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Nieh-Yan anomaly: Torsional Landau levels, central charge, and anomalous thermal Hall effect
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The Nieh-Yan anomaly is the anomalous breakdown of the chiral U(1) symmetry caused by the interaction
between torsion and fermions. We study this anomaly from the point of view of torsional Landau levels. It was
found that the torsional Landau levels are gapless, while their contributions to the chiral anomaly are canceled,
except those from the lowest torsional Landau levels. Hence, the dimension is effectively reduced from (3 +
1)-dimensional to (1 + 1)-dimensional. We further show that the coefficient of the Nieh-Yan anomaly is the
free-energy density in (1 + 1) dimensions. Especially, at finite temperature, the thermal Nieh-Yan anomaly is
proportional to the central charge. The anomalous thermal Hall conductance in Weyl semimetals is then shown
to be proportional to the central charge, which is the experimental fingerprint of the thermal Nieh-Yan anomaly.
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I. INTRODUCTION

Although torsion naturally arises as the curvature tensor
of the translational gauge fields [1], in gravity, its observable
effects are relatively small and are usually neglected. By
contrast, torsion is attracting more and more attention in
condensed-matter physics. Torsion can emerge from dislo-
cations [2–5], the temperature gradient [6–9], background
rotation, and the order parameter of a Fermi superfluid or
topological superconductors [10–12]. Especially, in Dirac and
Weyl semimetals, due to their gapless spectrum and strong
spin-orbit coupling [13,14], torsion has led to rich physical
phenomena, for example, chiral zero modes trapped in dislo-
cations [15,16], the chiral torsional magnetic effect [17], and
other viscoelastic responses [18–22].

Topological phases of matter are closely related to quantum
anomalies [23,24]. Similarly, both the chiral anomaly and
mixed axial gravitational anomaly are important to understand
Dirac and Weyl semimetals [25–39]. Torsion can lead to
chiral current nonconservation as well, which is known as
the Nieh-Yan anomaly [40,41]. However, compared to other
anomalies, the Nieh-Yan anomaly depends on the cutoff and
thus the specific ultraviolet physics, which is still controver-
sial [42,43]. The Nieh-Yan anomaly lies in the intersection of
condensed-matter physics and high-energy physics, topology,
and geometry. Meanwhile, Dirac and Weyl semimetals have
provided an ideal platform to study these phenomena on a
tabletop system.

Recently, it was suggested in Ref. [44] that there might be
an extra thermal term in the Nieh-Yan anomaly, i.e.,

1√|g|∂μ

√
|g| j5μ =

(
�2

4π2
− T 2

12

)
εμνρσ

√|g| ∂μea
ν∂ρeb

σ ηab, (1)
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where gμν is the metric and g = det gμν . � is the cutoff,
T is the temperature, ea

μ is the vierbeins, and for simplic-
ity, the spin connection is set to zero. From the view of
Poincaré gauge theory, this anomaly has a form similar to the
Adler-Bell-Jackiw anomaly [45,46]. But what is the physical
meaning and physical mechanism behind this anomaly? Can
we understand this anomaly equation from some kind of
“Landau level” [47]? Compared to the zero-temperature Nieh-
Yan term, the coefficient of the T 2 term is dimensionless, so
it is also tempting to ask if they are related to any kind of
topological invariant and why the coefficient is T 2

12 .
In this paper, we derive the energy spectrum for Weyl

fermions under torsional magnetic fields. The energy spec-
trum turns out to be sharply different from its magnetic
counterparts. Namely, all the Landau levels collapse together
at the zero-momentum point. Interestingly, only the lowest
torsional Landau levels matter as far as the axial currents are
concerned because the effect from the higher torsional Lan-
dau levels is canceled exactly. Thus, the (3 + 1)-dimensional
system is effectively reduced to pairs of (1 + 1)-dimensional
Dirac fermions. Especially, the axial current is proportional to
the free-energy density of the effective (1 + 1)-dimensional
Dirac fermions. If the torsional electric fields are further
applied, the effective velocity of the lowest torsional Landau
levels is changed. Since the free-energy density of (1 + 1)-
dimensional conformal fields is proportional to central charge
as well as the inverse of velocity [48,49], the torsional electric
fields change the axial current and thus lead to chiral anomaly.
Hence, we have found that the coefficient of the thermal
Nieh-Yan anomaly in Eq. (1) is

