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Plutonium (Pu), in which the 5 f valence electrons always wander the boundary between localized and
itinerant states, exhibits quite complex crystal structures and unprecedentedly anomalous properties with respect
to temperature and alloying. Understanding its chemical and physical properties, especially its 5 f electronic
structure is one of the central and unsolved topics in condensed matter theory. In the present work, the electronic
structures of the six allotropes of Pu (including its α, β, γ , δ, δ′, and ε phases) at ambient pressure are studied
comprehensively by means of the density functional theory in combination with the single-site dynamical
mean-field theory. The band structures, total and partial density of states, valence state histograms, 5 f orbital
occupancies, x-ray branching ratios, and self-energy functions are carefully studied. It is suggested that the
α, β, and γ phases of Pu are typical Racah metals in which the atomic multiple effect dominates near the
Fermi level. The calculated results reveal that not only the δ phase, but also all the six allotropes are archetypal
mixed-valence metals with remarkable atomic eigenstate fluctuation. As a consequence, the 5 f occupancy n5 f

is around 5.1–5.4, which varies with respect to the atomic volume and electronic correlation strength of Pu. The
5 f electronic correlation in Pu is moderately orbital-dependent. Moreover, the 5 f electrons in the δ′ phase are
the most correlated and localized.
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I. INTRODUCTION

Plutonium is a radioactive element with atomic number
94 and the chemical symbol Pu. As is well-known, Pu, the
sixth member of the actinide series, is considered to be
one of the most mysterious, complex, and exotic elements in
the periodic table [1]. It is an element at odds with itself. Some
peoples indeed claim that metallic Pu is a physicist’s dream
but an engineer’s nightmare (because it defies conventional
metallurgical wisdom) [2,3]. It has attracted a lot of interests
and studies since its discovery at 1940. To date, there are
still tons of questions and puzzles concerning its unusual
properties that need to be answered and solved [3–8].

Plutonium V -T phase diagram is extremely complicated
and (at ambient pressure) comprises six allotropes which have
different crystal structures (see Fig. 1) and manifest distinct
lattice properties [2,3,9]. These allotropes can be roughly
classified into two categories according to their crystal struc-
tures and symmetries: (1) low-symmetry α, β, and γ phases
[1–3]. Under ambient temperature and pressure, the α phase
is favorable. It crystallizes in a monoclinic structure with
16 Pu atoms within the unit cell [10]. These Pu atoms can
be grouped into eight nonequivalent types (Puα,I ∼ Puα,VIII).
The crystal structure of β-Pu, which is stable at higher tem-
perature, is also monoclinic but with even more atoms (34 Pu
atoms) within the unit cell [11]. They are grouped into seven
nonequivalent types (Puβ,I ∼ Puβ,VII). The crystal structure
of the orthorhombic γ phase is less complex than those of
α- and β-Pu, but its unit cell still contains two nonequivalent
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Pu atoms (Puγ ,I ∼ Puγ ,II) [12]. (2) High-symmetry δ, δ′, and
ε phases [1–3]. The δ, δ′, and ε phases crystallize in the
cubic and tetragonal structures, respectively. There is only
one Pu atom in their unit cells. They are usually stable under
elevated temperature. Finally, we note that Pu could form
the seventh phase (i.e., ζ -Pu) under high temperature and a
limited pressure range [1,2].

As mentioned above, plutonium shows incredible sensitiv-
ity to temperature and demonstrates unusual lattice properties
[1,3,13]. When heated in the α phase, it expands at a rate
almost five times the rate in iron. On the contrary, it contracts
while being heated in the δ phase [2]. Because its liquid phase
is denser than the previous solid phase, it contracts while
melting at T > 913 K. In addition, its liquid state exhibits
the greatest viscosity of any element and a very high surface
tension emerges [14]. Pu shows even more atypical behaviors
once it is cooled down below room temperature. It is a poor
electrical conductor with very high electrical resistivity at
room temperature. However, its resistivity increases gradually
as the temperature is lowered to 100 K. It is also a bad thermal
conductor and its specific heat is ten times larger than normal
value at temperatures close to 0 K [15,16]. The magnetic
susceptibility at low temperature is unusually high and almost
retains constant, being a signature of magnetism. However,
in spite of that, so far, none of the long-range ordering
states (including magnetic and superconducting) have been
observed in Pu even at the lowest temperatures [17].

Perhaps δ-Pu is the most useful and familiar phase due to
its broad applications in the military and energy industries.
Yet it could be the least understood theoretically phase due
to its confusing and fascinating characteristics [1,3,13]. It
crystallizes in a cubic close-packed structure, but its density

2469-9950/2020/101(12)/125123(17) 125123-1 ©2020 American Physical Society

https://orcid.org/0000-0002-3458-0504
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.101.125123&domain=pdf&date_stamp=2020-03-24
https://doi.org/10.1103/PhysRevB.101.125123


LI HUANG AND HAIYAN LU PHYSICAL REVIEW B 101, 125123 (2020)

