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Statistical localization: From strong fragmentation to strong edge modes
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Certain disorder-free Hamiltonians can be nonergodic due to a strong fragmentation of the Hilbert space into
disconnected sectors. Here, we characterize such systems by introducing the notion of “statistically localized
integrals of motion” (SLIOM), whose eigenvalues label the connected components of the Hilbert space. SLIOMs
are not spatially localized in the operator sense, but appear localized to subextensive regions when their
expectation value is taken in typical states with a finite density of particles. We illustrate this general concept
on several Hamiltonians, both with and without dipole conservation. Furthermore, we demonstrate that there
exist perturbations which destroy these integrals of motion in the bulk of the system while keeping them on
the boundary. This results in statistically localized strong zero modes, leading to infinitely long-lived edge
magnetizations along with a thermalizing bulk, constituting the first example of such strong edge modes in a
nonintegrable model. We also show that in a particular example, these edge modes lead to the appearance of
topological string order in a certain subset of highly excited eigenstates. Some of our suggested models can be
realized in Rydberg quantum simulators.
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I. INTRODUCTION

The internal dynamics of closed quantum-many body sys-
tems has been a central topic in condensed matter physics
over the last decade, with strong connections to quantum
information theory. This has been motivated by experimental
advances in preparing and manipulating quantum systems that
are isolated from their environments to a high precision. An
interesting question to ask is how such systems approach
thermal equilibrium under their unitary dynamics [1–9]. The
eigenstate thermalization hypothesis (ETH) has emerged as
a sufficient condition for thermalization, and has been sub-
sequently demonstrated to hold in a variety of interacting
quantum systems [7,10–13].

Due to the seeming generality of ETH, much interest has
been generated by mechanisms that violate it and lead to a
breakdown of thermalization. Such a breakdown can arise due
to the existence of an extensive number of conservation laws.
One class of models where this occurs are integrable systems,
where the conserved quantities arise as integrals of local
(or quasilocal) densities [14–16]. Interestingly, it has been
shown that strong disorder can also lead to an infinite number
of emergent conservation laws without the need for fine-
tuning, defining the so-called many-body localized (MBL)
phase [17–20]. The integrals of motion in this case (dubbed
local integrals of motion, or LIOMs for short) are exponen-
tially localized in space around a specific position [21–24].

*These authors contributed equally to this work.

Consequently, the dynamics in MBL systems preserves mem-
ory of the initial state locally.

Several works investigated the possibility of mimicking
similarly localized behavior without explicitly breaking trans-
lation invariance [25–33], as well as the possibility of inter-
mediate behavior, such as the existence of a small number of
ETH-violating eigenstates within an otherwise generic spec-
trum of states [34–48]. Recently, the authors of the present
paper, following earlier work on dipole-conserving random
circuits [49], identified a novel mechanism for such noner-
godic behavior, dubbed Hilbert space fragmentation [50,51].
In this scenario, the space of many-body states in some simple
local basis splits into exponentially (in system size) many
distinct sectors, which are disconnected from one another.1

Especially interesting is the case of strong fragmentation,
where the size of the largest connected sector is exponentially
smaller than the total number of states. In the particular
example discussed in Ref. [50], it was found that this can
lead to not only a complete breakdown of ETH, but also to
effectively localized behavior in the form of infinitely long-
lived autocorrelations, similar to true localization. However,
establishing a clear connection between such localization and
the structure of the Hilbert space remained an open challenge.

While Refs. [50,51] provided a general mechanism for
Hilbert space fragmentation and uncovered many of the

1Recently, a model with similar properties was discussed in
Ref. [52]. Unlike the cases we consider here, the fragmentation there
is due to explicit local conservation laws.
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intriguing features resulting from it, understanding the na-
ture of the corresponding integrals of motion was left as an
open question. In the present work, we uncover these con-
served quantities in two illustrative cases, focusing on strongly
fragmented Hilbert spaces. We also formulate the general
principle behind such conserved quantities and discuss both
their similarities and their differences compared to the LI-
OMs of MBL systems. We first consider a simple example
that exhibits strong fragmentation (without conserving dipole
moment), where we can illustrate the nature of the integrals
of motion in a straightforward manner. Later we return to the
dipole-conserving minimal model of Ref. [50] and identify
all the conserved quantities that label the components of its
strongly fragmented Hilbert space. This is achieved via a
nonlocal mapping to a different model with explicit local
constraints. We analytically show that these conservation laws
lead to spatial localization and finite autocorrelations in the
thermodynamic limit.

A unifying feature of the conserved quantities we uncover
is what we name statistical localization. These are nonlocal
operators, whose expectation values in typical states pick up
contributions primarily from specific spatial regions that are
subextensive in their size. Unlike the case of LIOMs, this
region depends on properties of the quantum state in question;
in particular, the models we consider possess a conserved U(1)
charge and the localization properties of the new integrals of
motion turn out to depend on the overall filling fraction. More-
over, while some of these integrals of motion are effectively
localized to finite regions in the dipole-conserving case (much
like LIOMs), others are only “partially localized,” i.e., they
correspond to regions that grow sublinearly with system size.

Having identified the new conserved quantities, we show
that they give rise to another exciting possibility: statistically
localized strong zero modes localized at the boundaries of
a finite system. These are analogous to the strong boundary
zero modes (SZM) discussed in the literature [53–58], but
unlike previous instances, they occur in nonintegrable sys-
tems, coexisting with a completely thermalizing bulk. We
explicitly construct such zero modes (which commute exactly
with the Hamiltonian even for finite systems), by perturbing
the strongly fragmented Hamiltonians in specific ways, de-
stroying the integrals of motion in the bulk, while leaving
them intact at the boundaries. The resulting models exhibit
similar phenomenology as previously studied cases of SZM,
with infinite edge coherence times, as well as exact degenera-
cies throughout the spectrum. Our construction provides an
example of exact strong zero modes in a nonintegrable system,
stabilized by the dynamical constraints. We also propose an
experimental setup for realizing such models with Rydberg
atoms in an optical lattice.

Finally, we discuss how in cases with strong Hilbert space
fragmentation, the edge modes can lead to the appearance of
highly excited states with nontrivial topological string order.
This further reinforces the analogy between strong fragmenta-
tion and many-body localization, as the latter can also lead to
excited states exhibiting forms of order that are not otherwise
allowed at finite temperature [59,60].

To summarize, our main results are the following. (1)
We introduce the concept of SLIOMs and illustrate their
usefulness for two separate models. (2) Using this concept, we

construct experimentally relevant nonintegrable models with
exact strong zero modes at their edges. (3) We construct all the
SLIOMs for a three-site dipole-conserving model, and show
explicitly that they lead to localized dynamics. (4) We show
that the same conservation laws protect topological string
order in a subset of excited states at finite energy densities.

The remainder of the paper is organized as follows. In
Sec. II, we provide a detailed discussion of a simple model
that exhibits strong fragmentation. We introduce the model in
Sec. II A and then construct the full set of conserved quantities
that characterize the connected subspaces, using them to
illustrate the concept of SLIOMs, which we define in Sec. II B.
We describe the effect of SLIOMs on thermalization in the
bulk and at the boundary in Sec. II C, constructing a perturbed
model with strong zero modes and a thermalizing bulk. In
Sec. III, we extend our discussion to the strongly fragmented,
dipole-conserving Hamiltonian introduced in Ref. [50]. We
use a nonlocal mapping to analytically construct the complete
set of conserved quantities that describe its fragmentation,
and discuss both the similarities and differences compared
to the model of Sec. II. We discuss how the SLIOMs in this
case lead to localized dynamics, and discuss the implications
for entanglement growth in Sec, III C. We comment on the
appearance of string order in excited states in Sec. III D before
concluding in Sec. IV.

II. ILLUSTRATIVE EXAMPLE OF SLIOMS: t-Jz MODEL

Here we introduce the main concept of our paper, that
of statistically localized integrals of motion (SLIOM), which
are nonconventional integrals of motion responsible for the
lack of thermalization in the systems we consider. It will be
useful to contrast these with the well known case of LIOMs
[21–23], which play a similar role in MBL systems. Such a
LIOM τ z

n is localized around some given site n in an operator
sense: when written as a sum of “physical” operators, τ z

n =∑
i On

i , the spectral norm2 ‖On
i ‖ of On

i that have support on
sites far from n is exponentially suppressed.3 The operators
we consider are not localized in this sense; they are equal
weight superpositions of operators with supports of all sizes,
i.e., ‖On

i ‖ ∼ const. However, when the expectation values
are taken in “typical states” (to be specified below), these
values 〈On

i
†On

i 〉 only pick up contributions from a region that
consists of a vanishingly small fraction of the whole system
(and whose precise location and width depend on the state in
question): hence the term statistically localized.

A. Definition of the model

This general concept is best illustrated through a simple ex-
ample. We consider a one-dimensional Fermi-Hubbard model

2The spectral norm of an operator A is induced by the L2 norm and
takes the form ‖A‖ ≡ maxx �=0‖Ax‖/‖x‖.

3One usually chooses a complete set of basis operators, for example
direct products (“strings”) S of local Pauli operators in the case of a
spin-1/2 chain. One can then write τ z

n = ∑
S cn

SS; the Pauli strings
all have unit spectral norm, so the exponential (in the spatial support
of S) decay is carried entirely by the coefficients cn

S .
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under the assumption that the Hubbard on-site repulsion is
sufficiently strong as to prohibit double occupancy of sites. In
this limit, and after replacing Heisenberg by Ising interactions,
one obtains the so-called t-Jz model [61,62]. In this work, we
consider the following simplified version of it:4

Ht-Jz = −t
L−1∑
i = 1

σ =↑, ↓

(c̃i,σ c̃†i+1,σ + H.c.) + Jz

L−1∑
i=1

Sz
i Sz

i+1, (1)

where the dressed fermionic operators c̃i,σ ≡ ci,σ (1 −
c†i,−σ ci,−σ ) incorporate the hard-core constraint. σ =↑,↓ is a
spin index, and the on-site constrained Hilbert space consists
of only three states: 0,↑,↓, with 0 denoting an empty site.
The first term in Eq. (1) describes the constrained hopping of
fermions and the second term is a nearest-neighbor Ising-type
interaction with spin operators defined as

Sα
i = (c̃†i,↑, c̃†i,↓)σα (c̃i,↑, c̃i,↓)T with α = x, y, z; (2)

where we omit a factor of 1/2 for later convenience. In our
numerics, we fix t = 1 and take Jz = 1/4, avoiding the inte-
grable point Jz = 0 [63]. This Hamiltonian conserves both the
fermion number, NF ≡ ∑

j (ñ j,↑ + ñ j,↓), and the total spin,
Sz

tot ≡ ∑
j (ñ j,↑ − ñ j,↓), with the number operator defined as

ñ j,σ ≡ c̃†i,σ c̃i,σ .
The constrained hopping implies that the dynamics of

the model consists entirely of a “re-shuffling” of the hole
positions, with the direction of each individual spin always
remaining unchanged [64,65]. Thus, for fixed particle number
NF , any product state in the 0,↑,↓ basis is characterized by
a pattern of NF spins, each pointing either up or down. This
pattern is a conserved quantity: only states with the same
spin pattern are connected by the dynamics.5 Therefore the 3L

dimensional many-body Hilbert space fragments into expo-
nentially many disconnected sectors, labeled by the different
spin patterns, an example of strong fragmentation [50,51].

In the following, we focus on a chain with open boundaries,
where the fermions can be labeled by an integer k, starting
from either the left or the right edge of the system (we discuss
periodic boundary conditions in Appendix E). In this case, the
dimension of a given sector is

( L
L−NF

) = ( L
NF

)
, which counts

the number of ways to re-shuffle the L − NF holes. Note
that the dimension of the largest connected sector, attained
for NF = L/2, scales asymptotically as 2L (up to logarithmic
corrections), and thus it is a vanishing fraction of the full
Hilbert space dimension (as well as of the dimension of the
global (NF , Sz

tot ) symmetry sector it is contained in). For a
given NF , there are 2NF different sectors, corresponding to
the choices of spin pattern. One could easily generalize this
model, by allowing for fermions with a larger spin S [68].
This would not change the size of the sectors, but increase
their number to (2S + 1)NF , thus increasing the fragmentation

4The definition of the t-Jz model usually includes an additional
density-density interaction [61]. We drop that term for simplicity, but
keeping it would not change the following discussion.

5A classical, discrete time model with the same symmetries was
considered in Refs. [66,67].

(decreasing the ratio of the largest component to the whole
Hilbert space).

