field effect in the system under consid-
eration, it is easy to achieve a crossover between quasi-1D
and quasi-2D regimes. For simplicity, we consider below the
situation with the filling (complete or partial) of only one
lowest electron miniband or the highest hole miniband.

At sufficiently large values of �0 and dII, the minibands
are rather narrow (we shall specify this condition below). For
example, the charge carrier energy spectrum in the lowest
electron or the highest hole miniband is (plus corresponds to
electrons, minus corresponds to holes)

E ≈ Veff ±
√

�2
eff + v2

F k2
y . (14)

Here, �eff and Veff play the role of the effective band gap and
the effective work function, respectively.

We can write the effective Hamiltonian corresponding to
the approximate dispersion law given by Eq. (14) as the Dirac
Hamiltonian in terms of 2 × 2 matrices:

Ĥ (1D)
eff = vF σy p̂y + σz�eff + Veff. (15)

The charge carriers have the effective mass

m∗ = �eff

v2
F

.

Using dispersion relation Eq. (11) and assuming that
|Veff| < �eff � �0, we can easily deduce the following esti-
mates for the mth miniband (m = 0, 1, 2, . . .) [39]:

�eff = (2m + 1)πvF

2dI

[
1 − vF

dI�0

]
,

Veff = vF

dI�0
V0. (16)

In the case under study, the minibands have an exponen-
tially small width owing to an exponentially small probability
for charge carriers to tunnel through the barriers. In this limit,
we obtain the following estimate for the miniband width:

δE = 4vF

dI
exp

(
−dII

vF
�0

)
. (17)

The condition defining the narrow minibands is δE � �eff.
Comparing the expression for �eff in Eqs. (16) with Eq. (17),
we find the condition �0 � 2vF /dII.

The Fermi energy EF is related to the 1D Fermi momentum
pF as follows (ẼF = EF − Veff):

|ẼF | =
√

�2
eff + v2

F p2
F .

The 1D Fermi momentum is expressed in terms of the charge
carrier density n2D

pF = π

g
n2Dd,

where g = gsgv is the degeneracy multiplicity: gs = 2 and
gv = 2 are the degeneracy multiplicity by spin and valley,
respectively.

In the quasi-2D case, in addition to the free motion along
the gapless graphene strips, charge carriers move across the
potential barriers. These types of motion occur at different
velocities: at v‖ for the free motion and at a much lower veloc-
ity v⊥ � v‖ for the motion perpendicular to the strips (since
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the probability of tunneling through the potential barrier is
small). This means the quasi-2D anisotropic motion of charge
carriers. The corresponding values of v‖ and v⊥ are selected
by fitting the approximate dispersion law. For example, the
approximate dispersion law in the lowest electron or the
highest hole miniband is

E ≈ Veff ±
√

�2
eff + v2

⊥k2
x + v2

‖k2
y . (18)

Parameters �eff and Veff play the same role as in the quasi-1D
case and the estimates Eqs. (16) can be also applied to them
under the conditions indicated above. With a good accuracy,
we can assume for all minibands v‖ ≈ vF .

The effective Hamiltonian with eigenvalues Eq. (18) has
the form

Ĥ (2D)
eff = v⊥σx p̂x + v‖σy p̂y + σz�eff + Veff. (19)

The energy spectrum is similar to that of an anisotropic
narrow-band semiconductor with the effective masses:

m∗
⊥ = �eff/v

2
⊥,

m∗
‖ = �eff/v

2
‖ .

IV. OPTICAL CONDUCTIVITY OF THE SYSTEM

The optical conductivity of the system is a sum of two con-
tributions: (i) a Drude contribution describing intraminiband
transitions σ intra and (ii) a term corresponding to intermini-
band processes σ inter.

The value σ intra is easily found from the kinetic equation
in the τ approximation (γ = τ−1 is the inverse relaxation
time) [39]:

(i) in The quasi-1D case:

σ intra = ige2v2
F pF

π |ẼF |(ω + iγ )
. (20)

(ii) The quasi-2D case:

σ intra
xx = ige2

π (ω + iγ )

Ẽ2
F − �2

eff

|ẼF |
v⊥
v‖

,

σ intra
yy = ige2

π (ω + iγ )

Ẽ2
F − �2

eff

|ẼF |
v‖
v⊥

. (21)

The values of v⊥ and v‖ refer to the partially occupied
miniband.