FIG. 1. Schematic lattice structures of Pu six allotropes [1] studied in the present work. The crystalline structures are enclosed in the
parentheses. Here mono., ortho., tetra., fcc, and bcc are abbreviations of monoclinic, orthorhombic, tetragonal, face-centered cubic, and body-
centered cubic structures, respectively. The nonequivalent sites in the low-symmetry α-Pu, β-Pu, and γ -Pu phases are depicted using Roman
numerals (I–VIII) [10–12].

is the lowest. From brittle α phase to ductile δ phase, the
volumetric change is up to record-high 25% [2,18]. It usually
stabilizes under high temperature, but doping it with a few
percent trivalent metal impurities (such as Ga and Al) makes
it metastable at room temperature [1–3]. The δ phase has neg-
ative thermal expansion coefficient, unlike the vast majority of
metallic materials [19–21]. The Pauli-like magnetic suscepti-
bility, electrical resistivity, and Sommerfeld coefficient of the
specific heat of δ-Pu are an order of magnitude larger than
those of the other simple metals [15,17,22]. Additionally, the
lattice dynamics of δ-Pu is notoriously peculiar [16,23–26].
In the calculated and experimental phonon dispersion curves
of δ-Pu, the T [111] mode exhibits a pronounced bending
along the transverse branch, which can be related to its lattice
instability and the δ-ε phase transition [2]. The longitudinal
and transverse acoustic phonon branches along [001] direction
are nearly degenerate at small wave vector �q, which leads
to approximately equal elastic constants C11 and C44. In
consequence, the δ phase shows astonishing shear anisotropy,
much larger than those in any other simple face-centered cubic
metals known [23,24].

It is generally believed that electronic structure determines
nonnuclear properties. Hence, in order to explain why plu-
tonium metal behaves so strangely, we have to understand its
electronic structure at first [9,13,27]. Plutonium belongs to the
actinides. The actinides successively fill the 5 f shell, much
like the rare earths fill the 4 f shell [3]. There is no doubt that
the Janus-faced 5 f electronic structures (being itinerant or
localized) are responsible for a plethora of interesting physical
behaviors of the actinides [3,13,27,28]. In the early (light) ac-
tinides (from Ac to Np), their 5 f electrons behave much more
like the 4d or 5d electrons of the transition metals, instead of
the 4 f electrons of the lanthanides. They incline to be itinerant
and contribute to chemical bonding [29]. There are at least
three consequences for the itinerant 5 f electrons. Firstly, the
5 f electrons occupy the conduction band, which leads to an
increase in chemical bonding force and a decrease in atomic
volume [18]. Secondly, there are no local moments. The third,
the 5 f electrons in the light actinides usually form very nar-
row and nearly flat energy bands, which manifest themselves
by very high density of states near the Fermi level. Actually,
the bonding properties of the light actinides are dominated by
the specific properties of these flat bands. For example, low-
symmetry structures are favored in the ground states of light

actinides. This is because lattice distortions can split these nar-
row 5 f bands and thereby lower the total energy [3]. In the late
(heavy) actinides (from Am to No), the scenario looks a bit
different. Their 5 f electrons start to be localized at each lattice
sites and become chemically inert, behaving like the 4 f elec-
trons of the rare earths [18]. The localized 5 f electrons usually
give rise to nontrivial local magnetic moments. In addition,
atomic volumes of the late actinides only shrink slightly with
increasing atomic number, because the 5 f electrons in the
remaining of the series come to be more and more localized.
Pu sits halfway across the row of actinides. It happens to
separate the early and late actinides. The electronic structure
of Pu may be unique in the periodic table [3,9]. The reasons
are two-folds. On one hand, its 5 f valence electrons live at
the brink between localized and itinerant configurations. On
the other hand, the degree of 5 f electron localization strongly
depends on crystal structure and external conditions, such
as temperature, stress, and chemical doping (alloying). Right
at plutonium, there appears to be a 5 f itinerant-(partially)
localized transition or crossover between the monoclinic α

phase and face-centered cubic δ phase [3,30]. Furthermore,
it is concluded that the 5 f electronic structures of the six
allotropes of Pu are completely diverse [27] and the six phases
of Pu are virtually different metals [9,31].

The fundamental nature of 5 f electrons is at the research
frontier of condensed matter physics. The 5 f electronic struc-
ture is critically essential to the structural and mechanical
properties of plutonium, particularly to its phase transition and
phase stability [2,9,31]. Unfortunately, except for the δ phase,
our knowledge about the electronic structures of the other
phases is quite insufficient. Generally speaking, the electronic
structure of Pu remains actually unexplained. An unified
picture for the evolution of electronic structures of all of six
phases of Pu with respect to temperature and crystal symmetry
is highly desired. Keeping these deficiencies in mind, we
try to study the electronic structures of the six allotropes
of Pu by using a state-of-the-art first-principles many-body
approach, i.e., the combination of density functional theory
and dynamical mean-field theory (dubbed as DFT + DMFT)
[32]. In the present work, we elaborate the tendency of 5 f
electrons from itinerant to partial localization that occurs in
the different phases of Pu. We also identify some atypical fea-
tures, such as atomic multiplets, valence state fluctuations, and
orbital-dependent correlations, which are totally unexpected.
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Our findings suggest that the complexity of 5 f electronic
structures is far away from being fully understood.