T 2

12
=

(πc

6
T 2

)(
1

2π

)
, (2)

where πc
6 T 2 is the free-energy density of some (1 + 1)-

dimensional conformal fields (the lowest torsional Landau
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levels), 1
2π

is from the level degeneracy, and c = 1 is the
central charge. The �2 term in Eq. (1) is from the vacuum
energy, for example, the band depth in Weyl semimetals, so it
depends on concrete materials. By contrast, the thermal term
is proportional to the central charge, which is universal. Fi-
nally, we show that the anomalous thermal Hall effect in Weyl
semimetals is induced by the thermal Nieh-Yan anomaly,
which serves as the experimental signature of the thermal
Nieh-Yan anomaly.

The rest of this paper is organized as follow. In Sec. II, the
energy spectrum for Weyl fermions under torsional magnetic
fields is derived. In Sec. III, both the chiral torsional effect and
the Nieh-Yan anomaly are calculated from the lowest torsional
Landau levels. In Sec. IV, an effective model is constructed
from the lowest torsional Landau levels, which relates the
thermal Nieh-Yan anomaly to the central charge. In Sec. V, we
derive the anomalous thermal Hall effect in Weyl semimetals
from the thermal Nieh-Yan anomaly. We summarize the main
results of this paper in Sec. VI.

II. TORSIONAL MAGNETIC FIELDS AND TORSIONAL
LANDAU LEVELS

Let us consider the following action for Weyl fermions in
curved space-time,

S =
∫

dd xe
1

2

[
ψ̄eμ

a γ a(i∂μ)ψ − ψ̄ (i
←−
∂ μ)eμ

a γ aψ
]
, (3)

where the spin connection is set to zero and a, μ = 0, 1, 2, 3
denote the locally flat coordinates (coordinate vectors eμ

a ∂μ)
and curved coordinates, respectively. γ a is the gamma matrix,
i.e., γ 0 = σ 0 ⊗ τ 1 and γ i = σ i ⊗ (−iτ 2), where both σ and
τ stand for the Pauli matrices. The vierbein eμ

a and its inverse
ea
ν satisfy eμ

a eb
μ = δb

a. In addition, these vierbeins can be real-
ized in Weyl semimetals, for example, by dislocation [2–5],
temperature gradient, [6,8] and global rotation.

Now, for simplicity, let us consider a specific configu-
ration of the vierbeins, namely, ea

μ = δa
μ + wa

μ and wa
μ =

1
2δa

3 T̃ 3
B (0, −y, x, 0), T̃ 3

B > 0, which means that the torsional
magnetic fields are applied along the z direction. The corre-
sponding Hamiltonian is

Hs = s

[
pzσ

3 +
(

p̂x + 1

2
T̃ 3

B ypz

)
σ 1 +

(
p̂y − 1

2
T̃ 3

B xpz

)
σ 2

]
,

(4)

where pz is a good quantum number and s = ±1 denotes the
chirality. Compared to the magnetic case, this Hamiltonian
looks like Weyl fermions under magnetic fields with charge
pz. The dispersion relation of this Hamiltonian can be straight-
forwardly derived, i.e.,

Es =
{

s|pz|
±

√
p2

z + 2
∣∣nT̃ 3

B pz

∣∣ n = 0,

|n| � 1,
(5)

where the level degeneracy is 1
2π

|pz|T̃ 3
B and the spectrum is

shown in Fig. 1. The energy spectrum with |n| � 1 is the
same for Weyl fermions with different chiralities. So only
the lowest torsional Landau levels can distinguish fermions

FIG. 1. Torsional Landau levels. Top: the energy spectrum for
right-handed Weyl fermions under torsional magnetic fields. Bottom:
the energy spectrum for left-handed Weyl fermions. The energy for
the right-handed lowest torsional Landau level is positive, while it is
negative for the left-handed one.

with different chiralities. However, compared to the magnetic
Landau levels, there are two main differences. First, all of the
Landau levels collapse together at pz = 0, which is because
the torsional magnetic charge pz vanishes at this point. Sec-
ond, the lowest torsional Landau level is of the form s|pz|
rather than spz in the magnetic case, which is because pz

reverses its sign at pz = 0.