Before analyzing the t-Jz Hamiltonian in more detail, let
us briefly comment on its relation with various other models.
First, we note that while here we focus on a version of the
model where no double occupancy is allowed, in fact, the spin
pattern is also conserved in the presence of doublons, as long
as their total number is conserved due to the strong interac-
tions [65] (and as long as total spin is conserved as well). Sec-
ond, we point out that XX spin ladders are known to have sub-
spaces where the dynamics is equivalent to that of Ht-Jz with a
fixed spin pattern [36,69]. These can be thought of as weakly
fragmented analogues of our model, where certain, but not all,
spin patterns are conserved. It would be interesting to explore
whether the conserved quantities we discuss in the next sec-
tion have any bearing on the dynamics of these systems.

B. Statistically localized integrals of motion

Fixing the complete spin pattern is analogous to fixing the
eigenvalues of all LIOMs in a many-body localized system,
which determines a single eigenstate of the localized Hamil-
tonian [21,22]. The difference is that the spin pattern only
fixes a finite dimensional symmetry subspace, rather than a
single many-body state, due to the fact that the holes are free
to move. Therefore the analog of a single LIOM is the operator
which measures the spin of the kth fermion. This is our first
example of a statistically localized integral of motion, as we
now argue.

Definition (SLIOM). By a statistically localized integral
of motion (SLIOM) we mean an operator q̂ ≡ ∑L

i=1 Oi sat-
isfying the following two properties: (1) q̂ is conserved,
[Ĥ , q̂] = 0; and (2) for almost all states |ψ〉, the expectation
value 〈ψ |O†

i Oi|ψ〉 = ‖Oi|ψ〉‖2, when treated as a probability
distribution6 over sites i, is localized to a subextensive region
in space,

Var(i)

L
≡

√∑
i〈O†

i Oi〉 i2 − ( ∑
i〈O†

i Oi〉 i
)2

L
L→∞−→ 0. (3)

For example, the average global magnetization in a spin-
1/2 chain, 1

L

∑
i σ

z
i , is not a SLIOM since it has Var(i)/L =

1/
√

12. In Appendix A, we give a slightly different and
more refined version of the definition, which captures more
of the structure of the conserved quantities we discuss in the
following (see also Sec. III B).

Some comments are in order. (i) In the definition almost all
is meant in the sense that states |ψ〉 violating this condition
are of measure zero in the thermodynamic limit. (ii) In the
definition we did not specify the form of the operators Oi,
except that there is one for each site in the chain and that
their sum gives a conserved quantity. In the examples below,
they will turn out to be stringlike objects, extending from
one end of an open chain up to site i. (iii) In the definition,

6As we shall see below, in the cases, we consider O†
i Oi is a

projector, such that this interpretation is natural. In general, one
might need to normalize the distribution to sum up to 1. We ignore
the trivial cases when all 〈O†

i Oi〉 = 0.

125126-3



TIBOR RAKOVSZKY et al. PHYSICAL REVIEW B 101, 125126 (2020)

we have characterized localization in a rather weak sense:
instead of requiring that the distribution is localized to a finite
region, we only required that its width is subextensive. In the
following we will distinguish two cases: the fully localized
one, where Var(i) ∼ O(1) (which is most similar to MBL) and
the partially localized one, where Var(i) ∼ Lκ for some 0 <

κ < 1. In fact, we will see that for the t-Jz model, the SLIOMs
that are relevant for the bulk are all partially localized with
κ = 1/2. This localization is therefore much weaker than the
case of MBL, but still has nontrivial consequences for the
dynamics, as we will show in Sec. II C. On the other hand,
a subset of the conserved quantities, are in fact localized near
the boundaries, and behave very similarly to so-called strong
boundary zero modes. The dipole-conserving Hamiltonian
considered in Sec. III, however, has fully localized SLIOMs
also in the bulk (along with partially localized ones).

Example: spin configurations in the t-Jz model. We now
illustrate how the above definition applies to the t-Jz Hamilto-
nian introduced in Sec. II A. Taking open boundary conditions
(OBC), we can define an operator that measures the spin of the
kth fermion from the left edge of the chain:

q̂k ≡
L∑

i=1

Ok
i =

L∑
i=1

P̂k
i Sz

i , (4)

where P̂k
i is a projection operator, diagonal in the compu-

tational basis, that projects onto configurations where the
kth charge is exactly on site i. The operators q̂k form a
set of extensively many conserved quantities for Ht-Jz with
OBC, whose combined eigenvalues label all the different
possible spin patterns, such that

∑
k q̂k = Sz

tot. Each q̂k has
three eigenvalues, γk = +1,−1, 0, the latter corresponding to
configurations with k > NF (consequently, q̂2

k is a projection
onto configurations with k � NF ). However, not all possible
combinations are allowed: if γk = 0 for some k then γk′>k = 0
as well. The total number of possible configurations is there-
fore

∑L
NF =0 2NF = 2L+1 − 1, each corresponding to one of

the connected sectors in the theory. Note that the definition
of q̂k explicitly breaks spatial parity. One could alternatively
define a set of operators starting from the right edge; these
encode the same information regarding the block structure of
the Hamiltonian.

As we now argue, the operator q̂k falls under the above
notion of a statistically localized integral of motion, with
the role of Oi in the definition played by the operator P̂k

i Sz
i .

The reason for the statistical localization in this case can be
seen intuitively: for a typical state with some average filling
ν = 〈NF 〉/L, the kth charge is most likely to be found in the
vicinity of position i = k/ν. The width of the distribution
should also depend on ν, going to zero in the limit ν → 1.
On the other hand, one can always find atypical states with the
same filling where the kth charge is localized at some different
position, or not localized at all. To better understand the
nature of the conserved quantities q̂k , we now consider their
expectation values for two different ensembles of randomly
chosen pure states (in Appendix C, we also consider specific
eigenstates of Ht-Jz ).

Global Haar random states. Let us first consider the case
when |ψ〉 is chosen Haar randomly from the entire Hilbert
space [70,71]. This is a state with a fermion density ν = 2/3

on average. We are interested in the average and variance of
the expectation value of the operator Ok

i
†Ok

i = P̂k
i , which is

a projector onto configurations where site i is occupied and
the leftmost i − 1 sites host a total of k − 1 fermions. When
averaged over the Haar ensemble, the expectation value is the
same as in an infinite temperature ensemble, simply given by
the relative number of such configurations

pHaar(i; k) ≡ EHaar
[〈ψ |Ok

i
†Ok

i |ψ〉]=νk (1 − ν)i−k

(
i − 1

k − 1

)
,

(5)

for i � k and ν = 2/3.
∑

i pHaar(i; k) is the probability of
having at least k charges in the system; we focus on k/L < ν,
in which case this probability is exponentially close to 1.

The distribution pHaar is peaked around the position ī =
k/ν. For the leftmost charge (k = 1), it simply decays expo-
nentially into the bulk as ∼3−i. In general, for a fixed finite
value of k, pHaar(i; k) is independent of the system size L
and has some finite width. However, to probe the bulk of
the system, one should choose k = αL for some constant
0 < α < ν. In this case, due to the binomial coefficient, the
distribution has a standard deviation that scales with system
size as ∼√

L. Nevertheless, it is still “partially localized” in
the sense defined previously, such that the width relative to
the system size vanishes as 1/

√
L in the thermodynamic limit.

This is shown in Figs. 1(a) and 1(b). Outside of the O(
√

L)
region, the distribution has a tail that falls off asymptotically
faster than exponentially. To leading order in the thermo-
dynamic limit, L → ∞ and for x ≡ i/L � α, the distribu-
tion becomes ∝ exp [−L(x ln 3 − α ln 2 − xh2(α/x))], where
h2(λ) ≡ −λ ln λ − (1 − λ) ln(1 − λ) is the binary entropy
function. Note that the exponent vanishes when x = α/ν =
3α/2 and is negative otherwise.

Similarly, one can calculate the variance over choices of
Haar random states (see Appendix B for details). This gives

EHaar
[∣∣〈ψ |Ok

i
†Ok

i |ψ〉∣∣2] − ∣∣EHaar
[〈ψ |Ok

i
†Ok

i |ψ〉]∣∣2

= 1

3L + 1
[pHaar(i; k) − pHaar(i; k)2], (6)

which is exponentially suppressed compared to the average,
indicating that indeed the vast majority of states in the Hilbert
space gives rise to very similar distributions for 〈Ok

i
†Ok

i 〉.
Random states with fixed particle number. While the above

calculation shows that most states lead to a sharply peaked dis-
tribution, it is also natural to consider states that are randomly
chosen within a sector with fixed total fermion number NF . As
we now show, the distributions in this case are still (partially)
localized in space, but their location and width now depends
explicitly on the filling fraction ν = NF /L, emphasizing the
statistical nature of the localization. One can perform the
averaging over the restricted Haar ensemble (see Appendix B)
to obtain

pNF (i; k) ≡ ENF

[〈ψ |Ok
i
†Ok

i |ψ〉] =
( i−1

k−1

)( L−i
NF −k

)
( L

NF

) . (7)

This distribution differs from the previous one in several
aspects. First, pNF is invariant under the change of variables
i → L − i − 1 together with k → NF − k + 1, which implies
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(a) (b)

(c) (d)

FIG. 1. Statistical locality of SLIOMs. Expectation value 〈ψ |Ok
i
†Ok

i |ψ〉 for the string operators appearing in the definition of SLIOMs
q̂k = ∑

i Ok
i , see Eq. (4). The averages are performed over: a Haar random state |ψ〉 in the full Hilbert space with average filling fraction

ν = 2/3 in (a) and (b), and a random state with a fixed filling fraction ν = NF /L = 1/2 in (c) and (d), evaluated analytically via Eqs. (5) and
(7), respectively. [(a) and (c)] In both cases, the kth particle, is statistically localized around the average position ī = k/ν. (Inset) The statistical
localization of the boundary SLIOMs q̂
, q̂r [defined in Eqs. (9) and (10)], with at least exponential decay towards the bulk. [(b) and (d)] When
considering SLIOMs in the bulk, k ∝ L [k = L/2 for (c) and k = NF /2 = L/4 for (d)], the width of the distribution scales as

√
L, and the

height as 1/
√

L.

that the distribution for q̂k can be obtained from q̂NF −k+1

via a spatial reflection around the center of the chain,
as shown in Fig. 1(c). Moreover, unlike Eq. (5), this
distribution depends explicitly on L; however, for a fixed
finite k it still approaches a well defined finite distribution
in the limit L → ∞. For k ∝ L, it once again has a width
∼√

L, as shown in Figs. 1(c) and 1(d). Both the position
of the peak and the width of the distribution are now
functions of the filling fraction ν = NF /L. The position
is ī = k/ν, while the width goes to zero as ν → 1. In
the thermodynamic limit, to leading order in L, one finds
pνL(xL; αL) ∝ exp [−L(h2(ν) − xh2( α

x ) − (1 − x)h2( ν−α
1−x ))],

where the exponent is zero if x = α/ν and negative
otherwise.

One can also calculate the variance, which has the same
form as Eq. (6), with pHaar replaced by pNF and 3L replaced
by

( L
NF

)
, the dimension of the symmetry sector.

In principle, we could fix not only the particle number, but
also the total magnetization Sz

tot. However, since the string
operators P̂k

i do not depend on the local magnetization, the
probability distribution pNF (i; k) would remain the same for
any Sz

tot. For the same reason, one would even have the same
distribution for a random state within a sector with a fixed spin
pattern.

A conceptual comparison between LIOMs and SLIOMs
can be found in Table I. We emphasize that, although the two
concepts play a similar role (providing labels for eigenstates

TABLE I. Comparison between LIOMs and SLIOMs in the
t-Jz model. While LIOMs label many-body eigenstates, SLIOMs
label larger dimensional connected subspaces. LIOMs are localized
around a given position in a state-independent way (operator strings
S with support far from j are exponentially suppressed). SLIOMs,
on the other hand, are restricted to regions that depend on the
state considered (e.g., its filling fraction for the t-Jz model). Unlike
LIOMs, which are always exponentially localized, the SLIOMs in
the t-Jz model are only partially localized with a width that is
subextensive but infinite in the thermodynamic limit.

LIOMs SLIOMs

connected subspaces

charge

eigenstates of H

site

with sub-extensive in typical states
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and connected subspaces, respectively), there is also an impor-
tant difference: LIOMs exist throughout the entire MBL phase
and are only slightly modified by perturbations. SLIOMs, on
the other hand, are destroyed by generic perturbations (i.e.,
those not diagonal in the Sz basis).

A similar comparison could be made between SLIOMs
and conserved quantities of integrable models. We highlight
that the two are rather different, SLIOMs can not be written
as sums of local densities, unlike the conserved quantities
in (Bethe ansatz) integrable models. Another difference is
that SLIOMs can be used to block-diagonalize the Hamilto-
nian, while in interacting integrable systems, most conserved
quantities have nondegenerate spectra, so diagonalizing them
would be equivalent to fully diagonalizing the Hamiltonian
[72,73].