The rest of this paper is organized as follows. In Sec. II,
previously theoretical results concerning with Pu 5 f elec-
tronic structure are briefly reviewed. Two different compu-
tational strategies (with or without 5 f electronic correlation
effect in the calculations) are summarized and discussed. In
Sec. III, we firstly introduce the spirit and advantages of
our first-principles many-body computational framework (the
DFT + DMFT method). And then we supplement the compu-
tational parameters and details. Section IV is the major part of
this paper. In this section we present the theoretical electronic
structures (including band structures, density of states, atomic
eigenstate histograms, x-ray absorption branching ratios, 5 f
occupancies, and 5 f self-energy functions) for all allotropes
of Pu under ambient pressure. In Sec. V, the calculated results
are compared with the available experimental and theoreti-
cal data. In Sec. VI, three important issues [namely (i) the
evolution of 5 f electron localization in the six allotropes,
(ii) the possible influence of truncation approximation and
negative sign problem during the DFT + DMFT calculations
for electronic structures, and (iii) site-dependent 5 f electronic
structures for inequivalent Pu atoms] are discussed at first in
detail. The similarities in the electronic structures of Ce and
Pu are then summarized and emphasized. Finally, Sec. VII
serves as a brief conclusion and outlook.

II. BRIEF REVIEW OF PREVIOUS RESULTS

On one hand, the density functional theory (DFT) and its
extensions are considered as work horses for most condensed-
matter calculations. On the other hand, Pu has been re-
garded as one of the hardest tentative systems for ab initio
electronic structures calculations [27,33]. Therefore extensive
first-principles methods (mainly DFT and beyond DFT meth-
ods) have been invented and then employed to make progress
toward this “holy grails” in the past decades. Since these
works are too numerous to cite, only the most relevant and
important advances are reviewed here.

The key issue in the theoretical calculations concerning Pu
electronic structure is about how to treat the strong correlation
effect among its 5 f electrons. So, according to this criterion,
we can put the available theoretical works into two sets
approximately: ignoring the 5 f electronic correlations (tradi-
tional DFT methods) or considering them in the calculations
explicitly (beyond DFT or DFT + X methods) [33].

Without 5 f electronic correlations: DFT calculations.
Although relativistic DFT calculations within local density
approximation were already performed to study the electronic
structure of Pu in the 1970s–1990s [34,35], the DFT method
with generalized gradient approximation was first applied
to plutonium by Per Söderlind et al. in 1994 [36]. He and
his collaborators insist that spin-polarized DFT calculations,
with orbital polarization and spin-orbit coupling, are capable
of capturing Pu phase diagram and yielding the nontriv-
ial crystal structures of low-temperature phases. They have
made remarkable achievements in understanding the crystal
structures, magnetism, chemical bonding, elastic properties,
lattice dynamics, phase transition and phase stability of Pu
[33,37–46]. For example, they successfully reproduced the

highly complex crystal structure and 13 independent elastic
constants of α-Pu, the anomalously soft C′ as well as a large
anisotropy ratio (C44/C′) of δ-Pu [23,24]. They also proposed
a simple model which is universally valid for all Pu phases.
This model establishes a relationship between atomic volume
(density), crystal structure (symmetry), and magnetic mo-
ments. They further developed a new mechanism to explain
why Ga can stabilize face-centered cubic δ-Pu under room
temperature and ambient pressure [33,43,47].

With 5 f electronic correlations: DFT + X calculations. In
order to take the 5 f electronic correlation (which is a typical
many-body effect) into consideration, the single-particle pic-
ture of the DFT approach is not valid any more. Clearly, we
need more powerful guns. If the on-site Coulomb interaction
among strongly correlated electrons, parameterized by using
the Coulomb repulsive interaction parameter U and Hund’s
exchange interaction parameter JH, is treated in a static and
mean-field level, it is the so-called DFT + U approach [48].
Since it can capture the correlated nature of the open 5 f shell,
it has been successfully applied to a large number of actinide
compounds. Note that it is usually in favor of a magnetic
solution [49–51]. A. B. Shick et al. have employed the DFT
+ U approach to study the ground state properties of δ-Pu.
Surprisingly, they obtained a completely nonmagnetic ground
state for δ-Pu as well as for Pu-Am alloys when reasonable
values of U (3–4 eV) are adopted in the calculations [52].
Boris Dorado et al. combined the DFT + U method and
temperature-dependent effective potential (TDEP) method to
study the lattice vibrational properties of the high-temperature
δ and ε phases of plutonium [53]. They found that the ε phase
can only be stabilized when the temperature and electronic
correlation effects are simultaneously accounted for. Besides
the DFT + U approach, the DFT + DMFT method is another
powerful approach to tackle the 5 f electron-electron interac-
tion [32]. We will introduce its basic principles in next section.
Here, we would like to emphasize that DFT + DMFT may be
the most commonly used method to study all aspects of Pu
and the other actinides. For example, the valence fluctuation
behaviors in δ-Pu and Pu-Am alloys [54–56], subtle electronic
structures of α-Pu, β-Pu, δ-Pu, and even the Pu-Ga alloy
in its δ phase [57–65], electronic specific heat of α-Pu and
δ-Pu [58], high-temperature phonon spectra of δ-Pu and ε-
Pu [23,66], etc., were quite reasonably described within the
framework of the DFT + DMFT approach. The Gutzwiller
approximation in combination with the density functional
theory (dubbed as DFT + G) also enables us to study complex
4 f and 5 f systems beyond the single-particle approximation
[67,68]. Nicola Lanatá et al. have employed this approach
to study the zero temperature phase diagram and electronic
structure of Pu, finding good agreement with the experiments
[69]. They further argued that, it is the competition between
the Peierls effect and the Madelung interaction, leading to
the differentiation between the equilibrium densities of Pu six
allotropes. The dependence of the 5 f electron correlations on
the lattice structure has a negligible effect.