The contribution of interminiband processes to the optical
conductivity is calculated by the equation of motion method
[57,58]. For definiteness, we consider in detail the quasi-
2D case (the quasi-1D case is analogously considered). The
formula for the optical conductivity can be written as

σi j (ω) = gS

iω

∑
m,m′

∑
ζ ,ζ ′=±1

∑
k,k′

〈m, ζ , k|Ĵ (m′ )
i |m′, ζ ′, k′〉

× 〈m′, ζ ′, k′|Ĵ (m)
j |m, ζ , k〉

× nF [Emζ (k)] − nF [Em′ζ ′ (k′)]
Em′ζ ′ (k′) − Emζ (k) − ω − i�

, (22)

where S is the area of the system, m and m′ number
the minibands (m, m′ = 0, 1, 2, . . .), nF [E ] is the Fermi-
Dirac distribution function and, for simplicity, we assume

FIG. 3. Interminiband transitions at low frequencies in the case
of partially occupation of the lower electron miniband (the left panel)
or upper hole miniband (the right panel). Figures 1 and 2 in the
circles correspond to the contributions σ

(1)
i j and σ

(2)
i j , respectively. A

dependence of the energy E on ky is qualitatively shown by the color
selection.

nF [E ] = θ (EF − E ) (EF is the Fermi energy), ζ and ζ ′
are signs of an energy of the charge carriers (ζ , ζ ′ =
+1 for electrons, and ζ , ζ ′ = −1 for holes), Emζ (k) =
V (m)

eff + ζε
(m)
k with ε

(m)
k =

√
�

(m)2
eff + (−1)mv

(m)2
⊥ k2

x + v
(m)2
‖ k2

y ,

Ĵ (m)
i, j and Ĵ (m′ )

i, j are the current density operators (i, j = x, y):

Ĵ (m)
x = e

S v
(m)
⊥ σx and Ĵ (m)

y = e
S v

(m)
‖ σy. The eigen wave function

of the Hamiltonian Eq. (19) with parameters v
(m)
⊥ , v

(m)
‖ , �

(m)
eff ,

and V (m)
eff for the mth miniband is

|m, ζ , k〉 = amζk√
2S

(
1

bmζk

)
eik·r,

where

amζk =
√√√√1 + ζ

�
(m)
eff

ε
(m)
k

and bmζk = v
(m)
⊥ kx + iv(m)

‖ ky

�
(m)
eff + ζε

(m)
k

for even m and

amζk

=
∣∣�(m)

eff + ζε
(m)
k

∣∣√
ζε

(m)
k

(
�

(m)
eff + ζε

(m)
k

) + v
(m)
⊥ kx

(
v

(m)
⊥ kx + v

(m)
‖ ky

)
and

bmζk = i
(
v

(m)
⊥ kx + v

(m)
‖ ky

)
�

(m)
eff + ζε

(m)
k

for odd m.
Here, we also distinguish the inverse relaxation times γ

and � for intraminiband and interminiband transitions, respec-
tively, because these processes are essentially different type
ones.

Now, we calculate the interminiband contribution for the
case when Fermi level is located within the lower electron
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miniband or the upper hole miniband. We have two options
for interminiband transitions in the formula Eq. (22): (1)
m = m′ = 0, ζ ′ 
= ζ (transitions between the lower electron
miniband and the upper hole miniband, see Fig. 3), (2) m =

0, m′ = 1 or m = 1, m′ = 0, ζ ′ = ζ = sgn(EF ) (transitions
between the lower electron miniband and the nearest electron
miniband or the upper hole miniband and the nearest hole
miniband, see Fig. 3).

We obtain for the former case

Re σ (1)
xx (ω)= ge2

16

v
(0)
⊥

v
(0)
‖

(
1+ 4�

(0)2
eff

ω2 + �2

)(
1 + 1

π
arctan

ω−2|ẼF |
�

− 1

π
arctan

ω+2|ẼF |
�

)
,

Im σ (1)
xx (ω) = − ge2

32π

v
(0)
⊥

v
(0)
‖

(
1 + 4�

(0)2
eff

ω2 + �2

)
ln

(ω + 2|ẼF |)2 + �2

(ω − 2|ẼF |)2 + �2
. (23)

A characteristic logarithm factor appears, as for the imaginary part of the interband contribution to the optical conductivity of
graphene (see Ref. [49] and references therein). We also note that the logarithmic divergence at ω = 2|ẼF | in the limit � → 0 is
associated with the Kohn anomaly in graphene.