A structure similar to the SLIOMs defined above arises
in another strongly fragmented model, where the conserved
quantities are harder to identify, as we shall see below in
Sec. III.

C. Bulk versus boundary SLIOMs and their
relationship to thermalization

Having defined the conserved quantities that characterize
the t-Jz model and its fragmented Hilbert space, we now
turn to the question of how these affect the dynamics, in
particular whether they lead to a breakdown of thermalization.
As we shall see, the effect of SLIOMs is strongest near the
boundary, where they lead to infinitely long coherence times,
in complete analogy with the case of strong zero modes
[53–58]. In the bulk, we find that coherence times are finite
in the thermodynamic limit, despite the presence of infinitely
many conservation laws. Nevertheless, even in the bulk, the
SLIOMs lead to a weaker form of nonequilibration, wherein
correlations remain trapped in a subextensive region, as well
as to a violation of the eigenstate thermalization hypothesis
within global symmetry sectors.

1. Bulk behavior

A natural question to ask regarding thermalization is
whether the presence of an extensive number of SLIOMs
manifests itself in infinite autocorrelation times, as is the
case in MBL. A way to gain insight into this question is
by considering Mazur’s inequality [74–76], which provides
a lower bound on the time-averaged autocorrelation of an
observable based on its overlap with the conserved quantities.
Focusing on a single-site Sz

j operator, and considering only the
SLIOMs q̂k , the inequality in our case reads

lim
T →∞

1

T

∫
dt

〈
Sz

j (t )Sz
j

〉
β=0 �

∑
k

∣∣〈Sz
j q̂k

〉
β=0

∣∣2

〈
q̂2

k

〉
β=0

=
∑

k

[
3− j2k

( j−1
k−1

)]2

1 − 3−L
∑k−1

NF =0 2NF
( L

NF

) ≡ Cz
j (∞), (8)

where 〈A〉β=0 ≡ tr(A)/3L is the infinite temperature average,
and the denominator in the last expression is the probability
of having at least k particles in the system. If the expression
on the right-hand side of this inequality was finite in the

FIG. 2. Autocorrelations for the t-Jz model in the bulk (a) Mazur
bound (8) on autocorrelations in the bulk, at j = L/2, decays as ∝
L−1/2 as a function of the system size L. (b) The same bound, shown
for a fixed L = 600, decays as ∝ j−1/2 as a function of the distance
j from the boundary. (c) The long-time average of spatially resolved
correlations, computed numerically for small chains (and averaged
between times t = 50 and 100), shows a persistent peak, instead of
the complete spreading expected from thermalization.

limit L → ∞, it would imply infinitely long coherence times.
Instead, evaluating it for a bulk observable, j ∝ L, one finds
that it decays with system size as L−1/2, as shown by Fig. 2(a).
This implies that the conservation laws {q̂k} are not sufficient
to prevent the autocorrelation from decaying to zero at long
times.

Even though the bound vanishes in the thermodynamic
limit, it nevertheless implies anomalous dynamics. For a
conserved density like Sz

j , one expects the spatially resolved
autocorrelation 〈Sz

j (t )Sz
i 〉 to eventually spread out over the

whole system and thus become O(1/L) for all i. However,
in our case, the lower bound ∼L−1/2 � L−1 implies that
this cannot be the case, and instead suggests that the charge
remains trapped within a much smaller region of size O(L1/2).
This can be understood from the distribution of the conserved
quantities in Fig. 1, which we discussed in the previous
section. In particular, note that the infinite temperature over-
lap 〈Sz

j q̂k〉
β=0

is proportional to the value of the probability

distribution pHaar( j; k) in Eq. (5), since tr(Sz
j q̂k ) = tr(Ok

j
†Ok

j ).
As we saw above, SLIOMs in the bulk have a width ∝
L1/2. Therefore a given Sz

j overlaps significantly with only
O(L1/2) different conserved quantities q̂k , and these define the
region in which the charge can spread out. This conclusion is
supported by numerical results on the spatially resolved cor-
relator 〈Sz

j (t )Sz
i 〉β=0 at long times for small chains, as shown

by Fig. 2(c). These results suggest a scaling 〈Sz
j (t )Sz

i 〉β=0 ≈
1√
L

f ( i− j√
L

) in the limit of large L.
While autocorrelations in the bulk thus decay to zero at

long times in the thermodynamic limit (albeit in an anomalous
manner), this does not imply that the system thermalizes.
Indeed, an initial product state in the fermion occupation basis
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FIG. 3. Diagonal matrix elements in the t-Jz model. Expectation
value of the average nearest-neighbor antiferromagnetic correlations
in eigenstates of Ht-Jz with global quantum numbers NF = L/2 and∑

j Sz
j = 0, and open boundary conditions. For the system sizes

shown (L = 8, 12, 16), the distribution becomes wider with increas-
ing system size, while asymptotically it is expected to narrow as
∼L−1/4. This is a consequence of the strong fragmentation labeled
by the SLIOMs, and is in contrast with ETH, which predicts an
exponentially narrow distribution.

would clearly not relax to a thermal state solely specified
by the global conserved quantities Ht-Jz , NF , and Sz

tot. In
particular, since each sector with a fixed pattern of spins is
effectively a chain of spinless fermions with two possible
states per site, time evolving from such an initial state will re-
sult in half-chain entanglement entropies at most L

2 ln 2, much
smaller than the entropy of a chain with three-dimensional
local Hilbert space at (or close to) infinite temperature ( L

2 ln 3).
One could say that each of these initial states thermalizes with
respect to the associated effective spinless fermion Hamilto-
nian, i.e., the t-Jz Hamiltonian projected to a given connected
sector with a fixed value of the SLIOMs. Note, however, that
this effective Hamiltonian is nonlocal: to know the sign of the
interaction between a given pair of (spinless) fermions, one
in principle has to know the entire spin pattern in the original
variables.

This sensitivity to initial conditions, due to the presence of
bulk SLIOMs, is also reflected in the properties of the eigen-
states of Ht-Jz . As the above argument shows, they have at
most L

2 ln 2 entanglement (for a half chain), much smaller than
a generic Hamiltonian with three states per site would have
in the middle of the spectrum. Moreover, due to the strong
fragmentation of the Hilbert space, different eigenstates at the
same energy density, and with the same global quantum num-
bers NF and Sz

tot, can have very different expectation values
for simple local observables. This is trivially true for the sym-
metry sectors with NF = L, where all states are completely
frozen, but it in fact holds more generally. To confirm this,
we consider the global symmetry sector with NF = L/2 and
Sz

tot = 0, and numerically evaluate the eigenstate expectation
values of the observable Sz

L/2Sz
L/2+1. We find (see Fig. 3) that

the expectation values of this operator have a wide distribution
over different eigenstates. Approximating the eigenstates by
an equal weight superposition of all possible hole positions
with a given spin pattern, on the other hand, suggests that

in fact there is a very slow narrowing of this distribution,
with the width scaling as L−1/4 in the thermodynamic limit
as obtained from Monte Carlo simulation [77]. This slow al-
gebraic narrowing should be contrasted with the ETH ansatz,
which predicts an exponentially narrow distribution. In fact,
the L−1/4 scaling is even slower than the case of integrable
systems, which typically have a width ∼L−1/2 [78–80];7 this
difference is consistent with our picture of SLIOMs wherein
the local observable only “sees” an O(

√
L) part of the system.

From these results, we conclude that if one considers
only the global (NF , Sz

tot ) symmetry sector, without resolving
the additional nonlocal symmetries, then the diagonal ma-
trix elements of local observables violate ETH. This can be
understood as follows: each connected sector has a different
‘embedded’ Hamiltonian, depending on the spin pattern, and
the properties of the associated eigenstates can therefore differ
from sector to sector. Note that this situation is different from
the case of more commonly occurring nonlocal symmetries,
such as spin flips or lattice translations, which do not lead
to distinct distributions of diagonal matrix elements [83–86].8

Of course one can instead consider only eigenstates within
a given sector, in which case ETH is fulfilled for typical
spin patterns (with the exception of a few integrable sectors,
which we discuss below). Note, however, that this requires
fixing an extensively large number of nonlocal symmetries
(the SLIOMs),9 making difficult to meaningfully compare
different system sizes. In this sense, our case is similar to that
of integrable models, where one usually considers matrix el-
ements without resolving all the extensively many conserved
quantities, and finds a similarly slow, algebraic decay of their
fluctuations with system size [78–80].

So far we discussed the nonergodicity originating from the
fragmented Hilbert space, whose components are labeled by
the SLIOMs. Our conclusions about the lack of thermalization
therefore apply independently of the structure of the Hamilto-
nian inside the connected blocks. For the t-Jz Hamiltonian (1),
it turns out that there is some additional structure for sectors
with a completely ferromagnetic or completely antiferromag-
netic spin pattern. These can be mapped [61] onto a spin-1/2
XXZ Heisenberg chain (with anisotropy � > 0 and � < 0,
respectively), which is quantum integrable. Most of the other
sectors, on the other hand, show random matrix level statistics,
signaling quantum chaotic behavior. The integrability of the
FM and AFM sectors could also be broken by additional
perturbations that are diagonal in the Sz basis (e.g., a staggered
field). These commute with all the SLIOMs, and therefore do
not change our conclusions about the overall nonergodicity of
the model.

7In general, the eigenstate-to-eigenstate fluctuations of a local
observable in any generic translation invariant system should decay
at least as fast as ∼L−1/2 [81,82].

8If this was not the case, systems with a discrete symmetry would
not thermalize, since typical initial states do not have a sharply
defined value of these conserved quantities.

9We note here that not all different spin patterns give rise to distinct
distributions of diagonal matrix elements. We leave it as an open
question to identify exactly which combinations of the SLIOMs
would need to be fixed to obtain a set of eigenstates that obey ETH.
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2. Statistically localized strong zero modes

It is worthwhile to consider separately those constants
of motion q̂k that are localized at the boundary of an
open chain. In this case, k does not scale with the sys-
tem size and therefore its distribution pHaar(i; k) remains
finite in the thermodynamic limit. Consequently, one ex-
pects that an observable near the boundary has finite over-
lap with these SLIOMs and, under time evolution, a non-
vanishing fraction of it would remain localized in a fi-
nite region near the boundary. Indeed, computing the lower
bound from Eq. (8) for a position j that does not scale
with L, one finds that it remains finite in the limit L → ∞.
The bound is largest at the boundary, j = 1, where it takes
the value 4/9, and decays away from the boundary as j−1/2.
This is shown in Fig. 2(b). Obviously, the same holds near the
right edge, when j is replaced by L + 1 − j. Therefore, at the
boundaries the SLIOMs imply a much stronger breaking of
thermalization, resulting in infinite coherence times.

In fact, in order to derive infinite coherence times at the
edge, one does not need infinitely many SLIOMs, it is suffi-
cient to consider just one. In particular let us take the spin of
the leftmost fermion,

q̂
 ≡
∑

i

⎛
⎝∏

j<i

(1 − ñ j )

⎞
⎠Sz

i , (9)

which is equivalent to q̂k=1 in the above definition, with the
projection taking a particularly simple form P̂1

i = ∏
j<i(1 −

ñ j )ñi, using the local constrained fermion density ñ j = ñ j,↑ +
ñ j,↓. There is another similar operator localized near the right
edge

q̂r ≡
∑

i

Sz
i

⎛
⎝∏

j>i

(1 − ñ j )

⎞
⎠. (10)

A reason to highlight these boundary SLIOMs is that they
already lead to infinite coherence times at the two edges,
without having to consider the other conserved quantities.

Once more, we make use of Mazur’s inequality. The con-
servation law [q̂
, H] = 0 implies that

lim
T →∞

1

T

∫
dt

〈
Sz

j (t )Sz
j

〉
β=0 �

∣∣〈Sz
j q̂


〉
β=0

∣∣2

〈
q̂2




〉
β=0

= 4

9 j
. (11)

In evaluating the right-hand side we used the fact that
3−Ltr(Sz

j q̂
) = 2/3 j as given by Eq. (5), and q̂2

 = 1 − P̂empty,

where P̂empty is a rank 1 projector onto the completely empty
state. One can do the same calculation near the right boundary,
for Sz

L+1− j , using the conservation of q̂r , which leads to the
lower bound 4/9L+1− j .