With 5 f electronic correlations: GW and QSGW calcula-
tions. We note that none of the above DFT + X approaches
is actually parameter-free. They at least require the input
of on-site Coulomb interactions. On top of that, they also
suffer an uncertainty about the double counting term problem
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TABLE I. Key parameters used in the present DFT + DMFT calculations. In this table, the settings for k points (k mesh), radius of
Muffin-tin sphere (RMT), size of basis set (RMTKMAX), exchange-correlation functional (XC), double counting term (DC), Coulomb repulsive
interaction (U ), Hund’s exchange interaction (JH), spin-orbital coupling constant (λSO), system temperature (T ), and number of Monte Carlo
sweeps (Nsweeps) per DMFT iteration (one-shot CT-HYB quantum impurity solver calculation) are shown. Here PBE means the Perdew-Burke-
Ernzerhof functional [76] and FLL means the fully localized limit scheme [48]. See main text for more explanations.

Cases kmesh RMT RMTKMAX XC DC U JH λSO T Nsweeps

α-Pu 11 × 14 × 06 2.41 8.0 PBE FLL 5.0 eV 0.6 eV 0.22 290 K 1.0 × 108

β-Pu 09 × 10 × 09 2.44 8.0 PBE FLL 5.0 eV 0.6 eV 0.22 464 K 1.0 × 108

γ -Pu 10 × 10 × 10 2.50 8.0 PBE FLL 5.0 eV 0.6 eV 0.22 527 K 1.0 × 108

δ-Pu 15 × 15 × 15 2.50 9.0 PBE FLL 5.0 eV 0.6 eV 0.22 645 K 4.0 × 108

δ′-Pu 17 × 17 × 17 2.50 9.0 PBE FLL 5.0 eV 0.6 eV 0.22 750 K 4.0 × 108

ε-Pu 15 × 15 × 15 2.50 9.0 PBE FLL 5.0 eV 0.6 eV 0.22 829 K 4.0 × 108

[48,70]. The diagrammatically based approaches provide al-
ternative route to overcome these problems. Therefore there
is a significant interest in developing and using the GW
approximation and its extensions, such as quasiparticle self-
consistent GW (QSGW ) method [71,72]. Andrey Kutepov
et al. have implemented a self-consistent fully relativistic GW
method and applied it to study the δ phase of Pu [73]. They
found that the GW approximation renormalized to spin-orbit
split 5 f5/2 and 5 f7/2 states. Compared to the DFT, the 5 f -6d
hybridization in Pu is greatly enhanced by GW . A. Svane et al.
have applied the QSGW approach to the different phases of
elemental Pu. They found a “universal” scaling relationship,
specifically, the local density approximation band width is
proportional to the f -electron band width reduction, which
can be used to quantify the electronic correlation strength of
Pu [74,75].

In summary, we review briefly recent advances in realistic
calculations of the complex electronic structure of Pu. Here,
we survey a series of major methods (including DFT, DFT
+ U , DFT + G, DFT + DMFT, GW , and QSGW ). They
describe Pu 5 f electronic structure with increasing level of
complexity at increasing computational cost, and yield a lot
of exciting insights in the field of plutonium science. Further
developments are underway to improve the accuracy, speed,
and predictive power of these methods.

III. METHOD

To account for the 5 f electron correlation effect, sophis-
ticated quantum many-body algorithms are preferred. One
of the most successful algorithms may be the dynamical
mean-field theory (DMFT), which is based on a mapping
of lattice models onto quantum impurity models subject to
a self-consistency equation [77]. This mapping is exact for
lattice models in the limit of infinite spatial dimensions.
Notice that in DMFT the spatial fluctuations are frozen, but
the local quantum fluctuations are taken into accounts. The
electronic self-energy is therefore momentum-independent.
DMFT is very successful and has widespread applications
in studying strongly correlated models. To become material
specific, DMFT must be merged with DFT and then a new
electronic structure tool (DFT + DMFT) is developed. In the
framework of DFT + DMFT approach, DFT is responsible
for the noninteraction orbitals and providing a band picture,
while DMFT provides a nonperturbative treatment for the

strongly correlated problems [32]. The DFT + DMFT method
has achieved great success in numerous correlated materials.
It is really appropriate for exploring electronic structures,
especially band structures and spectroscopic quantities, of
strongly correlated materials. In the present work, we decide
to choose the DFT + DMFT approach to study the electronic
structures of the six allotropes of Pu thoroughly.