III. NIEH-YAN TERM FROM THE LOWEST TORSIONAL
LANDAU LEVELS

After deriving the torsional Landau levels, it is natural to
ask if we can extract the Nieh-Yan anomaly from these levels
and what the physical meaning of this anomaly is. In this sec-
tion, we shall show that regardless of the gapless nature in the
energy spectrum, the higher torsional Landau levels (|n| � 1)
do not contribute to the anomaly equation. Thus, the Nieh-Yan
anomaly arises from the lowest torsional Landau levels, and
the system is effectively reduced to (1 + 1)-dimensional Dirac
fermions. In addition, the prefactor of the Nieh-Yan term is
the free-energy density of the effectively (1 + 1)-dimensional
Dirac fermions.

Now we further turn on the torsional electric fields, i.e.,
T̃ 3

E = ∂0e3
z − ∂ze3

0. For simplicity, we set e3
0 = 0 and e3

z = 1 +
�, � � 1. Due to the “minimal coupling,” i.e., σ a → eμ

a σ a,
only σ 3 in the Hamiltonian are modified, and the dispersion
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relation now becomes

Es =
{

s(1 − �)|pz| n = 0,

±
√

|(1 − �)pz|2 + 2
∣∣nT̃ 3

B pz

∣∣ n2 � 1,
(6)

where for ea
μ = δa

μ + wμ
a , eμ

a � δμ
a − δν

aδ
μ

b wb
ν and thus ez

3 �
1 − �. This shows that the torsional electric fields affect the
lowest Landau levels by modifying their slope (or velocity),
i.e., |pz| → (1 − �)|pz|.

The axial charge density j5μ|μ=0 can be written as

j50 =
∑

n

∑
s

s
∫ +∞

−∞

d pz

2π
nF

(
En

s

)( |pz|T̃ 3
B

2π

)
, (7)

where n = 0, ±1, . . . is used to label the torsional Landau
levels, nF (En

s ) = 1
exp (βEn

s )+1 is the Fermi-Dirac distribution

function, and |pz |T̃ 3
B

2π
is the level degeneracy. Because for |n| �

1, En
R = En

L ,
∑

|n|>1

∑
s snF (En

s )|pz| = 0, so the contribution
from the higher torsional Landau levels (|n � 1) to j50 are
canceled exactly.

Now, the axial charge density becomes

(∑
s

s j0
s

)
/
[
T̃ 3

B /(2π )
] =

∫ +∞

−∞

d pz

2π
|pz|

{
1

exp[β(1 − �)|pz|] + 1
− 1

exp[−β(1 − �)|pz|] + 1

}

= 1

(1 − �)2
2

∫ +∞

−∞

dε

2π
ε

1

exp(βε) + 1
, (8)

where ε ≡ (1 − �)|pz|. If we regard (1 − �) as the effec-
tive velocity, then terms in the second line are almost the
energy density of the (1 + 1)-dimensional Dirac fermions.
By “almost,” we mean that the coefficient of |pz| in the
integrand is not (1 − �). In the last line, 2

∫ +∞
−∞

dε
2π

ε 1
exp (βε)+1

is the energy density of two different kinds of fermions. This
suggests the close relation between the Nieh-Yan anomaly and
the energy density. It is also known that in two-dimensional
conformal field theory, the free energy density is proportional
to the central charge [48,49], so this equation also hints at the
close relation between the Nieh-Yan anomaly and the central
charge. This connection will be explored in the next section.