While this result is weaker than the one taking all the
q̂k into account (it decays exponentially, rather than alge-
braically, towards the bulk), it follows from much weaker
conditions. This implies that it is possible to add perturbations
to the Hamiltonian that destroy the strong fragmentation in the
bulk, but nevertheless lead to nonthermalizing dynamics at the

(a) (b)

FIG. 4. Bulk vs edge autocorrelations. Connected infinite tem-
perature autocorrelation function for the center site i = L/2 and at
the left boundary i = 1 for system sizes L = 11, 13, 15. (a) In the
t-Jz model (1), which conserves both bulk and boundary SLIOMs q̂k ,
the edge autocorrelator shows infinite coherence times while in the
bulk it decays to a value ∝ L−1/2, which is anomalously large but
vanishing in the thermodynamic limit. (b) Once the perturbation (12)
is added, SLIOMs in the bulk are broken and the bulk autocorrela-
tions decay to the value ∝ 1/L expected for thermalizing systems.
The boundary SLIOMs q̂
, q̂r , on the other hand, are still conserved,
leading to a finite long-time value for autocorrelations at the edge,
well approximated by the analytical lower bound (dashed horizontal
line).

edge. A simple example of such a perturbation is

Hpert =
L−2∑
i=2

ñi−1
(
Sx

i Sx
i+1 + Sy

i Sy
i+1

)
ñi+2, (12)

which allows spins to flip-flop, but only if both neighboring
sites are occupied by a fermion. Therefore this perturbation
no longer conserves the spin pattern, but it still commutes with
the two boundary SLIOMS, q̂
,r .

As a consequence, the bound (11), evaluated at the bound-
aries, applies to the perturbed Hamiltonian Ht-Jz + λHpert,
despite that it is now completely thermalizing in the bulk.
As shown in Fig. 4, the lower bound derived from Mazur’s
inequality appears to be tight for the boundary autocorrelation,
while the bulk autocorrelation in the perturbed system now
decays to an O(1/L) value, as expected for a thermalizing
system.

The appearance of infinitely long coherence times at the
boundaries is strongly reminiscent to the case of strong edge
modes previously discussed in the literature [53–58]. The
operators q̂
,r play the same role as the strong zero modes
(SZM), whose presence prevents boundary operators from
thermalizing. The differences are twofold: (i) our boundary
modes are only statistically localized, in the sense defined
above, unlike the usual SZM which are localized in an op-
erator sense. (ii) On the other hand, in our case q̂
,r commute
exactly with the Hamiltonian for arbitrary system sizes, unlike
the strong zero modes which only commute up to O(e−L )
corrections. One can find a comparison between SZMs and
boundary SLIOMs in Table II.

The fact that H = Ht-Jz + λHpert commutes with the two
edge mode operators means that it can be decomposed into
four blocks, according to the spin of the left- and rightmost
fermions, written formally as H = H↑↑ ⊕ H↓↓ ⊕ H↑↓ ⊕ H↓↑
(excluding the empty state). Eigenstates can therefore be
labeled by the left- and rightmost spins. In the presence of
additional symmetries, not commuting with q̂
 and q̂r , this
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TABLE II. Comparison between boundary SLIOMs and strong
zero modes (SZM). The SZM is a sum of string operators S (e.g.,
Jordan-Wigner strings), ending at distance n from the edge, with co-
efficient decaying exponentially with n. For the boundary SLIOMs,
on the other hand, localization appears upon taking the expectation
value in typical states with finite particles density. While SZM are
usually only conserved in the thermodynamic limit, the SLIOMs are
exact integrals of motion at any finite size L. The existence of an ad-

ditional symmetry, in this case Rx = ∏
j exp

(
iπ

Sx
j

2

)
, anticommuting

with the SLIOMs or edge modes, implies degeneracies throughout
the many-body spectrum. Majorana SZM square to 1, while in our
case q̂2


,r is 1 everywhere except in a particular one-dimensional
subspace (i.e., a state with no particles).

SZMs Boundary SLIOMs

degeneracies

with

for typical states

degeneracies

implies degeneracies in the energy spectrum at all energies,
just as in the case of usual strong edge modes. In particular,
Ht-Jz and Hpert are both invariant under flipping all spins

simultaneously, i.e., Rx = ∏
j exp

(
iπ

Sx
j

2

)
. This operator flips

the eigenvalues of both q̂
 and q̂r , and therefore interchanges
the blocks H↑↑ ↔ H↓↓ and H↑↓ ↔ H↓↑. This implies that the
spectrum is at least twofold degenerate everywhere; since the
Hamiltonian commutes with q̂
, q̂r, Rx at any finite size, this
degeneracy is exact.

Given the presence of such edge modes throughout the
entire spectrum, it is natural to ask whether the ground state
of Ht-Jz is in a topological phase. This is in fact not as obvious
as it might seem, for two reasons: firstly, the type of edge
mode operators we have discussed are known to also emerge
in symmetry-breaking phases10—indeed this happens in the
large Jz limit—and secondly, we have already noted that we
can essentially trivialize the bulk whilst preserving the edge
mode [with perturbations of the type in Eq. (12)], in which
case the ground state can be trivial in the bulk.11

Nevertheless, it turns out that the ground state is in a
topologically nontrivial phase. This is all the more intriguing
when one observes that the t-Jz model, as defined in Eq. (1), is
gapless for 0 < Jz < t (to wit, we consider Jz = t/4), whereas
(symmetry-protected) topological phases are usually gapped.
Recently, frameworks for gapless topological phases have
been introduced [87,88]. In fact, the ground state of the t-Jz

model appeared as a particular example of a (topologically

10One can think of the edge mode as measuring a spontaneous
boundary magnetization. In the absence of a bulk magnetization, this
implies symmetry protected topological phases. However, if the bulk
is magnetized, the edge magnetization is simply picking this up.

11This would mean that the edge mode is not stabilized by symme-
try alone but requires the boundary SLIOM.

nontrivial) symmetry-enriched critical point in Sec. VII A of
Ref. [88]; there it was discussed in the formulation as a spin-1
chain, with the Hamiltonian arising as the simplified version
of the gapless Haldane phase first introduced in Ref. [89] pro-
tected by Z2 × Z2. Interestingly, the topologically nontrivial
nature of the gapless t-Jz model was noted over two decades
ago in Ref. [61] in terms of a hidden antiferromagnetic
order, although the twofold ground state degeneracy was not
observed. As we have noted above, this twofold degeneracy
is exact in this case. The Z2 × Z2 symmetry group of the
spin-1 chain studied in Ref. [88], maps to the fermionic
parity and U = ∏

i Ui with Ui ≡ |0〉〈0| − |↑〉〈↓| − |↓〉〈↑| in
the fermionic formulation [89]. Our above definition of Rx

replaces this second Z2 by a Z4 symmetry group.
If we add an arbitrary12 perturbation (breaking the bulk

and edge SLIOMs) that preserves either of the above
symmetry groups, then this twofold degeneracy13 would
only persist at low energies and would acquire an expo-
nentially small finite-size splitting, per the arguments in
Refs. [87,88].

D. Experimental realization

Ultracold atoms in a shallow optical lattice that are opti-
cally dressed with a Rydberg state, realize a variant of the t-Jz

model of Eq. (1) [90,91]. The Hamiltonian of the Rydberg
system is given by

HRydberg = −t
∑
i,σ

(c̃i,σ c̃†i+1,σ + H.c.)

+
∑
i �= j

U0/8

1 + (ri j/Rc)6
|↑i ↑ j〉〈↑i ↑ j |. (13)

Here, the first term describes the hopping of the atoms, which
possess two internal states, |↓〉 and |↑〉, in a one-dimensional
optical lattice. The atoms can have either fermionic or bosonic
statistics, as for the latter a hard-core constraint is typically
enforced due to the strong Rydberg interactions. The interac-
tion potential is of strength U0 = �4/8|�|3 and has a cutoff at
Rc = 2�, where � is the Rabi frequency and � the detuning
from the Rydberg sate [92]. This potential can be adjusted
such that it effectively acts only on nearest-neighbor sites with
some strength Jz [91]. Since the two Hamiltonians only differ
by diagonal terms, our results for SLIOMs in the t-Jz model
(1) carry directly over to the Rydberg system.

Moreover, we can partially break the structure of the
SLIOMs in the bulk by engineering for the Rydberg system
a perturbation in the spirit of the one in (12). In particular,
when coupling the two internal states, |↓〉 and |↑〉, with a
global microwave of strength �mw � Jz that is blue detuned
by 2Jz from the atomic transition, an effective coupling of the
form

∑
i(|↑〉〈↑|)i−1Sx

i (|↑〉〈↑|)i+1 is generated in the rotating

12We note that the edge mode is stable against opening up a bulk
gap, as discussed in Ref. [88].

13If the perturbation drives us into a gapped symmetry-breaking
phase, the total degeneracy is twofold; if we are driven to a gapped
symmetry-protected topological phase, the degeneracy becomes
fourfold due to the finite correlation length decoupling the two edges.
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frame of the Rydberg interaction [93,94]. One can realize
this perturbation in addition to the Rydberg interaction, for
example by pulsing the microwave drive. This perturbation
does not preserve the total charge but nevertheless has an
effect similar to (12), destroying the SLIOMs in the bulk while
maintaining them at the boundary.

Note that the systems considered in this section are differ-
ent from those in Eqs. (1) and (12), in that they are not invari-

ant under the symmetry transformation Rx = ∏
j exp

(
iπ

Sx
j

2

)
.

Therefore, these models do not show the exact twofold de-
generacy of the spectrum previously discussed. Nevertheless,
they exhibit the same physical phenomena with respect to
thermalization as the ones discussed above.

III. DIPOLE-CONSERVING HAMILTONIAN H3

The example of the t-Jz model may seem somewhat trivial,
since the connected components of the Hilbert space can be
easily read off from the Hamiltonian. Here we show that the
same general concept of statistically localized integrals of
motion applies to a more complicated Hamiltonian [50]. How-
ever, we will also highlight some differences between the two
cases. In particular, while in the t-Jz model, the starting point
of the identification of sectors was related to the number of
fermions, a usual U(1) symmetry, in the case discussed below
the analogous quantity (the number of objects whose pattern is
conserved) is already nonlocal in terms of the physical degrees
of freedom. Moreover, while Ht-Jz only had partially localized
conserved quantities, the model we consider in the following
also exhibits SLIOMs that are statistically localized to finite
regions, leading to infinite coherence times even in the bulk.

The system we consider is a spin-1 chain, with a 3-site
Hamiltonian that, apart from the total Sz component Q =∑

j Sz
j (“charge”), also conserves its associated dipole mo-

ment, P ≡ ∑
j jSz

j . It reads

H3 = −
∑

j

S+
j−1(S−

j )2S+
j+1 + H.c. (14)

In the following, we will denote the three on-site eigen-
states of Sz

j by |+〉, |−〉, |0〉 (corresponding to eigenvalues
+1,−1, 0), and refer to them, respectively, as a positive
charge, a negative charge, and an empty site. In the following,
we take open boundary conditions. Such dipole-conserving
Hamiltonians appear as effective descriptions in a variety of
settings, such as fracton systems [49,95], the quantum Hall
effect [47,96–99], and for charged particles in a strong electric
field [32,33].

The Hamiltonian (14) was shown to be nonergodic [50],
due to the strong fragmentation of the Hilbert space in the
local Sz basis into exponentially many invariant subspaces of
many different sizes. However, finding a set of labels that
characterize these sectors was left open. Here we remedy
this, constructing a full set of conserved quantities which
completely characterize the block structure of H3 in the local
Sz basis. Moreover, we show that they follow the recipe of sta-
tistically localized operators outlined above, but have a much
richer structure than the t-Jz model described in the previous
section. This additional structure accounts for the fact that
H3 has a much broader distribution of the sizes of connected

(a)

(b)

FIG. 5. Mapping from spin-1 chain to bond spins and defects.
(a) A charge configuration with alternating signs can be mapped
to spin-1/2 variables on the bonds. (b) For a generic configuration,
one also has to introduce defects, living on sites, whenever a charge
would violate the rule of alternating signs. Note that defects with
neighboring bond spins pointing to the right (left) correspond to
positive (negative) charges in the original.

sectors and a localized behavior in the bulk in the form of
infinite autocorrelation times, a feature not present in Ht-Jz .