The DFT calculations were done by using the WIEN2K
code [78], which implements a full-potential linear augmented
plane-wave (FP-LAPW) formalism. We used the experimental
lattice structures [1,2], and conducted only paramagnetic cal-
culations. The spin-orbit coupling effect was explicitly con-
sidered in the calculations. The most important computational
parameters are summarized and listed in Table I.

We employed the EDMFTF software package, which was de-
veloped by K. Haule et al. [79], to do the DMFT calculations.
The merit of this code is that it preserves stationarity of the
DFT+DMFT functional, and is able to obtain high precision
total energy and force [80]. The hybridization expansion
version of continuous-time quantum Monte Carlo quantum
impurity solver (dubbed as CT-HYB) was used to solve the
resulting multi-orbital (seven-band) impurity models [81,82].
In order to minimize the computational resources required,
we considered some approximations and tricks. First, we
assumed that the Pu atoms in α-, β-, and γ -Pu are completely
equivalent. In order words, we ignored the nonequivalent Pu
atoms. Second, we utilized some good quantum numbers
(such as total occupancy N and total angular momentum
J) to reduce the maximum matrix size of local impurity
Hamiltonian. Third, we retained those atomic eigenstates with
N ∈ [3, 7] only [83]. The other atomic eigenstates were dis-
carded. Finally, we adopted the Lazy trace evaluation trick to
accelerate the Monte Carlo sampling procedure further [84].
We carried out charge fully self-consistent DFT + DMFT cal-
culations. About 60–80 DFT + DMFT iterations are enough
to obtain good convergence on charge, chemical potential, and
total energy. Once the calculations are converged, we used the
maximum entropy method to accomplish the analytical con-
tinuation [85], and tried to calculate the physical observables.
The technical details are illustrated in Refs. [79,86].

IV. RESULTS

A. Stripelike band structures

The momentum-resolved spectral functions A(k, ω) is an
ideal theoretical tool to observe directly the distribution of
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(a)

(d) (f)

(b) (c) (e)

FIG. 2. Momentum-resolved spectral functions A(k, ω) of Pu obtained by the DFT + DMFT method. (a) α-Pu. The coordinates for the
high-symmetry points are B[0.5, 0.0, 0.0], Y [0.0, 0.0, 0.5]. (b) β-Pu. The coordinates for the high-symmetry points are A[0.5, 0.0, 0.0], Y [0.0,
0.5, 0.0]. (c) γ -Pu. The coordinates for the high-symmetry points are X [0.0, 0.0, 1.0], L[0.5, -0.5, 0.5]. (d) δ-Pu. (e) δ’-Pu. (f) ε-Pu. The
horizontal dashed lines denote the Fermi levels.

electrons in the reciprocal space of solids, which provides
deep insights into the valence electrons of correlated electron
materials. The corresponding experimental technique is the
angle-resolved photoemission spectroscopy (ARPES). Here,
we illustrate the calculated results, A(k, ω) along some se-
lected high-symmetry lines in the irreducible Brillouin zone,
for plutonium in Fig. 2. The following characteristics are
noticeable: (i) as for α- and β-Pu, the most striking features
are the parallel and intensive stripelike patterns in the spec-
tra. For instance, these stripes locate approximately at −1.2,
−0.2, 0.6, and 2.0 eV for α-Pu (−1.5, −0.2, and 1.0 eV
for β-Pu). These stripes probably resemble the 5 f atomic
multiplets. Since there are too many nonequivalent Pu atoms
in the unit cell (see Fig. 1), it seems the spectra are quite
blurry and somewhat overcrowded. Besides these stripes, it
is difficult to find out any other special features and identify
the hybridization gaps. (ii) For γ -Pu, there are also apparently
stripelike patterns in the spectrum. Their positions are close
to those in the α and β phases, but with smaller intensity.
In addition, since there are only two nonequivalent Pu atoms
in the unit cell (see Fig. 1), more features (band dispersions)
can be identified in the band structures. We observe promi-
nent c- f hybridizations along the L-
 line in the Brillouin
zone. (iii) For δ-, δ′-, and ε-Pu, they are all high-temperature
phases with high-symmetry crystal structures (only one Pu
atom in the unit cell, see Fig. 1). It is worth saying that
their spectra are amazingly similar. All of them show quite
clear band dispersions from −4.0 to −0.5 eV and from 2.0
to 4.0 eV. In the vicinity of the Fermi level and around
±1.0 eV, there are dim and almost flat band structures, which
are very likely associated with the partially localized 5 f
bands.