For simplicity of calculations, we also assume for the latter case v
(1)
⊥ ≈ v

(0)
⊥ and v

(1)
‖ ≈ v

(0)
‖ and the smallness of miniband

occupation
√

Ẽ2
F − �

(0)2
eff � �

(0)
eff . Then, we obtain

Re σ (2)
xx (ω) ≈ ge2�

π

v
(0)
⊥

v
(0)
‖

(
�

(1)
eff − �

(0)
eff

)(
Ẽ2

F − �
(0)2
eff

)[(
�

(1)
eff − �

(0)
eff − ω

)2 + �2
][(

�
(1)
eff − �

(0)
eff + ω

)2 + �2
] ,

Im σ (2)
xx (ω) ≈ − ge2

2πω

v
(0)
⊥

v
(0)
‖

(
�

(1)
eff − �

(0)
eff

)(
Ẽ2

F − �
(0)2
eff

)
×

{ (
�

(1)
eff − �

(0)
eff

)2 − ω2 + �2[(
�

(1)
eff − �

(0)
eff − ω

)2 + �2
][(

�
(1)
eff − �

(0)
eff + ω

)2 + �2
] − 1(

�
(1)
eff − �

(0)
eff

)2 + �2

}
, (24)

where we excluded from Im σ (2)
xx (ω) the term divergent as 1/ω at small ω.

We see that σ (2)
xx (ω) is suppressed in comparison with σ (1)

xx (ω), owing to the factor (Ẽ2
F − �

(0)2
eff )/�(0)2

eff . For other transitions
through one or more of the minibands, the situation is analogous: instead of �

(1)
eff , there will be �

(m)
eff with m = 2, 3, . . . and we

will have additional numerical smallness due to �
(m)
eff > �

(1)
eff [according to the evaluation Eqs. (16) �

(m)
eff = (2m + 1)�(0)

eff ]. So,
we can neglect contributions to the optical conductivity from transitions that are different from transitions between neighboring
minibands, one of which is the Fermi level. We have the result for the xx component of the optical conductivity tensor in the
quasi-2D case σ inter

xx (ω) = σ (1)
xx (ω) + σ (2)

xx (ω). The answer for σ inter
yy (ω) differs from σ inter

xx (ω) by the replacements v
(0)
⊥ � v

(0)
‖ .

In the quasi-1D case, when the Fermi level falls into the minigap, we have

Re σ (1)(ω) = ge2vF �

2π�
(0)2
eff

I

(
ω

2�
(0)
eff

,
�

2�
(0)
eff

)
,

Im σ (1)(ω) = −ge2vF

πω
J

(
ω

2�
(0)
eff

,
�

2�
(0)
eff

)
,

(25)

where we introduced the functions

I (a, b) =
∫ ∞

xF

dx√
x2 − 1[(x − a)2 + b2][(x + a)2 + b2]

,

J (a, b) =
∫ ∞

xF

dx√
x2 − 1

{
x2 − a2 + b2

[(x − a)2 + b2][(x + a)2 + b2]
− 1

x2 + b2

}
.

The notation xF = 1 is introduced for the case when the Fermi level falls within the minigap between the lower electron and
the upper hole minibands; xF = |ẼF |/�(0)

eff for the case when the Fermi level falls within the minigap between the lower and the
next electron minibands or between the upper and the next hole minibands, xF > 1. In this case, we have also the second type
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contribution which is easily obtained for the small miniband occupation:

Re σ (2)(ω) = 4ge2vF �

π

(
�

(1)
eff − �

(0)
eff

)√
Ẽ2

F − �
(0)2
eff[(

�
(1)
eff − �

(0)
eff − ω

)2 + �2
][(

�
(1)
eff − �

(0)
eff + ω

)2 + �2
] ,

Im σ (2)(ω) = −2ge2vF

πω

(
�

(1)
eff − �

(0)
eff

)√
Ẽ2

F − �
(0)2
eff

×
{ (

�
(1)
eff − �

(0)
eff

)2 − ω2 + �2[(
�

(1)
eff − �

(0)
eff − ω

)2 + �2
][(

�
(1)
eff − �

(0)
eff + ω

)2 + �2
] − 1(

�
(1)
eff − �

(0)
eff

)2 + �2

}
. (26)

Let us illustrate an interesting feature of the case when
the Fermi level lies in the minigap between the lower and
the next electron minibands (between the upper and the next
hole minibands), when xF > 1. We take xF = 2. This will
ensure the position of the Fermi level approximately in the
middle of the minigap [according to the first relation in
Eqs. (16) �

(1)
eff = 3�

(0)
eff , and the Fermi level is ẼF = 2�

(0)
eff ].