A. Mapping to bond spins and defects

In order to identify the structure of connected sectors, it
is useful to rewrite the dynamics in terms of a new set of
variables. These new variables consist of two different types
of degrees of freedom: spin-1/2 variables associated to the
bonds of the original chain—with corresponding Pauli opera-
tors denoted by σ

x,y,z
j, j+1 on the bond ( j, j + 1)—and hard-core

particles living on the sites, which we will refer to as defects.
To get a one-to-one mapping between basis states in the
original Sz

j basis and the new variables, we require the spins on
the two bonds surrounding a defect to be aligned. Introducing
the defect occupation number operator nd

j on site j, we can
write this requirement formally as σ z

j−1, jn
d
j |ψ〉 = σ z

j, j+1nd
j |ψ〉

for any physical state |ψ〉. With this constraint, the two Hilbert
spaces match up and we get a mapping between basis states in
the original Sz

j basis and the new variables, as we now explain.
In order to understand how the mapping works, let us

start considering those configurations of the original variables,
which obey the following rule: subsequent charges—ignoring
empty sites in-between—have alternating signs.14 We can
map a configuration of charges satisfying this rule to a con-
figuration of bond spins with the following convention: we
represent spins as pointing left (←) or right (→) and map
each (+) charge to a domain wall of type ←→, and each
(−) charge to a domain wall of type →←, as shown in the
example of Fig. 5(a). To account for all configurations, we
need to include two additional auxiliary bonds (L + 1 bonds
in total), at the left and right ends of the chain, whose spin
configuration is fixed by the sign of the left- and rightmost
charges respectively. A way of visualizing the mapping is to
think of the bond spins as an electric field, emanating from
positive charges and ending at negative charges, satisfying
Gauss’s law, σ z

j, j+1 − σ z
j−1, j = 2Sz

j , where the operator Sz
j

measures the on-site charge in the original (spin-1) variables.

14In other words, these are the set of states that have perfect
antiferromagnetic ordering after eliminating the intermediate empty
sites.
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The rule of alternating signs ensures that this prescription is
consistent within the spin-1/2 representation on the bonds.

The mapping to bond spins runs into a problem when there
are two subsequent charges with the same sign. To generalize
the mapping to these cases, we introduce extra defect degrees
of freedom on the sites, which keep track of those charges
that do not conform to the rule of alternating signs. To do this,
we sweep through the chain from left to right, putting spins
on the bonds in accordance with the previous rule. When, at
some position j, we encounter a charge that has the same sign
as the one preceding it, we fix the spin of the bond ( j, j + 1)
to coincide with preceding one, σ z

j, j+1 = σ z
j−1, j . At the same

time, in order to keep track of the charge, we place a defect on
the site j. This way we end up with a model with two types
of degrees of freedom: spins on the bonds and defects on the
sites. The resulting Hilbert space is 3L dimensional,15 since a
site combined with the bond on its right only have together
three possible configurations. An example of this mapping
with four defects is shown in Fig. 5(b).

It is important to note that while defects themselves do not
carry a sign, we can still distinguish whether they correspond
to positive or negative charges in the original variables by
looking at the spins surrounding them: a defect with neighbor-
ing spins pointing right is mapped to a positive charge, while
a defect with neighboring spins pointing left is mapped to a
negative charge. We refer to these as (+) and (−) defects, and
they correspond to eigenvalues ±1 of the operator nd

j σ
z
j, j+1 =

σ z
j−1, jn

d
j . The old and new degrees of freedom are related to

each other by the generalized Gauss’s law

1
2

(
σ z

j, j+1 − σ z
j−1, j

) = Sz
j − σ z

j−1, jn
d
j , (15)

which allows us to write the global charge and dipole moment
in terms of the new variables as

Q = 1

2

(
σ z

L,L+1 − σ z
0,1

) +
L∑

j=1

σ z
j−1, jn

d
j , (16)

P = −1

2

L−1∑
j=0

(
σ z

j, j+1 − σ z
L,L+1

) +
L∑

j=1

jσ z
j−1, jn

d
j . (17)

Notice that in the absence of defects, Q is set entirely by the
configuration of the bond spins on the boundaries, while P
maps onto the total magnetization (up to a constant), i.e., a
usual global U(1) internal symmetry.

The mapping we defined is clearly a nonlocal one. A
natural question to ask is: when is the resulting Hamiltonian
local in the new variables? In fact, the relevant property of H
that ensures this is the same as the one encountered above as a
necessary condition for statistically localized strong boundary
modes. Namely, we require the following condition: terms
of the Hamiltonian acting on a given region of space can
not change the sign of the left- and rightmost charges within
this region. Indeed, it was already noted in Ref. [50] that H3

satisfies this property. Consequently, H3 also conserves q̂
,r

15There is some ambiguity regarding the completely empty state:
by convention we choose it to correspond to a state with all bond
spins pointing right and no defects.

and therefore exhibits strong boundary modes. We return to
this point below.

B. Labeling of connected sectors

Armed with this mapping, we can now identify the in-
tegrals of motion that label the fragmented Hilbert space,
and show how they fit into the general notion of statistically
localized operators discussed above.

1. Pattern of defects

We start by noting that the Hamiltonian in Eq. (14) does
not contain any terms that could create or destroy defects:
the number of defects, Nd ≡ ∑

j nd
j , is conserved. This can

be confirmed explicitly by considering the effect of local
terms in H3. Thus the number of defects acts as an emergent
U(1) symmetry (different from the original U(1) symmetry of
charge conservation), emergent in the sense that it is nonlocal
in the original variables and only becomes local after the
mapping outlined above. One can use the operators q̂k , defined
for the physical variables in Eq. (4), to express the number of
defects as

Nd = 1

2

L∑
k=1

(q̂k+1)2(1 + q̂k q̂k+1). (18)

This further emphasizes the nonlocal nature of the defects.
In fact, the Hamiltonian H3 conserves not only the total

number of defects, but also the pattern of their signs (similarly
to how Ht-Jz conserved not just the number of fermions, but
also the spin orientation of each fermion). For example, the
state shown in Fig. 5(b), with (from left to right) a (−) defect
followed by three (+) defects, can only go to configurations
with the same pattern. Thus we see that the mechanism behind
the fragmented Hilbert space is analogous in the two cases,
except that for H3 it originates from a ‘hidden’, rather than
explicit, U(1) symmetry.

The pattern of defects can be characterized by eigenval-
ues of statistically localized operators, similar to the ones
discussed above in the case of the t-Jz model. In fact, after
mapping to bond spins and defects, one can directly use the
same set of operators to label the defect patterns, as defined in
Eq. (4), by replacing Sz

j with the local defect charge operator

σ z
j−1, jn

d
j and P̂k

j with a projector onto configurations with∑
i< j nd

i = k − 1 and nd
j = 1. In the original variables, these

are rather complicated nonlocal operators. Nevertheless, a
Haar random state in the thermodynamic limit will have a
finite density of defects, νd ≡ 〈Nd〉/L = 1

3 (see Appendix B).
Indeed, since for large L the variance is once again ex-
ponentially suppressed (EHaar[〈nd

j 〉2] − EHaar[〈nd
j 〉]2 ∝ 3−L),

almost all states have a similar defect density. For such states,
one could repeat the argument in Sec. II B to argue that
the probability distribution of finding the kth defect on site
j is peaked around a position j = k/νd , with a width that
scales as

√
k. Similarly, a random state with a fixed total

charge Q will also have a finite νd and therefore leads to a
partially localized probability distribution. Thus the operators
that label the defect patterns and the corresponding Hilbert
space sectors of H3 are statistically localized in the sense we
defined previously.
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FIG. 6. Hopping of defects. To maintain the constraints, when a
defect hops it has to flip a bond spin to its right, making its dynamics
asymmetrical. In the original variables, this process is equivalent to
emitting/absorbing a dipole from the right.

We conclude this section by noting that apart from the
charges of each defect, H3 also conserves the sign of the
leftmost and rightmost physical charges, as measured by the
operator q̂
 and q̂r defined in Eqs. (9) and (10), respectively (as
mentioned above, this condition is in fact necessary to ensure
that the Hamiltonian remains local after mapping to the new
variables). This implies that our conclusions about the lack of
thermalization at the boundary, and about exact degeneracies
in the spectrum, discussed in Sec. II C 2 for the t-Jz model,
apply also to H3. However, H3 is different from Ht-Jz , in that it
shows fully localized behavior also in the bulk. To understand
the reason for this, we now turn to a further set of conserved
quantities possessed by H3.

2. Dipole moment of dynamical disconnected regions

While the conservation of the pattern of defect charges
is sufficient to fragment the Hilbert space into exponentially
many disconnected sectors, it does not account for all the
sectors of H3. The conservation of the signs of defects (which
are in fact a subset of the conserved quantities exhibited by
Ht-Jz ) is also insufficient to explain the localized behavior
(i.e., infinitely long-lived autocorrelations) occurring in the
bulk, which was observed previously [50]. As we now argue,
this rich nonergodic dynamics originates from an interplay
between the SLIOMs discussed in the previous section (that
is, the pattern of defects), and the conservation of the total
dipole moment. Thus, while on their own neither of those in-
gredients leads to fully localized behavior, their combination
is sufficient to make H3 localized.

The fact that dipole conservation leads to further discon-
nected sectors can already be seen in the case of states with
no defects, Nd = 0. As seen from Eqs. (16) and (17), the zero
defect sector with a given boundary condition (and thus fixed
total charge Q = 0,±1) further splits up into sectors accord-
ing to the total magnetization of the bond spins,

∑
j σ

z
j, j+1,

which in this case is equal to the dipole moment P up to a
constant shift.

When defects are present, they also carry a dipole moment,
as shown by Eq. (17). Dipole conservation then puts further
constraints on the ways in which defects are allowed to move
in the system: whenever a defect hops to a neighboring site,
this has to be accompanied by a spin flip, in order to ensure
that the overall dipole is conserved, e.g., |→ → • →〉 ⇔
|→• →←〉. This corresponds to the fact that in the original
variables, charges can only hop by emitting dipoles, as illus-
trated in Fig. 6. However, due to the asymmetric definition of
the defect—same charge as the nearest on its left—its hopping
only modifies the configuration on bonds that are to its right.
This is the same as saying that defects can only emit (absorb)

[ [[[[[[
FIG. 7. Labeling of connected sectors in the original variables.

Charges that have the same sign as the ones to their left (circled)
correspond to defects, whose total number (Nd ) and pattern is
conserved by the Hamiltonian H3. Moreover, the dipole moment P̂k

within each region between two subsequent defects (including the
defect on the left but not the one on the right, as indicated by the
brackets) is also independently conserved, such that the total dipole

becomes P = ∑Nd

k=0 P̂k .

dipoles to (from) their right and never from their left. Thus,
for every defect the total dipole moment of charges to its right
(including the defect itself) is conserved. This implies that the
dipole to the left of the defect (not counting the defect) is also
separately conserved.

We thus find that each defect gives rise to an additional
conserved quantity. Equivalently, we could take a configura-
tion with Nd defects, which separate the chain into Nd + 1
regions, and associate a conserved dipole moment to each of
these regions. In assigning the dipole moment P̂k to the region
between defects k and k + 1, one should include the kth defect
(at the left boundary) but not the (k + 1)th on its right (e.g.,
| · · · [• → · · · ←)[• ← · · · 〉). The total dipole moment then
becomes16 P = ∑Nd

k=0 P̂k , where k labels a region separated
by defects, each with its own conserved dipole moment P̂k .17

This is shown in Fig. 7 in terms of the original spin-1 degrees
of freedom.

Note that, while the position of the kth defect in the bulk
has fluctuations that grow with system size as ∝ √

L (much
like the case of the kth charge in the t-Jz model before), the
average distance between neighboring defects remains finite
in the thermodynamic limit for states with a finite defect
density νd . We can make this point more explicit, by defining
the operator that measures P̂k as

P̂k =
∑

i j

Q̂k
i jPi j, (19)

where Q̂k
i j is a projector onto configurations where the kth

defect sits on site i and the (k + 1)th defect is on site j,
while Pi j measures the dipole moment in the region [i, j − 1]
(including the former but not the latter defect). Given Eq. (19),
we can go to center of mass and relative coordinates: while the
expectation value 〈Q̂k

i j〉, as a probability distribution, is only

partially localized in i+ j
2 , it is exponentially localized in the

relative coordinate, decaying as (1 − νd )−( j−i). In this sense,
P̂k is statistically localized to a finite region (see Appendix A
for more details on the definition of SLIOMs appropriate
to this case). As we show in the next section, he existence

16By definition, P̂0 corresponds to the dipole moment between the
left boundary of the chain and the first defect; while P̂Nd corresponds
to the dipole moment between the last defect and the right boundary.

17Note that, while the total charge Q̂k in each region is also
conserved, this does not give rise to new independent constants of
motion, since the value of these charges are already fixed by the
pattern of defects.
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of these additional conserved quantities additional dynamical
constraints on the mobility of defect configurations. These
constraints, together with the statistical localization of P̂k ,
account for the fact that H3 has infinite coherence times
for charge autocorrelations in the bulk, (as well as a broad
distribution of entanglement in energy eigenstates, which we
discuss in Sec. III C), as previously observed in Refs. [50,51].