From the momentum-resolved spectral functions of Pu, one
could confirm that the 5 f electrons in the high-temperature
phases (δ-, δ′-, and ε-Pu) are partially localized [27], and
might speculate roughly that the electronically localized de-
grees of freedom are quite different for various phases [31].
However, the most prominent thing is that the 5 f electrons
in α-, β-, and γ -Pu are not well described with the itinerant
electron picture, which is in sharp contrast to our expectation.
Recently, A. Svane et al. have proposed a new variable
C to quantify the electronic correlation strengths of all six
allotropic phases of Pu [74,75]. They calculated C via the
following equations:

C = 1 − ωrel (1)

and

ωrel = W 5 f
QSGW

W 5 f
LDA

, (2)

where ωrel is the relative bandwidth reduction in the QSGW
approximation [72,87,88] compared to DFT in the local den-
sity approximation (LDA) [89], W 5 f

QSGW and W 5 f
LDA are the 5 f

band widths as obtained from QSGW and DFT(LDA) calcu-
lations, respectively. They found that Cα < Cβ < Cγ < Cε <

Cδ′ ≈ Cδ . In other words, the δ (or δ′) phase has the largest
correlation strength and the most localized 5 f electrons. Ap-
parently, our calculations are not in complete accordance with
their results. At least, the 5 f electronic correlation strengths
in the α, β, and γ phases are suspicious. Lastly, to our
knowledge, it is the first time to obtain the A(k, ω) for Pu via
ab initio many-body approach. Consequently, it would be very
helpful to examine them via high-resolution photoemission
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(a) (b) (c)

FIG. 3. Total and 5 f partial density of states of Pu by DFT + DMFT calculations. (a) Total density of states A(ω) (in solid lines) and 5 f
partial density of states A5 f (ω) (in colored shadow regions). (b) and (c) Orbital-resolved (or j-resolved) 5 f partial density of states A5 f5/2 (ω)
and A5 f7/2 (ω). The Fermi levels EF are represented by vertical dashed lines. Note that the spectral data in this figure have been rescaled and
normalized for a better visualization.

spectroscopy and quantum oscillation experiment in the future
[6,7].

B. Atomic multiplets

Now let us turn to the total and 5 f partial density of states
of plutonium, A(ω) and A5 f (ω), which can be regarded as the
results of momentum integral of A(k, ω):

A(ω) =
∫

�

dkA(k, ω). (3)

The calculated results are illustrated in Fig. 3. For the α and β

phases, there exist several sharp and intensive peaks near the
Fermi level, which are related with the stripelike features as al-
ready observed in the momentum-resolved spectral functions
(see Fig. 2). For the γ phase, there are still multiple peaks on
the verge of the Fermi level, but the total band width is greatly
reduced with comparison to the α and β phases. For the δ,
δ′, and ε phases, their 5 f partial density of states are quite
similar. All of them show fat and short quasiparticle resonance
peaks (accompanying with broad and smooth Hubbard bands
at high energy regime), instead of atomic multiplets at the
Fermi level.

It is generally believed that Pu 5 f electrons sit at the edge
of an itinerant-localized transition, where small changes or
perturbations will result in a transition to itinerancy or local-
ization [9,13,27]. C. A. Marianetti et al. have employed the
DFT + DMFT method to calculate the volume dependence
of magnetic susceptibility and temperature dependence of
the valence band photoemission spectra of δ-Pu [60]. They
found that expanding the volume would drive the 5 f electrons
in δ-Pu to crossover from coherent to incoherent state at
increasingly lower temperatures. At high temperatures, the
spectra are diffuse with small weights at the Fermi level. As
the temperature is decreased, a quasiparticle peak continually
builds and finally saturates [60]. In order to analyze the
evolution of 5 f electronic structures of the six allotropes of

Pu, we try to evaluate the 5 f integrated spectral weights near
the Fermi level:

I5 f =
∫ +�

−�

A5 f (ω)dω, (4)

where � = 0.2 [90]. Before the calculations, A5 f (ω) has been
normalized to satisfy the sum-rule. We find that the calculated
values of I5 f satisfy the following relations:

I5 f (α) ≈ I5 f (β ) ≈ I5 f (γ ) > I5 f (δ) ≈ I5 f (δ′) ≈ I5 f (ε). (5)

This trend is compatible with the change in lattice vol-
ume of Pu as a function of temperature [2,69]. Actually,
α-Pu has the smallest lattice volume per Pu atom (19.5 ∼
20.4 Å3). For δ-Pu, its lattice volume per Pu atom is the
largest (25.0 ∼ 25.5 Å3) [1]. If we plot the I5 f against
the atomic volumes of the α, β, γ , δ, δ′, and ε phases,
the resulting curve is approximately a Heaviside step function.
Our calculations manifest that I5 f may be a good measurement
for the electronic coherence in various phases of Pu, and is
equivalent to C proposed by A. Svane et al. [74,75] in some
extent.