For generality, we will count the frequency in units of the
minigap between the lower electron and upper hole minibands
2�

(0)
eff , and the contribution to the optical conductivity of in-

terminiband transitions in units of σ0 = ge2vF /�
(0)
eff . Figure 4

shows numerical calculation using the formulas Eqs. (20),
(25), and (26). The striking feature in the optical conductivity
was that the contribution of the second-type interminiband
transitions turned out to be the leading contribution with
respect to the first typ.

At the end of this section, a few explanations should be
made why we neglect nonlocal effects arising from the spatial
dispersion of the optical conductivity. We consider graphene
from the standpoint of the electrodynamics of continuous
media as an infinitely thin conductive film. The inclusion
of a spatial dispersion of the optical conductivity has the
same role as the allowance for a spatial dispersion of the
permittivity. Therefore, the condition when it is possible to
neglect the effects associated with the dependence of the
optical conductivity on the wave vector q coincides with the
condition of neglecting such a dependence for the dielectric
function [59],

qr0 � 1, (27)

where r0 = min {v/ω, l} is the characteristic distance over
which the kernel of the integral expression for the electrical
induction is nonzero; v is the mean velocity of charge carriers,
and l is their mean free path.

Here, we assume that there is a ballistic regime of passage
of charge carriers through many supercells of SLs under con-
sideration, l � d and l > v/ω. So, we have r0 = v/ω with
v = 〈|v|〉, v = ∂Emζ (k)/∂k. Averaging is performed within
the Fermi sphere:

〈|v|〉 =
∫ |v|nF [Emζ (k)]d2k∫

nF [Emζ (k)]d2k
.

It leads to an answer for the quasi-2D case in the form

v = 2v⊥�2
eff

π
(
Ẽ2

F − �2
eff

)E (1 − (v⊥/v‖)2)

×
⎡⎣ ẼF

√
Ẽ2

F − �2
eff

�2
eff

− ln
ẼF +

√
Ẽ2

F − �2
eff

�eff

⎤⎦,

where E (x) is the complete elliptic integral of the second kind
[60].

To demonstrate the characteristic values, we give a calcula-
tion of the mean velocity of charge carriers v for an example of
SLs considered below at the end of Sec. V with �0 = 60 meV,
d ≈ 418 nm, �

(0)
eff ≈ 1.58 meV, EF = 2 meV, v⊥ ≈ 5.95 ×

107 cm/s, and v‖ ≈ 8.5 × 107 cm/s. We find v ≈ 2.27 × 107

cm/s and r0 � 150 nm at the characteristic value of SPP
energy ω � 1 meV. The wave vector characteristic value is
q � 102 cm−1. Thus, we obtain r0q � 1.5 × 10−3 and the
condition Eq. (27) is more than fulfilled. Accordingly, there
is no need to consider effects due to the possible dependence
of conductivity on the wave vector. However, we explain what
these effects in general lines are.

We note immediately that for the physically meaningful
discussion of these effects, it is necessary to consider more
complex systems than SLs presented here. If graphene struc-
ture’s conductivity is taken as depending on the wave vector,
the nonlocal effects arise for near-field physics (such as plas-
monics) and for the optical properties (far-field spectroscopy).
In particular, the usage of the graphene plasmonics to probe
nonlocal effects within the metal thin film was recently pro-
posed for the graphene/hBN/metal system in Ref. [61].

The placement of a graphene sheet at a distance of a few
nanometers away from a metal surface was experimentally
studied recently [62]. The near-field imaging experiments
provided an evidence for the existence of three types of
nonlocal effects in the massless Dirac electron liquid: the
single-particle velocity matching, the interaction-enhanced
Fermi velocity, and the interaction-reduced compressibility.