To summarize, let us compare the conservation laws of H3

with those of the t-Jz model discussed above. In the latter
case, we had a conserved number of fermions, each of which
carries a spin-1/2 whose Sz components are all separately
conserved—defining what we have named the pattern of spins.
H3 is different for two reasons. First, the objects, whose
pattern is conserved are the defects, which are nonlocal in
the original variables. Furthermore, H3 has an additional set
of conserved quantities {P̂k}Nd

k=0, arising due to the interplay
between dipole conservation and the defect pattern: all the
spatial regions separated by defects have separately conserved
dipole moments. Altogether, we have identified the following
set of conserved quantities for H3: the total charge Q and
dipole P, the left- and rightmost charges q̂
,r , the number of
defects Nd , the charge of each defect {Qk = ±1}Nd

k=1 and the
dipole moment of regions between defects, {P̂k}Nd

k=0. We have
numerically confirmed that these integrals of motion together
uniquely label all the connected sectors of H3 in the local Sz

basis. Since a dipole-conserving random circuit of three-site
gates has the same [50] fragmentation of the Hilbert space
as H3, it consequently also conserves all of the quantities
identified above.

C. Implications for dynamics

In the previous section, we saw how the conserved
quantities of H3 fit into the scheme of SLIOMs (see also
Appendix A). However, their precise nature is different from
the simpler case of the t-Jz model discussed in Sec. II. As
mentioned above, this difference is responsible for the fact
that, despite both being strongly fragmented, the two models
exhibit rather different dynamics in their bulk: H3 has infinite
correlation times [50,51], unlike Ht-Jz . Here we explain how
the SLIOMs constructed in the previous section bring about
localized dynamics, highlighting the role played by the dipole
moments P̂k .

1. Charge localization

To see how the conservation laws lead to localized behav-
ior, consider a configuration where there are two subsequent
defects with a + charge, at sites i and j > i. By the definition
of defects, the region [i + 1, j − 1] between them has 0 total
charge and a dipole moment p � 0. As long as the position
i is fixed, p is conserved. This dipole cannot be compressed
to a region of less than p sites, forcing the position of the
second defect to obey j > i + p. However, the right-hand side
of this inequality is in fact one of the conserved quantities
P̂k , and therefore time-independent.18 Therefore the position

18Note that the condition of having zero total charge in the middle
region is important, as it allows us to always shift the reference frame
and measure p from the position i.

j of the second defect can never cross this particular location
and remains restricted to half of the chain. Similarly, since
p � 0 at all times, and i + p is conserved, we have that the
left defect can move at most p sites to the right. Clearly, the
same argument applies to a pair of (−) defects.19

Let us now consider a defect somewhere in the bulk of the
chain for a typical configuration in the z basis. How far can
it travel to the left? If the nearest defect to its left is of the
same sign, it constrains its motion by the above argument.
More generally, consider the closest pair of subsequent equal
sign defects on the left; due to the hard-core constraint, these
restrict the motion of all defects to their right, including the
original one. Therefore the only way for a given defect to
travel a distance 
 to the left is if all the defects originally
within this region have an exactly alternating sign pattern.
However, the relative number of such configurations scales
as e−γ 
 for some constant 0 < γ < 1, and therefore, with
probability 1 in the thermodynamic limit, 
 cannot be larger
than O(1). The same argument applies to traveling to the right,
which shows that almost all defects are localized to finite
regions.20

Consider now the infinite temperature charge autocorrela-
tor. We can expand it in terms of product states |s〉 = ⊗

i |si〉
in the original variables (i.e., si = +,−, 0) as

〈
Sz

j (t )Sz
j

〉
β=0

= 1

3L

⎡
⎣ ∑

s
s j = +

〈s(t )|Sz
j |s(t )〉 −

∑
s

s j = −
〈s(t )|Sz

j |s(t )〉
⎤
⎦. (20)

In half of the cases, the initial + charge on site j is a defect. In
that case, as the above argument shows, it is almost surely
restricted to live in a final spatial region with an overall
charge of +1, thus yielding a positive contribution to the
autocorrelator. If the size of the region is 
, the contribution
is expected to be O(1/
), and in the thermodynamic limit,
their sum gives

∑∞

=1 e−γ 
/
 = − ln(1 − e−γ ) > 0. There is

another equal contribution stemming from the (−) defects.
This shows that the SLIOMs lead to charge localization even
at infinite temperature.21

2. Entanglement growth

Another signature of localized behavior in H3 is the nu-
merical observation [50,51] that the entanglement entropy of
the long-time steady state is subthermal, even for an initial
random product state that is not in the z basis and therefore
has weight in all the connected sectors. In Ref. [51], it was
argued that this saturation value is determined by the size
of the largest sector, and therefore should scale as L

2 ln(2)

19For two defects with opposite signs, one gets a weaker constraint
j − i > Pk + 1, i.e., a lower bound on their distance.

20Note that one could also define defects starting from the right,
rather than the left, edge of the chain. These could be used to further
constrain the possible transitions.

21One could attempt to derive the same result by applying Mazur’s
inequality, using all the diagonal conserved quantities of H3.
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for H3, which is consistent with the numerical results (see
Appendix F).

However, the block structure of the Hamiltonian itself does
not put any constraints of the amount of entanglement it can
generate. In particular, even a unitary made up entirely by
random diagonal phases in the z basis can generate the same
amount of entanglement as a Haar random unitary, when ap-
plied to a state that is an equal weight superposition of all basis
states22 [100]. This point is also illustrated by considering the
t-Jz model. In that case, even though the dimension of the
largest connected component is only 2L, for an initial (Haar)
random product state, the von Neumann entropy saturates to a
value much larger than L

2 ln(2), as we show in Appendix F.
These examples show that, in order to explain the sub-

thermal entropy exhibited by H3, one has to combine the
knowledge of the conserved quantities with considerations of
spatial locality. Indeed, going back to the completely diagonal
case, if we restrict ourselves to local terms of range at most 
,
the amount of entropy they can produce is upper bounded by
(
 − 1) ln d (where d is the on-site Hilbert space dimension).
In a similar manner, it appears that combining all the con-
servation laws of H3 with the restriction of spatial locality is
sufficient to prevent the state from reaching maximal entropy
density. Since we saw that the conserved dipole moments
P̂k are largely responsible for the localization of the charge
degrees of freedom, it is expected that they are responsible for
constraining entanglement growth.

The fact that the conservation laws severely restrict entan-
glement can be easily seen in the case of evolving from an
initial product state in the z basis with H3. Such a state has a
well defined quantum number for all SLIOMs. Consequently,
the reduced density matrix of a bipartition can be block diag-
onalized by e.g., the number of defects on one side. As noted
in Sec. III B, for a randomly chosen z-product state, which has
a finite density of defects, the movement of almost all defects
will be restricted to O(1) regions due to the conservation laws.
Therefore, a particular entanglement cut can only be crossed
by a small subset of defects, and consequently many of its
blocks, will be identically zero. Furthermore, each block with
k defects to the left of the cut can be further decomposed into
smaller blocks using the conserved dipole moment P̂k (see
Fig. 8). Since the kth defect can only travel a finite distance to
the left, it can only emit a finite number of dipoles, such that
the reduced density matrix for most initial configurations is
restricted to a few blocks of size O(1). Consequently, it only
has a finite number of nonvanishing eigenvalues, limiting its
entanglement to an area law. The same argument explains the
broad distribution of entanglement entropies observed for the
eigenstates of H3 [50,51].

The above discussion shows that the structure of SLIOMs
we uncovered gives serious restrictions for entanglement
growth for initial states in the z bases. We expect the same
mechanism to be responsible also for the subthermal satura-
tion value for completely random product states.

22TR thanks András Gilyén for a very useful discussion on this
topic.

FIG. 8. Entanglement growth for H3. The saturation value of
the half-chain entanglement at long times for the dipole-conserving
Hamiltonian H3 [Eq. (14)] for initial product states in the Sz basis
can be understood from the emergent conservation of the number
of defects Nd , along with the SLIOMs P̂k introduced in Sec. III B 2.
The former implies a block-diagonal structure of the reduced density
matrix ρA on region A (chosen to be half the chain), of the form
ρA = ⊕Nd

Nd
A =0

ρA(Nd
A ). However, due to the kinetic constraints on the

mobility of defects (see main text), only a few of these blocks are
nonvanishing, those where Nd

A is close to its value in the initial
state. The additional conservation of dipole moment within a region
between defects {P̂k} further block diagonalizes ρA(Nd

A ), most of
which are again zero.

D. Largest sectors and SPT order

A particular corollary of the discussion in Sec. III B is that
increasing the number of defects decreases the connectivity
of the Hilbert space, since each new defect leads to a further
conservation law (the associated dipole moment), which one
needs to fix in order to specify a sector. Indeed, one can check
numerically that the largest connected sectors all have zero
defects. Moreover, we confirm numerically that the overall
ground state of H3 (which is fourfold degenerate, as we
discuss below) also belongs to these four largest sectors.
Motivated by this, we now turn our attention to the subspace
with no defects.

In fact, H3 takes a particularly simple form within this sub-
space. Since there are no defects, the only degrees of freedom
are the bond spin-1/2s, which can take any configuration.
As one can check by considering each local term, H3 simply
becomes

H3|Nd =0 = −2
L−1∑
j=2

(
σ x

j−1, jσ
x
j, j+1 + σ

y
j−1, jσ

y
j, j+1

)
, (21)

i.e., a spin-1/2 XY model on a chain of length L − 1 (note
that the two auxiliary spins, σ z

0,1 and σ z
L,L+1 do not appear

in the Hamiltonian), exactly solvable via a Jordan-Wigner
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transformation to free fermions.23 This Hamiltonian con-
serves Ztot ≡ ∑

j σ
z
j, j+1, equal to the dipole moment in the

original model, with the largest symmetry sector being the one
with half-filling (Ztot = 0).24 The ground state of this model
is gapless due to the presence of Fermi points and has an
effective low energy Luttinger liquid description. We confirm
that this is also the ground state of H3 overall, by finding the
ground state in DMRG and comparing its energy with that of
the ground state of the XY chain at half filling, finding perfect
agreement.

However, this is not the full story. As mentioned above, the
ground state has a fourfold degeneracy. In fact, this is true for
all eigenstates within the zero defect sector: as seen above,
this sector consists of four equivalent XY chains with four
different boundary conditions. These corresponds to the four
possible choices of the leftmost and rightmost charge in the
system, which are conserved under H3. Moreover, we find
numerically that even eigenstates with defects are fourfold
degenerate throughout the entire spectrum. This degeneracy
is due to zero modes at the boundaries of an open chain, and
is not present with periodic boundary conditions.25 Neverthe-
less, the exact fourfold degeneracy is specific to H3 and can
be lifted to a twofold degeneracy by adding perturbations,
diagonal in the Sz basis, which preserve the block structure
of H3. The twofold degeneracy, on the other hand, is robust as
long as we preserve the spin rotation symmetry Rx = eiπ

∑
j Sx

j

and the signs of the left- and rightmost charges, analogously
to the case of the t-Jz model discussed before.

The strong zero modes at the boundary appear concur-
rently with symmetry protected topological (SPT) order in
the bulk, for all eigenstates inside the no defect subspace.
This can be seen by considering the string order param-
eter, 〈Sz

i eiπ
∑ j−1

l=i+1 Sz
l Sz

j〉. This measures the “hidden antifer-
romagnetic order” of the Haldane phase, which becomes
apparent after dropping all the empty sites. States with no
defects have such a hidden AFM order by construction.
More formally, acting on states without defects, the string
factorizes due to the Gauss’s law (15) as eiπ

∑ j−1
l=i+1 Sz

l →
σ z

i,i+1 σ z
j−1, j , an explicit example of symmetry fractionaliza-

tion. Consequently, the string order parameter simplifies to
〈(1 − σ z

i−1,iσ
z
i,i+1)(σ z

j−1, jσ
z
j, j+1 − 1)〉/4. In the limit | j − i| →

∞, this factorizes into the product of local expectation values.
Now, the expectation value 〈1 − σ z

i−1,iσ
z
i,i+1〉 is nonzero for

any translation invariant state, except for a completely spin
polarized one (i.e. the empty state in the original variables).

23One could the same mapping for the t-Jz Hamiltonian;
in particular, for Jz = 0, one finds that Ht-Jz |Nd =0 ∝ ∑L−1

j=1

(σ x
j, j+1 − σ z

j−1, jσ
x
j, j+1σ

z
j+1, j+2). This Hamiltonian describes a critical

point between the 1D cluster phase and a trivial paramagnet, which
is another way of seeing that Ht-Jz is gapless (as one can confirm
numerically, its ground state is indeed in the Nd = 0 sector).

24The dimension of the largest connected sector is therefore (as-
suming an odd number of sites)

( L−1
(L−1)/2

)
, scaling asymptotically as

∝ 2L up to logarithmic corrections. This confirms earlier numerical
results [50,51].