The distinguishing feature for the density of states of the α,
β, and γ phases is the coexistence of atomic-like quasiparticle
resonance peaks near the Fermi level and itinerant-like Hub-
bard bands at high energy regime. These quasiparticle peaks
mainly originate from the many-body transitions between the
5 f 6 and 5 f 5 atomic multiplet configurations, while the Hub-
bard bands are related to the 5 f 4-5 f 5 transitions [91]. Let us
further inspect the main quasiparticle peak at the Fermi level.
It has a small quasiparticle weight Z (and narrow band width),
which implies that it is strongly renormalized as compared to
the DFT (LDA) density of states and the electron effective
mass is quite large (see Table III). Additionally, it is very
sensitive to the variation of temperature [60]. With decreasing
temperature it sharpens, considerably reducing the density
of states at the Fermi level and leading to the formation
of a “pseudogap.” However, upon increasing temperature it
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(b)

(c)

(a)

(e)

(f)

(d)

FIG. 4. Valence state histograms of Pu by DFT + DMFT calculations. [(a)–(f)] Atomic eigenstate probabilities of α, β, γ , δ, δ′, and
ε-Pu. The atomic eigenstates are denoted by using good quantum numbers N (total occupancy) and J (total angular momentum), i.e., |ψ
〉 ≡
|N, J〉. Note that data for the atomic eigenstates with N = 3 and 7 (5 f 3 and 5 f 7 configurations) are not shown in these panels, because their
contributions are too trivial (<1%) to be seen. The distributions of atomic eigenstate probabilities with respect to different N are displayed in
the legends.

merges with the multiplet peaks at the Fermi edge gradually.
As a consequence, for the δ, δ′, and ε phases, we only observe
a single quasiparticle resonance peak. The heavy renormaliza-
tion and strong temperature dependence of the quasiparticle
resonances can explain the large specific heat and gaplike
resistivity found in Pu [15]. Note that very recently Yee et al.
have performed DFT + DMFT calculations for plutonium
chalcogenides and pnictides [91]. They declared that the com-
bination of 5 f valence fluctuations and atomic multiplet struc-
tures might be responsible for the emergence of a multiplet of
many-body quasiparticle peaks in Pu. Afterwards, they named
these peaks as “quasiparticle multiplets” and employed them
to elucidate the observed photoemission triplet [6,92]. On the
other hand, A. B. Shick et al. have proposed another simi-
lar concept “Racah materials” [93] or “Racah metals” [94].
In their scenario, the spectra of these materials usually contain
two distinctive parts. Near the Fermi edge, there are well-
pronounced atomic multiplet structures. However, for the rest
part of the spectra, the multiplets are merged into single
Hubbard band. They argued that δ-Pu is a candidate of the
so-called Racah metal, while PuB6 and SmB6 are supposed to
be some kind of Racah materials (Racah insulators or Racah
semiconductors). Just following their ideas, we find that the
spectra of the α, β, and γ phases exhibit clear fingerprints of
the quasiparticle multiplets (or Racah metals), while in the δ,
δ′ and ε phases the quasiparticle multiplets dissolve due to
high temperature.

C. Valence state fluctuations and mixed-valence behaviors

Atomic eigenstate probability, or equivalently valence state
histogram, has been already proven to be an useful observable
to examine the valence state fluctuation or mixed-valence

behavior in strongly correlated materials [54,91]. It represents
the probability p
 to find out a valence electron in given
atomic eigenstates |ψ
〉, which are usually labeled by using
some good quantum numbers (such as N or J) [83]. If valence
electrons only favor one or two dominant atomic eigenstates
(of course the corresponding atomic eigenstate probabilities
are high), we can affirm that the valence state fluctuation in
such a system is weak or restricted [97]. On the contrary,
if valence electrons can live in a large number of atomic
eigenstates (i.e., there are no predominant atomic eigenstates),
the valence state fluctuation could be very strong [98].

Plutonium is known to be a typical mixed-valence metal
with N5 f ∼ 5.2 which has been demonstrated theoretically
[54,69] and experimentally [55,95,96]. However, most of
previous studies only focused on the α and δ phases because of
their importance in military industry. We know almost nothing
about the 5 f valence state fluctuations for the other phases,
and an unified picture for the mixed-valence behaviors of Pu
is highly desired. Fortunately, p
 is a direct output of the CT-
HYB quantum impurity solver [54,83]. Thus, in the present
work we are able to figure out the valence state fluctuations
of Pu exhaustively for the first time. The calculated valence
state histograms of plutonium are given in Fig. 4. It is noticed
that the distributions of 5 f electronic configurations can be
computed via the following equation,

w(5 f i ) =
∑

N

∑
J

δ(N − i)p
. (6)

Here, w(5 f i ) denotes the weight of the 5 f i electronic con-
figuration. And i ∈ [3, 7], because we only kept the contri-
butions from those atomic eigenstates with N ∈ [3, 7] in the
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FIG. 5. The 5 f 5 weight w(5 f 5) with respect to the unit cell
volume V of various phases of Pu. The old DFT + DMFT data for
δ-Pu are taken from Ref. [54] (upper triangle symbols) and Ref. [55]
(diamond symbols). The data from resonant x-ray emission spec-
troscopy and core-hole photoemission spectroscopy are taken from
Ref. [95] (square symbols) and Ref. [96] (right triangle symbols),
respectively.

self-consistent calculations. The calculated values of w(5 f i )
are also shown in Fig. 4 as legends.