However, Eq. (8) is actually divergent, so we need to
perform the integration carefully. To be more concrete, we
rewrite Eq. (8) as

2

(1 − �)2

{∫ +∞

−∞

dε

2π
ε

[
1

exp(βε) + 1
− θ (−ε)

]

+
∫ +∞

−∞

dε

2π
εθ (−ε)

}
. (9)

The first term in the brackets is now convergent, i.e.,∫ +∞

−∞

dε

2π

ε

2π

[
1

exp(βε) + 1
− θ (−ε)

]
= T 2

4!
.

But the second term can be regularized by introducing a hard
energy cutoff, i.e., −� < ε < �. Then, the integral becomes∫ �

−�

dε

2π
εθ (−ε) = − 1

4π2
�2,

where the positive ε part in the integral is eliminated by θ (−ε)
and the negative part is regularized by −�. Hence, � mea-
sures the depth of the vacuum, and it stands for the vacuum
energy. In reality, the depth of the vacuum is not universal.
For example, it might depend on the concrete materials. By
contrast, the term proportional to T 2 can be universal. As we
shall show in the next section, it is proportional to the central
charge.

By summing everything together,

j50 =
(

1

12
T 2 − 1

4π2
�2

)
T̃ 3

B +
(

1

6
T 2 − 1

2π2
�2

)
�T̃ 3

B .

(10)
The first term in the parentheses is the chiral torsional effect
obtained in Ref. [21]. In addition to the thermal energy, the
vacuum energy can affect the chiral torsional effect as well,
which leads to the �2 term.

We can also study the chiral anomaly from Eq. (10). For
example, by recasting ∂t j50 in a covariant form,

1√|g|∂μ

√
|g| j5μ =

(
�2

4π2
− T 2

12

)
εμνρσ

√|g| ∂μea
ν∂ρeb

σ ηab, (11)

which is the Nieh-Yan term with a thermal contribution. The
term proportional to T 2 can be understood as follows. Under
torsional electric fields, the velocity of the lowest torsional
Landau levels is changed. For example, in Fig. 2, the velocities

FIG. 2. An illustration of the Nieh-Yan anomaly under torsional
electric fields T̃E = ∂t� (tLLL stands for the torsional lowest Landau
levels). The torsional electric fields change the slope of the lowest
Landau level, for example, from the thick line (velocity v = 1) to
the dashed line [velocity v = (1 − �)]. Because the free-energy
density of two-dimensional conformal field theory is πcT 2

6
1
v

[48,49],

the change in chiral current density is � j50 = ( 1
v2 − 1)( πcT 2

6 )(
T̃ 3

B
2π

),

where
T̃ 3

B
2π

is from the level degeneracy. Thus, � j50

�t = c
6 T 2T̃ 3

E T̃ 3
B .
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(or slopes) of the thick solid line and dashed line are v = 1 and
v = (1 − �), respectively, where � = T̃ 3

E �t . It is known that
for two-dimensional conformal fields, the free-energy density
at velocity v is F (v) = πc

6 T 2 1
v

[48,49], where c is the central
charge and c = 1 for the (1 + 1)-dimensional Dirac fermions

here. In Eq. (8), the chiral density is [ 1
v

× F (v)] T̃ 3
B

2π
, where

1
v

is because the torsional Landau level degeneracy is not
affected by the torsional electric fields. Thus, the change in

chiral density is � j50 = [ 1
(1−�)2 − 1]( πc

6 T 2)( T̃ 3
B

2π
) or � j50 �

c
6 T 2T̃ 3

E T̃ 3
B �t , with c = 1.

This implies that the prefactor of the Nieh-Yan term is
actually the free-energy density. Especially, the coefficient of
the first term is from

T 2

12
=

(
cπT 2

6

)(
1

2π

)
, (12)

where c = 1, 1
2π

is from the level degeneracy and cπT 2

6 is the
free-energy density. This strongly suggests the close relation
between the central charge and the Nieh-Yan anomaly.

IV. THE (1 + 1)-DIMENSIONAL EFFECTIVE MODEL
AND CENTRAL CHARGE

In the last section, we derived both the Nieh-Yan anomaly
and the chiral torsional effect from the lowest torsional Lan-
dau levels, which seem to relate to the central charge. In
this section, we shall study this connection by projecting the
(3 + 1)-dimensional system onto its lowest torsional Landau
levels, which is effectively the (1 + 1)-dimensional Dirac
theory.

