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Dipolar polaritons squeezed at unitarity
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Interaction of dipolar polaritons can be efficiently tuned by means of a shape resonance in their excitonic
component. Provided the resonance width is large, a squeezed population of strongly interacting polaritons may
persist on the repulsive side of the resonance. We derive an analytical expression for the polariton coupling
constant, and we estimate the degree of squeezing of the emitted light. The squeezing may approach 100%
in typical experimental conditions. Our arguments hold promises for implementation of strong correlations in
quantum photonics.
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The commonly adopted strategy to introduce interactions
into the quantum optics of semiconductors is tailoring the
nonlinearity due to excitonic transitions [1]. In the regime
of strong light-matter coupling, the macroscopic population
of the cavity mode is efficiently transferred into the exciton
field, which can be regarded as a gas of bosonic quasiparticles
[2–5]. In particular, the blueshift of the polariton dispersion
is governed by low-energy s-wave collisions between the
pairs of excitons [2]. This naturally refers to ultracold atomic
systems, where enhancement of interactions has been demon-
strated by working with species having dipole moments [6],
Rydberg excitations [7] and using the technique of Feshbach
resonance [8]. The latter provides a possibility to tune the
scattering length from positive to negative values through
the unitary limit by adjusting the position of the scattering
threshold with respect to a bound state.

On the technological side, exceptional excitonic properties
are found in atomically thin heterostructures of transition
metal dichalcogenides (TMD’s) [9]. The atomlike Lennard-
Jones interaction between excitons has been demonstrated
in these materials [10]. Such interaction naturally admits a
bound state, and indeed biexcitons have recently been ob-
served in several types of monolayers [11–13]. A fundamen-
tal difference from the atomic clouds is, however, a purely
two-dimensional (2D) character of the exciton translational
motion. The interactions in a 2D ultracold gas are generically
weak due to the properties of 2D kinematics. Thus, in contrast
to three dimensions, quantum scattering off a weakly bound
state has a vanishingly small amplitude [14]. At sufficiently
low exciton densities, these arguments apply also for semi-
conductor quantum wells (QWs).

As was proposed by the author [15], a 2D analog of the
Feshbach resonance may be realized with dipolar excitons
formed out of electrons and holes residing in spatially sep-
arated layers. The dipolar repulsion introduces a potential
barrier between the outer continuum and the bound state
(biexciton), which enables a quasidiscrete level with tunable
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energy and lifetime. Both parameters can be controlled by
changing the distance d between the layers. The attractive side
of such resonance was theoretically explored in the context
of roton-maxon excitations and supersolidity in dipolar Bose-
Einstein condensates (BECs) [16,17]. On the repulsive side,
the equilibrium ground state is a condensate of biexcitons, dis-
tinguished from the exciton condensate by suppressed coher-
ence of the photoluminescence (PL) and a gapped excitation
spectrum [15]. These predictions hold for a wide variety of
bilayer structures, where the exciton lifetime is sufficiently
long to establish a thermodynamic equilibrium. Thus, the
numerical calculations of the exciton interaction potential in
coupled QWs [18] suggest that the shape resonance may
be responsible for the formation of a fragmented-condensate
solid of excitons [16,17,19,20].

Several groups have recently reported an increase of the
polariton interaction due to the dipolar moment in the exci-
tonic component [21–23]. The results presented in Ref. [22]
are particularly compelling: A factor of 200 enhancement of
the dipolar polariton interaction strength as compared to unpo-
larized polaritons has been detected. Dipolar repulsion alone
cannot explain such a tremendous blueshift of the polariton
PL. The mystery is deepened by very low values of polariton
densities at which the experiment was done.

Motivated by these experimental observations, the paper
presents a phenomenological model of resonantly paired dipo-
lar polaritons. In contrast to dipolar excitons, microcavity
polaritons are far from the thermodynamic equilibrium, their
statistics being closer to lasers rather than to atomic BECs
[24,25]. This enables the existence of a metastable polariton
population on the repulsive side of the shape resonance.
Coupling to a transient bipolariton mode in this case yields
divergent behavior of the 2D effective interaction, akin to the
unitary limit in three-dimensional atomic clouds. We derive an
analytical expression for the interaction enhancement factor as
a function of the polariton dipole moment and density, and we
show that it can be very large in typical experimental condi-
tions. Being exact in the dilute regime, this result ultimately
holds for two polaritons in vacuum. Another interesting pre-
diction of our theory is that the many-body polariton states
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become squeezed by the resonance. This could be verified
in current experiments by examining the statistics of emitted
photons.