V. DISPERSION RELATION FOR SPP’S

Turning to SPPs in the planar graphene SLs, we are starting
from the macroscopic Maxwell’s equations

div D = 4πρ f , div B = 0,

rot E = −1

c

∂B
∂t

, rot H = 4π

c
j f + 1

c

∂D
∂t

,
(28)
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FIG. 4. Real (solid lines) and imaginary (dashed lines) parts of
the optical conductivity. (a) Contribution of the first-type intermini-
band transitions for four values of �. (b) Contribution of the second-
type interminiband transitions for the same values of �. (c) The
sum of these contributions together with the Drude conductivity
(γ = �

(0)
eff ).

where D = ε�E and B = μ�H are the vectors of electrical and
magnetic induction, related to the electric E and magnetic
H field strengths, respectively, via dc permittivity ε� and dc
permeability μ� of media surrounding the system, � = 1, 2
(for the sake of generality, we shall not yet assume μ� = 1),
ρ f and j f are the charge density and the current density,
respectively. We take ε� and μ� in the static limit, since, as
we will see below, we are dealing with small frequencies
(ω < 10 meV).

FIG. 5. A configuration of the tangential and perpendicular com-
ponents of fields at the interface z = 0 where the planar graphene SL
is located.

Here, the xy plane lies in the surface of the system. Then,
ρ f = ρsδ(z) and j f = jsδ(z) with the surface charge density ρs

and the surface current density js. We have also the material
equation (in the quasi-2D case)

js = σxxExex + σyyEyey, (29)

where σxx and σyy are the diagonal components of the optical
conductivity tensor of the system. The tangential component
of the electric field strength Et = (Ex, Ey, 0) lies in the xy-
plane (see Fig. 5). In the quasi-1D case, we have to modify the
relation Eq. (29) because of a different dimensionality of the
surface current Is = σEy (as the current in the system along
the y direction in one 1D element) and the surface current
density js. We should analogously introduce the value js =
(0, js, 0) with js = Is/d where d is a characteristic dimension
of the system along the x direction (the SL period).

We recall that a graphene sheet and planar systems of
monomolecular thickness based on it don’t have their own
DC permittivity and DC permeability, and, from the point
of view of the electrodynamics of continuous media, they
are actually an infinitely thin conductive layer between two
dielectric media. Moreover, these media can be considered
infinitely thick, occupying half spaces under the graphene
system (z < 0) and above it (z > 0).

We direct the normal n to the interface of these media along
the z axis. We denote the medium in the half-space z > 0 (this
can be air or vacuum) as the medium with the number � = 1,
and the medium in the half-space z < 0 (most likely it is the
substrate material) as medium with the number � = 2, i.e., the
normal is directed from medium 2 to medium 1 (see Fig. 5).

The boundary conditions at the interface z = 0 are

E1t = E2t , H1t − H2t = 4π

c
[jsn],

D1n − D2n = 4πρs, B1n = B2n. (30)

Since the planar graphene SL is a 2D system, it enters
in the calculation of the dispersion relation for SPPs only
through the boundary conditions Eqs. (30) together with the
material Eq. (29). Consequently, we need to know only its
optical conductivity σ .

Considering the absence of free volume currents and
charges, we are looking for a solution to the system of
Maxwell’s equations in each medium in the form

E�(r, t ) = E�(x, z)ei(q�−ωt ),

H�(r, t ) = H�(x, z)ei(q�−ωt ),
(31)
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where q = (qx, qy, 0) and � = (x, y, 0) are 2D vectors in
the xy-plane (q is the wave vector), and vectors E�(x, z)
and H�(x, z) are defined as periodical functions of x with
the period d which coincides with the SL period, E�(x, z) =
E� f (x, z) and H�(x, z) = H� f (x, z) and f (x + λd, z) =
f (x, z) for any z and λ ∈ Z.

The remaining fields are expressed by the relations

D�(r, t ) = ε�E�(r, t ),

B�(r, t ) = μ�H�(r, t ). (32)

So, we can write the function f (x, z) as the Fourier-
Floquet series

f (x, z) =
∞∑

ν=−∞
fνe2π iνx/d e−κ�ν |z|,

where fν are numbers determined by the Fourier integral with
the function f (x, z); κ�ν are wave numbers which define an
exponential decay of the fields in each medium. The action
of the derivative with respect to x on the fields reduces to
multiplying the terms of the series by iqxν = iqx + iνG, where
G = 2π/d is the 1D reciprocal lattice wave vector.