25H3 still has a significant amount of degeneracies with PBC, but it
also has nondegenerate eigenvalues.

Therefore all eigenstates with Nd = 0, except for the com-
pletely empty state, have (symmetry protected) topological
order.26 This is reminiscent to the appearance of topological
order in excited states of MBL systems [59,60].

Relatedly, the ground state of H3 is a gapless topological
phase [88], similarly to the case of Ht-Jz discussed before.
The separation of degrees of freedom into bond spins and
defects provides a simple interpretation of this: while the
former are gapless, the latter are gapped and are responsible
for protecting the SPT order in the ground state. This latter
fact can be seen by noting that the symmetry Rz ≡ eiπ

∑
i Sz

i of
the Hamiltonian becomes (in the full Hilbert space, including
defects) Rz = σ z

0,1eiπ
∑

i nd
i σ z

L,L+1. This is therefore a gapped
symmetry in the nomenclature of Ref. [88], in the sense that
operators charged under this symmetry in the bulk necessarily
create gapped excitations (in this case, defects). The coexis-
tence of gapless bulk with these additional gapped degrees
of freedom ensures the twofold degeneracy of the ground
state, up to an exponentially small finite size splitting [87,88].
In this particular model, due to the boundary SLIOMs, this
degeneracy is exact (and present throughout the spectrum).
Perturbations, which destroy the SLIOMs but preserve the
Z2 × Z2 symmetry of π rotations will keep the twofold de-
generacy at low energies, now exhibiting the aforementioned
exponentially small finite-size splitting.

IV. SUMMARY AND OUTLOOK

In this work, we explicitly constructed integrals of motion
for two models that exhibit the phenomenon of strong Hilbert
space fragmentation, including a complete description of the
Hamiltonian H3 introduced in Ref. [50]. These integrals of
motion label the different disconnected sectors of the many-
body Hilbert space, playing a role analogous to local integrals
of motion in many-body localized systems. They are domi-
nated by contributions from a subextensive region in space,
but in such a way that the location and width of this region
can be tuned by, for example, changing the average filling
fraction in the system. This lead us to term these observables
statistically localized.

These statistically localized integrals of motion (SLIOMs)
lead to a breakdown of eigenstate thermalization in both
models we study. However, their effect on autocorrelations in
the bulk depends on the nature of their distribution, which
leads to different behavior for the two models. In the t-Jz

model (which we argued can be realized in Rydberg atom
experiments), all SLIOMs in the bulk are localized to regions
of size O(

√
L). As a result, autocorrelations saturate to values

O(1/
√

L), which are anomalously large compared to generic
thermalizing systems, but nevertheless vanish as L → ∞. For
the dipole-conserving Hamiltonian H3, on the other hand,
some of the bulk conserved quantities are effectively localized

26In principle, the nonvanishing string order parameter is also com-
patible with the symmetry being spontaneously broken. However, in
our case, within the zero defects sector the symmetry acts trivially
in the bulk and thus we associate the presence of string order with a
symmetry protected topological state.
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to O(1) regions and lead to finite autocorrelations even in the
thermodynamic limit.

SLIOMs near the boundary, on the other hand, are lo-
calized to finite regions and lead to infinitely long coher-
ence times for both models. We showed that these bound-
ary SLIOMs can survive certain perturbations that destroy
the strong fragmentation in the bulk, defining a statistically
localized analog of strong zero modes, where a thermalizing
bulk co-exists with an explicitly nonergodic boundary. We
also analyzed the relationship between these zero modes and
the ground states of the two models, which exhibit symmetry
protected topological order, despite being gapless.

Several questions remain to be explored. Dipole-
conserving spin-1/2 chains with 4-site terms show similar be-
havior as H3, and therefore one can expect that it is possible to
construct analogous SLIOMs in that case. On the other hand,
it is unclear whether the scheme presented here could be used
to find the conserved quantities relevant for longer-range gen-
eralizations of H3 (which exhibit weak fragmentation [50]).
Even within the subset of strongly fragmented models (i.e.,
with the largest symmetry sector being a vanishing fraction of
the full Hilbert space), qualitatively very different behaviors
can arise, as the two examples in our paper demonstrate.
Therefore it would be interesting to develop a more quanti-
tative understanding of different ‘degrees’ of fragmentation,
as these have clear effects on the spreading of correlations.
The structure of conservation laws we uncovered could also
be useful for understanding the dynamics of entanglement and
operator growth in these systems.

Another direction is to explore the stability of the boundary
SLIOMs to additional perturbations, i.e., whether they can
still lead to unusually long coherence times even when they
are not explicitly conserved. More generally, it would be
interesting to investigate the role SLIOMs play in a many
body localized phase [36,101], both at the boundary and in
the bulk. In fact, our construction of SLIOMs for the t-Jz

model also applies to the fragmented Hilbert space studied
in Ref. [101], after mapping the onsite fermionic to spin
degrees of freedom for open boundary conditions. In fact, we
expect that this construction holds for certain strong-coupling
expansions of 1D Hamiltonians. It would also be interesting
to look for other models exhibiting SLIOMs, either at their
boundary or in their bulk.
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APPENDIX A: MORE REFINED DEFINITION OF SLIOMS

While in Sec. II B we gave a definition of SLIOMs, suf-
ficient for the t-Jz Hamiltonian, it is worthwhile to elaborate
further on the structure of the SLIOMs we encountered in this
work and how precisely localization appears for them.

In the case discussed in Sec. II B, a very useful property
was that the terms appearing in the definitions of the SLIOMs
q̂k squared to projectors Ok

i
†Ok

i = P̂k
i [using the convention in

Eq. (2)]. These projectors were then used to define the spatial
distribution over i that we analyzed in the main text. However,
one could consider a slightly more general version of the t-Jz

model, where the fermions carry a higher spin, S > 1/2. In
that case, (Sz

i )2 is no longer equal to the projector ñi, and the
interpretation becomes less clear.

In this more general case, we can still use the definition of
q̂k introduced in the main text:

q̂k =
∑

i

P̂k
i Sz

i . (A1)

Note that the conserved quantity splits up into a projector (P̂k
i )

onto certain configurations and an associated “charge” (Sz
i ),

and that in our discussion of the statistical localization it was
in fact only the projector part that played a role. Note that this
is analogous to the structure we observed for the local dipole
moments defined for the Hamiltonian H3 in Eq. (19), i.e., a
sum of projectors multiplied by an associated “charge” (in that
case, the dipole moment between two subsequent defects).
In both cases, the statistical localization is a property of the
projectors, rather than the charges.

This suggests the following general definition of SLIOMs
that encompasses all the cases encountered in our manuscript:

q̂ =
∑

i1,i2,...,in

Q̂i1i2...inCi1i2...in . (A2)

Here, Q̂i1i2...in is a projection onto configurations where the
sites i1, . . . , in are occupied by a particular combination of
particles, while Ci1i2...in is some charge (in the cases we con-
sider, usually an integer) associated to this configuration. One
can then consider the distribution of the expectation value
(in some appropriately chosen ensemble of typical states)
〈Q̂i1i2...in〉. This is now a distribution on [1, L]n (where we have
assumed a 1D system) and one can examine how it is localized
on this potentially larger dimensional space.

The t-Jz model with arbitrary spin corresponds (for a given
fermion indexed by k) to the choice n = 1, Q̂i = P̂k

i and Ci =
Sz

i . The sign of a defect in H3 again corresponds to taking n =
1, but now with Q̂i a projector onto having the kth defect on
site i and again Ci = Sz

i (in the original spin-1 language). Both
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of these cases are partially localized, to regions of size O(
√

L),
in the single coordinate i. The localized dipole moments, on
the other hand, correspond to n = 2, with Q̂i j projecting onto
configurations with a pair of defects on sites i, j with no other
defect in-between. The expectation value 〈Q̂i j〉 in this case
is exponentially localized in the relative coordinate j − i as
discussed in the main text. The associated charge is now the
dipole moment Ci j = Pi j ≡ ∑ j−1


=i 
Sz

.

This general definition also allows us to talk about con-
served quantities for the t-Jz model with periodic boundaries
(see also Appendix E), even though in this case they are
no longer localized. With periodic boundaries, we no longer
have a way of labeling fermions individually (e.g., the first
fermion can become the last by traveling around the bound-
ary). Nevertheless, we still have a conservation of the total
spin pattern and could use the general form (A2) with n = NF

to define conserved quantities accociated to this. Let us take
Q̂i1...iNF

to be the projector onto states where the NF fermions
occupy the sites i1, . . . , iNF and let σ be a cyclic permutation
of the indices i1, i2, . . . , iNF . Then the following choices all
correspond to conserved quantities:

C(1)
i1...iNF

=
∑

σ

Sz
σ (i1 ),

C(2)
i1...iNF

=
∑

σ

Sz
σ (i1 )S

z
σ (i2 ),

C(3)
i1...iNF

=
∑

σ

Sz
σ (i1 )S

z
σ (i2 )S

z
σ (i3 ),

...

C(NF )
i1...iNF

=
∑

σ

Sz
σ (i1 )S

z
σ (i2 )S

z
σ (i3 ) . . . Sz

σ (iNF ).

C(1) is just the total magnetization Sz
i1

+ · · · + Sz
iNF

. C(2) mea-
sures the AFM ordering of the spins in squeezed space, etc.
Note that they are not all independent, for example, C(NF ),
which measures the overall spin-parity, is completely deter-
mined by C(1).

Nevertheless, while one can write conserved quantities for
the periodic case, they are qualitatively very different from
the SLIOMs of the open chain. The main difference is that in
this case, with periodic boundaries, the conserved quantities
do not factorize into products of 1-particle charges (SLIOMs
with n = 1). Instead, for a typical state, they involve a sum
over all extensively many particles, and thus any notion of
localization is lost.

APPENDIX B: AVERAGING OVER ENSEMBLES
OF RANDOM STATES

Here we briefly summarize the relevant formulas for aver-
aging over both Haar random states, as well as random states
restricted to a fixed U(1) symmetry sector.

1. Haar average and variance

A Haar random state |ψ〉 can be written as |ψ〉 = U |0〉 =∑
i Uα0|α〉, where U is a unitary matrix chosen from the Haar

ensemble and |0〉 is an arbitrary basis element from a complete
orthonormal basis {|α〉}. The average of an an observable Ô is

then

EHaar[〈ψ |Ô|ψ〉] =
∑
α,β

OαβEHaar[U
∗
α0Uβ0] = tr(Ô)

D
, (B1)

where D is the Hilbert space dimension and we have used the
fact that

EHaar[U
∗
α0Uβ0] = δαβ

D
. (B2)

To get the variance over the Haar distribution, we are going
to need to average over higher moments of the unitary U . In
particular, we have to evaluate

EHaar[〈ψ |Ô|ψ〉2]=
∑
αβμν

OαβOμνEHaar[U
∗
α0Uβ0U

∗
μ0Uν0], (B3)

which is given by the formula

EHaar[U
∗
α0Uβ0U

∗
μ0Uν0] = δαβδμν + δανδβμ

D(D + 1)
. (B4)

Using this, one find that the variance is

EHaar[〈ψ |Ô|ψ〉2] − EHaar[〈ψ |Ô|ψ〉]2

= 1

D + 1

[
tr(Ô2)

D
−

(
tr(Ô)

D

)2]
. (B5)

The particular cases we considered in the main text corre-
spond to projection operators, Ô2 = Ô. In this case, defining
the probability p = tr(Ô)/D we get

EHaar[〈ψ |Ô|ψ〉2] − EHaar[〈ψ |Ô|ψ〉]2 = p − p2

D + 1
, (B6)

which is suppressed by a factor of D compared to p itself.

2. Fixed U(1) symmetry sectors

In order to consider random states with a fixed eigenvalue
under some U(1) symmetry, we should to consider a unitary
U that commutes with the symmetry operator. That is, we take
U to be block diagonal in the symmetry basis, with each block
an independent Haar random unitary. In this case, we can
average over the block separately. Denoting the U(1) quantum
numbers by N , we then get a generalization of the previous
formula,

EU(1)[U
∗
αα′Uββ ′ ] =

∑
N

P(N )
αβ P(N )

α′β ′

DN
, (B7)

where P(N ) is a projector onto the symmetry sector with N and
DN ≡ tr(P(N ) ) is the corresponding dimension.