Let us discuss the relevant timescales of the problem.
First, we shall assume that the polaritons do not condense
into the paired state, which is the equilibrium ground state
when the discrete level ε is below the scattering threshold.
Second, the width of the resonance β must be sufficiently
large for polaritons to feel the interior of the barrier during
their lifetime τ . We shall assume a broad resonance, which
seems to be the most likely for polaritons because of their very
low effective mass [26]. Hence, we let

β � ε (1)

and h̄/β � τ � τp, where τp is the thermalization time [27].
The system is a mixture of two polariton flavors ĉσ with

σ = (↑,↓) and their bipolaritonic pairs Ĉ. In practice, “↑”
and “↓” typically correspond to left- and right-circularly

polarized photons [28]. In planar dielectric microcavities, the
lower polariton dispersion is split into the linearly polar-
ized transverse magnetic (TM) and transverse electric (TE)
modes [29]. This splitting acts as an effective magnetic field
that flips the polariton pseudospin σ . Provided that

p �
√

mLTβ/h̄, (2)

the decay of a bound state due to the polariton spin-flip is
subdominant with respect to the tunneling under the dipo-
lar potential barrier. Here, the parameter mLT accounts for
both the bare photonic and low-k excitonic TE-TM split-
ting [30,31]. In confined geometries [32,33] one should let
p ∼ π/L, where L is the characteristic length of the con-
finement. Under the condition (2), we may consider a single
polariton branch E (p) characterized by the effective mass m in
the vicinity of its minimum. Analysis of a possible departure
from this approximation will be given in a separate paper.

The many-body Hamiltonian reads

Ĥ =
∑
p,σ

E (p)ĉ†σ,pĉσ,p +
∑

k

[2E (k/2) + ε]Ĉ†
kĈk + g

2S

∑
p1,p2,q,σ

ĉ†σ,p1+qĉ†σ,p2−qĉσ,p1
ĉσ,p2

+
√

h̄2β

2πmS

∑
k,p

(
ĉ†↑,p+ k

2

ĉ†↓,−p+ k
2

Ĉk + ĉ↑,−p+ k
2
ĉ↓,p+ k

2
Ĉ†

k

)
. (3)

Here the first two terms describe the dispersions of single
polaritons and bipolaritons, respectively, with p = (px, py)
and E (p) = h̄2 p2/2m at the bottom of the band (p → 0). In
the limit of zero exciton dipole moment, the discrete level ε

can be identified with the binding energy of a loosely bound
bipolariton molecule [34]. The next term is the usual back-
ground interaction between the polaritons with alike spins
(accounting both for the short-range part and the dipolar tail of
the bare exciton potential) in the quantization area S [35]. The
last term models the interaction of polaritons with opposite
spins by converting them into the bipolariton mode and vice
versa. The square-root prefactor is constructed in such a way
as to reproduce the low-energy 2D scattering amplitude for
two particles in vacuum [15,36].

By using the standard commutation relations for bosons,
one obtains the following set of Heisenberg equations of
motion:

ih̄
dĉσ,p

dt
= [E (p) + μσ ]ĉσ,p +

√
h̄2β

2πmS

∑
k

ĉ†
σ ′ 	=σ,kĈk+p,

(4a)

ih̄
dĈk

dt
= [2E (k/2) + ε]Ĉk +

√
h̄2β

2πmS

∑
p

ĉ↑,−p+ k
2
ĉ↓,p+ k

2
,

(4b)

where we have replaced the Hartree groups of operators by
c-numbers and defined

μσ = g

S

∑
q

|cσ,q|2 = gnσ , (5)

with nσ being the polariton densities in each component. By
introducing the slowly varying amplitudes

ĉσ,p = ĉσ,pe−i[E (p)+μσ ]t/h̄, (6)

we notice the existence of a stationary (d ĉσ,p/dt = 0) solution
of Eq. (4b) in the form

Ĉk =
√

h̄2β

2πmS

μ↑ + μ↓ − ε′
k

∑
p

ĉ↑,−p+ k
2
ĉ↓,p+ k

2
, (7)

where the motion of the bipolariton mode is reduced to that
of a pair of polaritons with opposite spins. Here ε′

k = ε − εk

with

εk =
∑

p Erel(p, k)
〈
ĉ↑,−p+ k

2
ĉ↓,p+ k

2

〉
∑

p〈ĉ↑,−p+ k
2
ĉ↓,p+ k

2
〉 (8)

being the kinetic energy of the relative motion in the pair,
Erel(p, k) = E (p + k/2) + E (−p + k/2) − 2E (k/2).