After substituting the fields Eqs. (31) and (32) into
Eqs. (28), we obtain a system of linear equations, the com-
patibility condition of which gives the relation

κ2
�ν = q2

xν + q2
y − ε�μ�

ω2

c2
. (33)

After simple calculations, we have the following dispersion
relation for SPPs:

q2
xνq2

y

κ
2
ν

−
(

κ̃ν − q2
xν

κν

− 4π iω

c2
σxx

)

×
(

κ̃ν − q2
y

κν

− 4π iω

c2
σyy

)
= 0, (34)

where κ
−1
ν = (μ1κ1ν )−1 + (μ2κ2ν )−1 and κ̃ν = κ1ν/μ1 +

κ2ν/μ2.
Now, we consider two special cases.
(a) The wave vector is directed along the x axis, qx 
= 0 and

qy = 0. If Ex = 0 and Ey 
= 0 (as is easily seen, also E�z =
0), we have the dispersion relation for νth transverse electric
(TEν) mode of SPPs [49]:

κ1ν

μ1
+ κ2ν

μ2
− 4π iω

c2
σyy = 0. (35)

If Ex 
= 0 and Ey = 0 (as is easily seen, also H�x = H�z = 0
and H�y 
= 0), we have the dispersion relation for νth trans-
verse magnetic (TMν) mode of SPPs [49]:

ε1

κ1ν

+ ε2

κ2ν

+ 4π i

ω
σxx = 0. (36)

It should be emphasized that the relations Eqs. (35) and (36)
hold for any ν. The spectrum of TM modes exist only in the
quasi-2D case because there is no transfer of charge carriers
along the x direction in the quasi-1D case (formally, σxx → 0).

(b) The wave vector is directed along the y axis, qx = 0
and qy 
= 0, and ν = 0. The system of equations describing

SPPs is obtained from the system of equations considered for
the above case by the substitution x � y. So, if Ex = 0 and
Ey 
= 0, we have TM0 mode of SPPs [the dispersion relation
is Eq. (35) with ν = 0] and, if Ex 
= 0 and Ey = 0, we have
a TE0 mode of SPPs [the dispersion relation is Eq. (34) with
ν = 0].

Let us demonstrate the difference between cases of altered
positions of the Fermi level on an example of a TE0 mode
propagating along the x axis. We consider SL with gapped
graphene creating by deposition of CrO3 molecules with the
half width of the band gap �0 = 60 meV [43]. For simplicity,
we took V0 = 0. The width of gapless graphene stripes is dI =
403.36 nm (1640 unit cells) and the width of gapped graphene
stripes is dII = 14.76 nm (60 unit cells). The substrate is the
silicon dioxide with the dielectric constant ε2 = 3.9 (above
the system is vacuum or air with ε1 = 1 and μ1 = μ2 = 1).
We assume that the Fermi level falls within the minigap
between the lower electron and the upper hole minibands
(there is no the Drude contribution to the optical conductivity
of the system, because free charge carries are absent), and
then its position can be changed by the electric field effect
and it is located within the lower electron miniband (the
upper hole miniband). We took the inverse relaxation times
γ = 24 meV and � = 1 meV to obtain Im σyy < 0, which
is a necessary condition for the existence of a solution to
the dispersion Eq. (35) (it is clear that the intraminiband
relaxation time must be much smaller than the interminiband
relaxation time). The results for the dispersion dependence
of the TE0 mode at small wave vectors are presented in
Fig. 6.

The blue curve shows the dispersion of the TE0 mode for
the case of the Fermi level between the lower electron and
the upper hole minibands. It starts above the upper light cone.
This is a consequence of the reduced optical conductivity
(without the Drude contribution). The attenuation of SPPs is
also enhanced: The imaginary part of the wave vector q′′

x is
almost an order of magnitude large than in the quasi-2D case.
The position of the peak of the blue curve for q′′

x corresponds
to the intersection of the blue curve for E with the upper light
cone, and the peak of the red curve for q′′

x corresponds to a
sharp deviation of the dispersion curve for the quasi-2D case
from the upper light cone toward the lower one.

For comparison, we present in Fig. 7 the results for the
dispersion dependence of the TM0 mode propagating along
the x axis. At the same time, we took into account that the
necessary condition for the reality of the solutions of Eq. (36)
is Im σxx > 0. To ensure this condition, we took the values
γ = 1.5 meV and � = 1 meV. Second, as mentioned above,
we have the TM modes spectrum with qx 
= 0 and qy = 0 only
in the quasi-2D case. Therefore, we performed calculations
when the Fermi level falls into one of the minibands (we chose
the lower electron miniband and EF = 2 meV).