The ensemble of random states is defined by |ψ〉 = U |0〉
where the basis state |0〉 is chosen to have a fixed quantum
number N . This picks out a single projector from the above
sum to give

EU(1)[〈ψ |Ô|ψ〉] = tr(ÔP(N ) )

DN
. (B8)

In the cases we consider, Ô and P(N ) are both diagonal pro-
jectors in the same local product basis. tr(ÔP(N ) ) is therefore
simply given by counting the number of configurations that
are in the intersection, satisfying both Ô = 1 and P(N ) = 1.
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In an analogous manner, one could calculate variances over
this ensemble. The result is the same as for the Haar random
case, but with D → DN and the δ functions in Eq. (B4) re-
placed by matrix elements of P(N ). Consequently, the variance
becomes

EU(1)[〈ψ |Ô|ψ〉2] − EHaar[〈ψ |Ô|ψ〉]2

= 1

DN + 1

[
tr(ÔP(N )ÔP(N ) )

DN
−

(
tr(ÔP(N ) )

DN

)2]
. (B9)

As mentioned above, we are interested in cases where Ô
and P(N ) are both projectors, diagonal in the same basis.
Therefore ÔP(N ) is also a projector, ÔP(N )ÔP(N ) = ÔP(N ),
and the variance is now suppressed by a factor of DN + 1,
still exponentially large in system size for typical symmetry
sectors.

3. Computation of the average number of defects

As an application, in this section we compute the average
filling fraction of defects 〈νd〉. To do so, let us compute
EHaar[〈ψ |Nd |ψ〉] appearing in Eq. (18). Using Eq. (B1) we
find that

EHaar[〈ψ |Nd |ψ〉] = 1

2

L∑
k=1

tr[(q̂k+1)2(1 + q̂k q̂k+1)]

3L
. (B10)

Now we split the computation in two steps. First, let us
compute each of the terms individually:

1

3L
tr[(q̂k+1)2] = 1

3L

∑
i, j

tr
[
P̂k+1

i P̂k+1
j Sz

i Sz
j

]

= 1

3L

∑
i

tr
[
P̂k+1

i

(
Sz

i

)2]

=
∑

i

pHaar(i; k + 1), (B11)

where we have used that for i < j the trace vanishes due to
tr(Sz

j ) = 0 and pHaar is defined in Eq. (5). Now, combining

this with the fact tha P̂k
i P̂k+1

i = 0, the second term vanishes:

1

3L
tr[q̂k (q̂k+1)3] = 1

3L

∑
i, j

tr
[
P̂k

i P̂k+1
j Sz

i Sz
j

]

= 1

3L

∑
i

tr
[
P̂k

i P̂k+1
i

(
Sz

i

)2] = 0. (B12)

Thus, for a Haar random state with filling fraction ν = 2/3,
and using the fact that

∑
k pHaar(i; k + 1) = ν, we obtain that

the typical filling fraction of defects is

〈νd〉 = 1

L
EHaar[〈ψ |Nd |ψ〉]

= 1

2L

L∑
k=1

∑
i

pHaar(i; k + 1)

= 1

L

∑
i

ν

2
= 1

3
. (B13)

Intuitively, this comes from the fact that any given charge
has equal probability of having the same versus opposite sign

as the nearest charge on the left, making the probability of
finding a defect on a particular site ν/2 = 1/3.

APPENDIX C: EVALUATING SLIOMS IN EIGENSTATES

When discussing the spatial distribution of SLIOMs in
the main text, we used ensembles of random states (either
with or without fixing the total number of particles). As
we showed, the variance over different choices of random
states is exponentially small in system size, implying that
averaging over the ensemble indeed provides an extremely
good approximation of the expectation value of Ok

i
†Ok

i for
most states within the same Hilbert space. Nevertheless, one
might wonder what these distributions look like for specific
eigenstates of the Hamiltonian Ht-Jz . Here we address this
question.

In particular, we fix a global symmetry sector with half fill-
ing (NF = L/2) and total magnetization Sz

tot = 0. We consider
two eigenstates within this sector: i) the ground state, that
has the lowest energy within this symmetry sector and ii) a
randomly chosen, highly excited eigenstate within the fixed
spin pattern sector corresponding to γk = 1 (spins pointing
up) for k � NF /2 and γk = −1 (spins pointing down) for k >

NF /2. In the latter case, we expect to be close to the typical
(Haar random) state with the same NF , which we considered
in the main text. Indeed, as shown in Fig. 9(b), we find that
the distribution of 〈Ok

i
†Ok

i 〉 is well approximated by Eq. (7),
up to finite size corrections. The ground state, on the other
hand, is a highly atypical state (for example it does not have
a volume law entanglement). For this reason, the distribution
is noticeably different from the Haar average. Nevertheless,
we find that it is in fact more tightly localized, as one can
observe from Fig. 9(a). Thus the statistical localization of the
conserved quantities remains valid also when considered this
state.

APPENDIX D: SPATIALLY RESOLVED
AUTOCORRELATIONS AT LONG TIMES

As noted in the main text [see Eq. (8)], Mazur’s inequality
provides a strict lower bound on autocorrelations 〈Sz

j (t )Sz
j〉 in

terms of the conserved quantities of the system. However, to
understand the spatial spreading of spin density Sz

j , it is also
interesting to consider correlations between different sites of
the form 〈Sz

j (t )Sz
i 〉, for which the same lower bound does not

exist. Here we provide a conjecture for the long-time average
of these correlations in the thermodynamic limit of the t-Jz

model and show some supporting numerics.
While one cannot lower bound the correlations between

different sites in the same way as autocorrelators, one could
in principle calculate their time average if one had access to a
complete orthogonal set of 3L conserved quantities (a basis of
all operators diagonal in the eigenbasis of Ht-Jz ). Given such
an orthogonal set {Îa}3L

a=1, one can prove [75] that the time
average becomes

lim
T →∞

1

T

∫
dt

〈
Sz

j (t )Sz
i

〉
β=0 =

∑
a

〈
Sz

j Îa
〉
β=0

〈
Sz

i Îa〉β=0〈
Î2
a

〉
β=0

(D1)
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FIG. 9. Spatial distribution of SLIOMs for energy eigenstates. Spatial distribution of the expectation value 〈ψ |Ok
i
†Ok

i |ψ〉, for the ground
state (left) and an excited state (right) within the sector NF = L/2, Sz

tot = 0. The excited state is randomly picked from within a sector with a
fixed spin pattern (see main text). Both states correspond to (partially) localized distributions. For the excited state, this is close to the Haar
average (dashed lines), while for the ground state the distribution is more tightly localized.

The formula (D1) requires knowledge of exponentially
many conserved quantities, which is much more than the
information contained in only the SLIOMs q̂k defined in
Eq. (4). Our conjecture is that in the limit L → ∞ the correct
time average is given by restricting the sum on the right-hand
side to the set {q̂k}, ignoring other conserved quantities, i.e.

∑
k

〈
Sz

j q̂k
〉
β=0

〈
Sz

i q̂k
〉
β=0〈

q̂2
k

〉
β=0

≡ Ci j (∞). (D2)

Indeed, this conjecture is supported by the observation that
the quantities Ci j (∞) are all positive and they sum up to
the correct value,

∑
j Ci j (∞) = 2/3 = ∑

j〈Sz
j (t )Sz

i 〉β=0. This
means that the contribution coming from all remaining terms
(Îa �= q̂k) in the sum (D1) have to be such that their sum over
i vanishes. Our conjecture amounts to saying that they in fact
all individually vanish in the thermodynamic limit.

This conjecture is supported by our small scale numerics,
which show that the difference between the two distributions
decreases with L. In particular, we can define the mean square
distance of the two,

∑
i

[
1

T

∫
dt

〈
Sz

j (t )Sz
i

〉
β=0 − Ci j (∞)

]2

. (D3)

We find (see in particular the inset of Fig. 10) that this
quantity decreases with system size, approximately as 1/L.
Note that the distribution Ci j (∞) has a width ∝ √

L, such
that our conjecture implies that for a finite open chain the
charge remains trapped in a region much smaller than the
entire system as discussed also in the main text.

APPENDIX E: t-Jz MODEL WITH CLOSED BOUNDARIES

Our discussion of the t-Jz model in the main text focused
on a chain with open boundaries. This allowed us to label
fermions by an integer k, starting from one of the endpoints,
leading to the definition of SLIOMs in Eq. (4). Here we detail
how the situation changes when periodic boundary conditions
are taken.

In the periodic case, the conserved spin pattern is only well
defined modulo cyclic translations around the chain, allowing

for additional matrix elements between certain sectors that
are disconnected for the open chain. Nevertheless, this only
reduces the number of disconnected sectors by at most a
factor of 1/L, such that there are still exponentially many
invariant subspaces and the dimension of the largest one still
scales asymptotically as ∼2L. The Hilbert space is therefore
still strongly fragmented and should therefore violate ETH.
Indeed, repeating the same calculation as in Fig. 3(b) for the
closed chain, we again find a wide distribution of diagonal
matrix elements of Sz

L/2Sz
L/2=1. This is shown in Fig. 11(a).

Approximating eigenstates by an equal weight superposition
of hole positions in this case suggests that the width of
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z j
(0
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z i
(t

)〉 0
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101
10−3
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FIG. 10. Time averaged correlations vs. their conjectured values.
The dots (connected by narrow dashed lines) show the long-time
average (averaged between times t = 50 and 100) of the correlator
〈Sz

j (t )Sz
i 〉β=0, while the solid lines represent Ci j (∞), defined by the

formula (D1). This is a lower bound near the origin, but becomes
smaller then the numerical value in the tails (i.e., the observed
distribution is actually narrower than the prediction). However,
the two curves approach each other as system size is increased.
This is shown by the inset, where the blue dotted curve represents∑

i [ 1
T

∫ 100
50 dt〈Sz

j (t )Sz
i 〉β=0 − Ci j (∞)]

2
as a function of L, approxi-

mately decreasing as 1/L (red dashed line).
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FIG. 11. Thermalization in the t-Jz model with closed boundaries Left: expectation values of nearest-neighbor antiferromagnetic
correlations in eigenstates for NF = L/2, Sz

tot = 0 for different system sizes. The distribution has a width that does not decrease with system
size. Right: time average (between times 50 and 100) of the spatially resolved spin-spin correlations at infinite temperature. While there is a
small peak around the origin remaining for the available system sizes, the correlations mostly spread out over the whole chain and take values
∝ 1/L, unlike the case of an open chain shown in Fig. 2(c).

the distribution asymptotically decreases with system size as
L−1/2 in the thermodynamic limit (recall, that for open chains
the narrowing was slower, ∼L−1/4).

The difference between open and closed boundaries be-
comes even more explicit when we consider the conserved
quantities that label the disconnected sectors. In particular,
the SLIOMs defined in Eq. (4) are no longer conserved,
since fermions can now circle around the boundaries. Indeed,
while the whole of the spin pattern is still conserved, talking
about the spin of individual fermions is no longer meaningful
and consequently, the spatial localization associated to the
conserved quantities breaks down. This explains the different
asymptotic scaling in the width of the distribution of diagonal
matrix elements. It also shows up when considering the late-
time behavior of correlations of the form 〈Sz

j (t )Sz
i 〉β=0. Unlike

the case with open boundaries, where these spread out only

FIG. 12. Scaling of the saturation value of the entanglement
entropy with system size. We show the ratio of the saturation value
of the entanglement entropy S(∞) and the Page value SPage =
ln(3)L/2 − 1/2, for for H3 (red circles), H3 + H4 (blue stars), and
Ht-Jz (green squares).

over a region of size
√

L [see Fig. 2(c)], for a closed chain
the spread out over the entire chain, saturation to a value of
O(1/L). This is shown in Fig. 11(b).

Note that for the Hamiltonian H3 in Eq. (14) the situation
is quite different. While labeling individual defects also loses
meaning with periodic boundaries, the regions surrounded by
neighboring defects are still well defined and have the same
O(1) size as with open boundaries. This is consistent with the
localized behavior (i.e., infinitely long-lived autocorrelations)
in the bulk, discussed in Sec. III B 2.

APPENDIX F: SATURATION VALUE
OF THE ENTANGLEMENT ENTROPY

In this Appendix, we provide the data obtained for the
scaling of the saturation value of the entanglement entropy
[S(∞)] with initial (Haar) random product states (not in the
z basis), for the models studied in the main text. The data
for the Hamiltonian H3 were provided in Appendix C of
Ref. [50], while a random unitary circuit model with the same
symmetries was studied in Ref. [51]. For completeness, we
also show the scaling for the dipole-conserving Hamiltonian
H3 + H4 with

H4 = −
∑

n

[
S+

n S−
n+1S−

n+2S+
n+3 + H.c.

]
, (F1)

which is only weakly fragmented and saturates close to the
Page value [102], SPage = ln(3)L/2 − 1/2, up to a constant
offset.

In Fig. 12, we show the scaling of S(∞) with system
size for H3 (red circles), H3 + H4 (blue stars), and Ht-Jz

(green squares). The scaling (for the small system sizes the
simulations were performed) suggests that for the t-Jz model
S(∞) will approach SPage in the thermodynamic limit, while
it remains only a fraction of it for H3.
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