Since only the lowest Landau levels contribute to the
anomaly equation, we can project our (3 + 1)-dimensional
system onto the lowest torsional Landau levels. Then, the
effective Lagrangian is

L = ψ†(i∂t + |pz|σ 3)ψ. (13)

The corresponding chiral current defined in two dimensions is

jμc = ψ̄�μ�5ψ, (14)

where �μ and �5 are the gamma matrices defined on the
(1 + 1)-dimensional space-time. We can further recast the
Lagrangian above as

L = ψ̄ ′(i∂μ�μ)ψ ′, (15)

where ψ ′(pz ) = (ψR

ψL
) for pz > 0 and ψ ′(pz ) = (ψL

ψR
) for pz < 0.

Hence, in terms of ψ ′, Eq. (14) can be written as
jμc (pz ) = sgn(pz )ψ̄ ′�μ�5ψ ′. Notice that the level degener-
acy of the torsional Landau level is 1

2π
T̃ 3

B |pz|, so the actual
chiral current in the (3 + 1)-dimensional space-time is j5μ =
( T̃ 3

B
2π

)(ψ̄ ′�μ�5 pzψ
′). By using the identity �5�μ = εμν�ν ,

j5μ = (εμνψ̄ ′�ν pzψ
′)( T̃ 3

B
2π

), where, up to equations of motion,
ψ̄ ′�ν pμψ ′ is the canonical energy-momentum tensor from the
Noether theorem. Hence, we shall calculate Tμν to obtain j5μ,
i.e.,

j5μ = εμνTν3

(
T̃ 3

B

2π

)
, (16)

where μ, ν = 0, 3. Since we are most interested in the finite-
temperature chiral current, we compactify the temporal direc-
tion to a circle of radius β = T −1. By using the Schwarzian
derivative, one can obtain [50]

T33 = cπT 2

6
, T00 = cπT 2

6
, (17)

where c is the central charge. Roughly speaking, c counts the
degrees of freedom. To see this, let us compactify the spatial
direction (to a circle of radius T −1) instead, and the absolute
value of the energy density is |T ∑

n (2πnT )| = πT 2

6 , which
means that each independent mode will contribute a factor
πT 2

6 to the energy density, and thus, c counts the number of
different modes. By inserting Eq. (17) back into Eq. (16),

j50 =
(

cT 2

12

)
T̃ 3

B ,

which is exactly the chiral torsional effect we obtained in
Eq. (10). This can be recast in a covariant form as

j5μ = −cT 2

12

εμνρσ

√|g| ηabδ
a
ν∂ρeb

σ , (18)

and thus, the chiral anomaly is

1√|g|∂μ

√
|g| j5μ = −

(
cT 2

12

)
εμνρσ

√|g| ∂μea
ν∂ρeb

σ ηab, (19)

which is similar to the results obtained in the last section.
Since the expectation value of the energy-momentum tensor
is known to be the free-energy density [50], we have shown
explicitly that the prefactor of the Nieh-Yan anomaly and the
chiral torsional effect is the free-energy density. Interestingly,
we have shown that both the chiral torsional effect and the
thermal Nieh-Yan anomaly are proportional to the central
charge.

Compared to our results in Eq. (10), terms proportional
to cutoff do not appear. This is because the vacuum energy
is from the normal ordering of the creation and annihilation
operators, which is secretly thrown away in conformal field
theory due to the constraints of translational symmetry and
rotational symmetry. However, in realistic materials, both the
translational symmetry and the rotational symmetry can be
broken by the ultraviolet physics. This means that the �2 term
might exist in the Nieh-Yan anomaly, but it is not universal
and depends on the concrete systems.

V. ANOMALOUS THERMAL HALL EFFECT
IN WEYL SEMIMETALS

In this section, we shall apply the thermal Nieh-Yan
anomaly to Weyl semimetals. The anomalous thermal Hall
effect naturally arises as the experimental signature of the
thermal Nieh-Yan anomaly. The anomalous thermal Hall
conductance is then shown to be proportional to the central
charge.