The condition (1) provides a physical meaning to the
solution (7). The objects Ĉk should be regarded as auxiliary
fields describing the onset of pair correlations between the po-
laritons, rather than new (quasi)particles. Indeed, substituting
(7) into the last term of the Hamiltonian (3), one obtains an
effective model

Ĥ ′ =
∑
p,σ

E (p)ĉ†σ,pĉσ,p

+ 1

2S

∑
p1,p2,q,σ,σ ′

ĉ†σ,p1+qĉ†σ ′,p2−qgσσ ′ ĉσ,p1
ĉσ ′,p2

,

(9)
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with g↑↑ = g↓↓ = g and

g↑↓ = h̄2

2πm

β(
μ↑ + μ↓ − ε′

p1+p2

) . (10)

One can see that the pair correlations between the polaritons
manifest themselves as resonantly strong two-body interac-
tions. For a broad resonance considered in this work, the large
magnitude of g↑↓ is primarily due to the relation (1) (the
μσ ’s are on the order of ε). However, by reducing the dif-
ference μ↑ + μ↓ − ε′

p1+p2
(by, e.g., decreasing the polariton

density), one may also observe the typical resonant growth
of the interaction strength. Though here we have in mind the
case μ↑ + μ↓ > ε′

p1+p2
, the formula (10) can be used on the

attractive side μ↑ + μ↓ < ε′
p1+p2

as well.
Assume now a resonant excitation of a coherent mixture of

“↑” and “↓” polaritons at some point p0 on the dispersion
curve E (p). The output signal is registered at the distance
l ∼ υgrτ from the excitation spot. Here υgr is the correspond-
ing group velocity. For simplicity, assume equal densities
n↑ = n↓ ≡ n = N/S, which in practice may be achieved by
using linearly polarized light. We therefore take the following
initial (t = 0) configuration:

ĉσ,p0 (0)|ψ〉 =
√

N |ψ〉 , ĉσ,p	=p0 (0) |ψ〉 = 0. (11)

The bipolariton part of the many-body wave function |ψ〉 is
initially in the vacuum state:

Ĉ2p0 (0) |ψ〉 = 0. (12)

By substituting the slowly varying c-numbers [see the defi-
nition (6)] cσ,p0 = ρσ eiφσ and C2p0 = ρeiφ into Eqs. (4), and
omitting the terms scaling as

√
ε/β, one can find

φ(t ) = φ↑(t ) + φ↓(t ) ± π/2, φσ (t ) = φσ (0), (13)

and

ρσ (t ) =
√

N cosh−1(t/τ0), ρ(t ) =
√

N tanh(t/τ0). (14)

Equation (14) shows that on the characteristic timescale

τ0 =
√

2πm

βn
, (15)

the coherent mixture is entirely converted into the paired state
(7). According to (9) and (10), the modified polariton blueshift
is given by

μ′
σ = gn + h̄2n

2πm

β

(2ng − ε)
. (16)

Note that spreading of the polariton distribution over the k-
space region where the dispersion can be approximated by a
linear function will not affect the result (16) since, according
to (8), in this region one has εk ≡ 0.

The relation (1) refers to the typical case d ∼ dc, where dc

is the critical value at which the true bound state disappears
[39,40]. In general, the width of the resonance changes from
0 to ∞ (the latter describing the ultimate case where the level
washes out) as the exciton dipole moment is tuned from d �
dc to d � dc. For 0 � d � dc one may take β(d ) = Bd . The
corresponding dependence for the position of the level has the
form [15] ε(d ) = E (d − dc).

Following Ref. [22], one may then consider the “interac-
tion enhancement factor” η(d, n) = μ′

σ /μσ − 1 as a function
of the dipole moment d and density n. Substituting the above
relations for β(d ) and ε(d ) into Eq. (16), we obtain

η(d, n) = h̄2

2πmg

Bd

[2ng − E (d − dc)]
. (17)

Though our analytical methods do not allow us to estimate
the typical values of the parameters B and E , by virtue of
(1) one may expect B � E and, consequently, η � 1. The
relation (1), in turn, is guaranteed by very low values of the
polariton mass m as compared to bare excitons [26].

Interestingly, the strong correlations in the paired state (7)
squeeze the polariton wave functions. To illustrate this point,
consider again the situation discussed above, where one starts
from a coherent state (11) for polaritons and a vacuum state
(12) for their pairs. Introduce rotated quadratures

x̂σ = 1
2

(
ĉσ,p0 e−iφσ + ĉ†σ,p0

eiφσ
)
,

ŷσ = 1
2i

(
ĉσ,p0 e−iφσ − ĉ†σ,p0

eiφσ
)
,

(18)

and

X̂ = 1
2 (Ĉ2p0 e−iφ + Ĉ†

2p0
eiφ ),

Ŷ = 1
2i (Ĉ2p0 e−iφ − Ĉ†

2p0
eiφ ).