A distinctive feature of the TM0 mode in comparison
with the TE0 mode is that its dispersion curve is rapidly
pressed to the lower light cone. This is a consequence of the
reduced optical conductivity σxx due to the presence of a small
parameter v⊥/v‖. The curve q′′

x (q′
x ) also has a peak, as for the

TE0 mode. We emphasize that the influence of SLs on the
SPP spectrum consists of the fact that two types of motion of
charge carriers are possible.
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FIG. 6. (a) The dispersion dependence of TE0 mode for the case of the Fermi level between the lower electron and the upper hole minibands
(the blue curve) and the case of the Fermi level in the lower electron miniband (the red curve). The position of the Fermi level with respect to
minibands is shown in the inset by lines of different color. (b) The dependence of the imaginary part of the wave vector q′′

x on its real part q′
x .

VI. THE ESTIMATION OF LOSSES AT
EXCITATION OF SPP’S

SPP excitation methods are widely discussed in the sci-
entific literature (see, e.g., Ref. [49] and references therein).
The apex of an illuminated nanoscale tip can be effectively
applied for SPP excitations [63]. Such a realistic experimental
situation corresponds to the local spatial excitation of SPPs
(they have a complex wave vector and real frequency, as used
here).

The estimation of losses due to SPP excitation is in many
ways similar to the estimation of the absorption of external
electromagnetic radiation on the excitation of plasmons in SLs
[39]. We use the well-known formula [59]

Q = 1
2 Re(σEẼ∗), (37)

where σ is the optical conductivity of the system, E is the
SPP electric field, and Ẽ is the electric field of the external
electromagnetic wave.

FIG. 7. The dispersion dependence of TM0 mode for the case of
the Fermi level in the lower electron miniband. The dependence of
the imaginary part of the wave vector q′′

x on its real part q′
x is shown

in the inset.

Following Ref. [64], we can similarly derive [39]
(α) in the quasi-1D case,

Q(1D)

|E0|2 � ω2γ 2σ intra
0(

ω2 − ω2
q

)2 + ω2γ 2
+ ω2�2σ inter

0(
ω2 − ω2

q

)2 + ω2�2
, (38)

where σ intra
0 and σ inter

0 are the values of conductivity Eqs. (20),
(25), (26) in the zero-frequency limit, respectively, ωq = ω(q)
is SPP frequency corresponding to the wave vector q, E0 is the
electric field amplitude, E0 = (0, E0, 0);

(β) in the quasi-2D case,

Q(2D)
⊥

|E0|2 � ω2γ 2σ intra
xx0(

ω2 − ω2
q

)2 + ω2γ 2
+ ω2�2σ inter

xx0(
ω2 − ω2

q

)2 + ω2�2
, (39)

where σ intra
xx0 and σ inter

xx0 are the values of conductivity Eqs. (21),
(23), (24) in the zero-frequency limit, respectively, E0 =
(E0, 0, 0). For polarization E0 = (0, E0, 0), we have Q(2D)

‖
with the conductivity σ intra

yy0 and σ inter
yy0 .

VII. CONCLUSIONS

We have considered here SPPs in the planar graphene
SLs with 1D periodic modulation of the band gap and ob-
tained the dispersion relation for them. In this paper, we
have demonstrated the opportunity for the transformation of
the SPP spectrum due to a change of the optical conduc-
tivity in the system. This change can be achieved owing to
variations of the Fermi-level position by the electric field
effect. At sufficiently enough narrow minibands and minigaps,
the Fermi level can be easily shifted from a minigap to a
neighbor miniband. In the case when the Fermi level falls
within the minigap, there is a quasi-1D motion of charge
carriers (excluding the case of the minigap between the lower
electron and the upper hole minibands when charge carriers
are absent). In the case when the Fermi level falls within the
miniband, there is a quasi-2D motion of charge carriers. Thus,
there arises a kind of 1D/2D-crossover in behavior of charge
carriers. This causes a significant difference in the optical
conductivity of SLs and the SPP spectrum becomes tunable.
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Various promising materials are now considered as can-
didates for active tuning of SPPs, including graphene and
its gap modifications. The application of these materials to
nanoelectronics is currently particularly attractive for the de-
velopment of planar technology for integrated circuits of the
new generation. We expect that the creation and experimental
study of planar graphene heterostructures can play a key role
in achieving this goal.
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