The anomaly equation in Eq. (19) implies that 〈 j5μ〉 =
− cT 2

12
εμνρσ√|g| ea

ν∂ρeb
σ ηab. Hence, the effective action in Weyl
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semimetals can be written as

Seff = −
∫

d4x
√

|g|bμ〈 j5μ〉 + · · ·

= cT 2

12

∫
d4xεμνρσ bμea

ν∂ρeb
σ ηab + · · ·, (20)

where bμ is the separation between Weyl nodes in the energy-
momentum space and we have kept only terms with linear
dependence on b. By performing variation of the vierbeins,
the energy-momentum response current is given as

T μ
a = −cT 2

6
ηab

εμνρσ

√|g| bν∂ρeb
σ . (21)

Especially, for a = 0, T μ
0 is the energy current, which is given

as

jT = cT

6
b × (∇T ). (22)

Here ( jT )i = T i
0 is the thermal current, and we have used

∂0e0
i − ∂ie0

0 = (T −1∇T )i [7,8]. This is the anomalous ther-
mal Hall effect in Weyl semimetals, and it is shown to be
proportional to the central charge, which matches exactly
that calculated from the Kubo formula by using the lattice
model in the low-temperature limit [51]. Because the central
charge closely relates to the conformal anomaly in two-
dimensional space-time, the anomalous thermal Hall effect in
Weyl semimetals is thus expected to be protected by topol-
ogy. In addition, compared to the anomalous quantum Hall
effect in Weyl semimetals, i.e., j = 1

2π2 b × E, the ratio of the
anomalous thermal Hall conductivity and the anomalous Hall
conductivity is cπ2T

3 , which matches the Wiedemann-Franz
law exactly.

Equation (21) also tells us how the temperature affects
the momentum transport in dislocations, i.e., j pm

= cT 2

6 b0∇ ×
em, where b0 is the chiral chemical potential, ( j pm

)i = T i
m is

the pm momentum current, and (em)i = −ea=m
μ=i . Thus, the total

momentum transferred along a dislocation is

Jpm =
∫

M
(dS) · j pm

= −cT 2b0

6
bm

bur,

where M is a surface area containing dislocations and bbur is
the Burger vector, i.e.,

∮
dxμ ∧ dxν∂μea

ν = bm
bur.

VI. CONCLUSION

In summary, we have calculated the torsional Landau
levels, from which the Nieh-Yan anomaly is derived. It was
shown that the coefficient of the Nieh-Yan anomaly is the
free-energy density of the lowest torsional Landau levels.
By projecting the system onto the lowest torsional Landau
levels consisting of the (1 + 1)-dimensional Dirac fermions,
we related the Nieh-Yan anomaly to the central charge and
thus the conformal anomaly. The anomalous thermal Hall
effect in Weyl semimetals arises as the direct consequence
of the thermal Nieh-Yan anomaly, which is shown to be
proportional to the central charge and can be regarded as the
experimental signature of the thermal Nieh-Yan anomaly. We
have clarified the physical mechanism behind the Nieh-Yan
anomaly and revealed the topological nature of the thermal
Nieh-Yan anomaly.

For time-reversal symmetry-protected topological insula-
tors, we assume that the negative-mass insulators are the
topologically nontrivial ones. The effective action can be
obtained by performing a chiral transformation to reverse
the sign of the mass. Similarly, the corresponding torsional
effective action for these topological insulators can be derived
from our anomaly equation here, i.e.,

STI = πcT 2

24

∫
d4xηabε

μνρσ ∂μea
ν∂ρeb

σ , (23)

which suggests the existence of the thermal counterpart of the
magnetoelectric effect in topological insulators.

In addition, the descent relation between the chiral
anomaly and the parity anomaly suggests that there is a
corresponding thermal parity anomaly in (2 + 1) dimensions
originating from the thermal Nieh-Yan anomaly, i.e.,

STH = πcT 2

12

∫
ηabε

μνρea
μ∂νeb

ρ, (24)

which is proportional to the central charge. This can be used
to describe the thermal Hall effect and maybe the topological
Hall viscosity.
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