(19)

Write x̂σ = xσ + δx̂σ and the same for ŷσ , X̂ , and Ŷ . The
linearized equations of motion for the quadrature fluctuations
read

d

dt
δx̂↑,↓ = ±

√
β

2πmS
(ρ↓,↑δX̂ + ρδx̂↓,↑),

d

dt
δŷ↑,↓ = ±

√
β

2πmS
(ρ↓,↑δŶ − ρδŷ↓,↑),

d

dt
δX̂ = ∓

√
β

2πmS
(ρ↑δx̂↓ + ρ↓δx̂↑),

d

dt
δŶ = ∓

√
β

2πmS
(ρ↑δŷ↓ + ρ↓δŷ↑),

(20)

where the sign “+” or “−” corresponds to the two possible
choices of the phase shift in Eq. (13), and ρ, ρσ are given
by (14). At t = 0 one can use Eqs. (18) and (11) to find
〈δx̂2

σ (0)〉 = 1/4 and 〈δŷ2
σ (0)〉 = 1/4, the well-known property

of a coherent state [41]. In contrast, at τ0 � t � τ , where τ0

is given by Eq. (15), one can substitute ρσ = 0 and ρ = √
N

into the first pair of Eqs. (20) to obtain〈
δx̂2

σ (t )
〉 ∼ e±t/τ0 ,〈

δŷ2
σ (t )

〉 ∼ e∓t/τ0 ,
(21)

showing that the polaritons exhibit 100% squeezing in either
of the two quadratures at the output.

The requirement τ0 � τ sets the lower value of the polari-
ton density at which the predicted effects may be observed.
For sufficiently large β, one may operate in the ultradilute
regime and even in the few-particle limit. In Eqs. (10), (16),
and (17), the latter is formally achieved by letting n = 0.
Strong repulsive interactions between just two polaritons may
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FIG. 1. Sketch of a TMD-based planar microcavity featuring
unitary dipolar polaritons. The active region consists of a homo-
bilayer structure with AA′ or AB stacking, which allows dipolar
excitons with strong oscillator strengths and convenient selection
rules [37,38]. Black arrows show the spin orientation of the conduc-
tion and valence electronic states in the K± valleys. The holes are
delocalised over both layers [37]. The “↑” and “↓” excitons couple
to the cavity modes with opposite helicities. The dashed line traces
the profile of the two-body interaction potential V↑↓(r) felt by each
exciton [26]. This supports a quasidiscrete level (gray bar) separated
from the outer continuum by a barrier due to the dipolar repulsion.
The resulting polaritons experience strong repulsion and squeezing
of their collective states.

be particularly promising for implementation of the dual-rail
polariton logic [42].

The condition h̄/β � τ has allowed us to neglect the
dissipation and make our arguments particularly transparent.
Pair-breaking events due to leakage of the single photons
from the cavity result in a loss of correlations and, at first
glance, would reduce the degree of squeezing. In practice,
however, this reduction may be fully compensated by the

noise of the external vacuum (see Ref. [43]), which restores
the significance of the result (21).

Our last remark concerns the choice of the sign in Eq. (13).
Under the condition (1), the Josephson coupling of the polari-
ton states to the resonance stabilizes a definite phase relation
during the signal propagation. The initial configuration is,
however, chosen stochastically and may vary from one laser
pulse to another. This circumstance should be taken into
account when verifying the prediction (21) experimentally.

In addition to the already mentioned state-of-the-art in
QW microcavities [21–23], in Fig. 1 we sketch a possible
implementation of unitary polaritons with TMDs. A conve-
nient choice may be a homobilayer of MoX2, showing large
oscillator strengths and spin-valley selection rules analogous
to the monolayer excitons [37,38]. Natural separation between
the layers here is close to the threshold dc, the latter being
on the order of the exciton Bohr radius [15]. Tuning of the
resonance position in this case of fixed d may be achieved by
varying the magnitude of the satellite carrier wave function in
one of the layers (the residue of the intralayer exciton) [37].

To conclude, we predict anomalously large enhancement
of repulsive interactions in a system of dipolar polaritons.
The proposed model is based on the physics of a bound state
separated from the outer continuum by a potential barrier.
Our results apply to a wide variety of 2D semiconductor
heterostructures, such as atomically thin layers of TMDs
and quantum wells. An intriguing prediction of our theory
is that the resonantly paired polaritons represent an efficient
source of squeezed radiation. This might be readily verified
by examining the statistics of emitted photons with the bal-
anced homodyne detection [44]. The idea of using the shape
resonance to produce strong pair correlations and squeezing
at ultralow polariton densities opens wide perspectives for
future research and applications. Thus, an interesting direction
would be application of the physics discussed in this work to
the recently established field of topological polaritons [45,46].
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Glazov for a helpful reading of the manuscript.
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