As a first glimpse, the 5 f valence state fluctuations are
quite strong in all phases of plutonium. The 5 f 4, 5 f 5, and
5 f 6 electronic configurations have considerable contributions
[54,96]. Among them, the 5 f 5 electronic configuration is of
greatest importance. And in the 5 f 5 electronic configuration,
the atomic eigenstate |N = 5, J = 2.5〉 is undoubtedly over-
whelming. For the 5 f 4 and 5 f 6 electronic configurations,
the principal atomic eigenstates are |N = 4, J = 4.0〉 and
|N = 6, J = 0.0〉, respectively. Second, the α phase presents
the strongest valence state fluctuation. In α-Pu, the atomic
state probability of 5 f 5 only accounts for 55.23%, which
is certainly smaller than the other phases. However, the
contribution from the 5 f 7 electronic configuration is con-
siderable (∼2.08%), which is much larger than the other
phases (<0.7%). We believe that it is the small lattice volume
per Pu atom and strong hybridization between the 5 f and
spd electrons who are responsible for the enhancement of
the 5 f valence state fluctuation in α-Pu. Third, the valence
state fluctuation in the δ′ phase is the weakest. In δ′-Pu, the
contributions from the 5 f 3 and 5 f 7 electronic configurations
are trivial (0.55% and 0.31%). And the proportion of its 5 f 5

electronic configuration is as high as 71.40%, which is larger
than the other phases. Overall, the strengths of valence state
fluctuations in Pu are as follows: α-Pu > β-Pu > γ -Pu
> ε-Pu > δ-Pu > δ′-Pu. This trend is roughly reverse to the
one of electronic correlation strengths C [74,75], and is quite
similar to the one of 5 f integrated spectral weights near the
Fermi level of Pu [i.e., I5 f , see Eq. (5)]. Fourth, we attempted
to plot the w(5 f 5) against the unit cell volume V of Pu (see
Fig. 5). Quite surprisingly, we find that w(5 f 5)-V exhibits
a quasilinear relation. The w(5 f 5) increases monotonically
with respect to V . It indicates that the w(5 f 5) might be
considered as a quantitative tool to measure the status of the

TABLE II. The x-ray absorption branching ratio B and 5 f occu-
pancy n5 f for the six allotropes of Pu.

B

Method α-Pu β-Pu γ -Pu δ-Pu δ′-Pu ε-Pu

DFT + DMFTa 0.752 0.774 0.774 0.780 0.778 0.779
DFT + DMFTb 0.830
DFT + DMFTi 0.795 0.795
DFT + Gc 0.844 0.859 0.860 0.891 0.862
Experimentsd 0.842 0.847
Experimentse 0.813

n5 f
j

Method α-Pu β-Pu γ -Pu δ-Pu δ′-Pu ε-Pu

DFT + DMFTa 5.37 5.25 5.27 5.24 5.18 5.19
DFT + DMFTb 5.20
DFT + DMFTf 5.04
DFT + DMFTi 5.20 5.05
DFT + Gc 5.26 5.19 5.20 5.20 5.20
Experimentsg 5.22 5.22
Experimentsh 5.16 5.28

n5/2
j

Method α-Pu β-Pu γ -Pu δ-Pu δ′-Pu ε-Pu

DFT + DMFTa 3.71 3.88 3.89 3.93 3.90 3.92
DFT + DMFTi 4.07 4.03

n7/2
j

Method α-Pu β-Pu γ -Pu δ-Pu δ′-Pu ε-Pu

DFT + DMFTa 1.67 1.37 1.38 1.31 1.28 1.28
DFT + DMFTi 1.13 1.02

aThe present work. The 5 f impurity occupancy is calculated via
the Matsubara Green’s function G(iωn) [see Eq. (9)]. If we use the
atomic state probability to evaluate the occupancy [see Eq. (7)], the
results will be a little smaller.
bSee Ref. [54].
cSee Ref. [69]. T = 0 K. The data for the α and β phases are actually
mean values for all of the nonequivalent atomic sites.
dSee Ref. [99]. Using the electron energy-loss spectroscopy and x-
ray absorption spectroscopy.
eSee Ref. [100]. Using the electron energy-loss spectroscopy.
fSee Ref. [55]. Using the atomic eigenstate probability.
gSee Ref. [96]. Using the core-hole photoemission spectroscopy.
hSee Ref. [95]. Using the resonant x-ray emission spectroscopy.
iSee Ref. [65]. The data for the β phase are actually mean values for
all of the nonequivalent atomic sites.
jn5 f = n5/2 + n7/2.

5 f electrons of Pu [86]. Finally, the 5 f occupancy could be
estimated via the following approximate relation,

n5 f ≈ 3w(5 f 3) + 4w(5 f 4) + 5w(5 f 5)

+ 6w(5 f 6) + 7w(5 f 7). (7)

We would like to stress that since the distributions of elec-
tronic configurations w(5 f i ) are fairly different for the various
phases of Pu, one would naturally expect that the averaged
5 f occupancies for these phases are dissimilar as well (see
Table II). We will discuss this issue in the following.
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D. X-ray branching ratios and 5 f orbital occupancies

X-ray absorption spectroscopy is a powerful probe for the
electronic transitions between core 4d and valence 5 f states.
The strong spin-orbital coupling for the 4d states gives rise
to two absorption lines, representing the 4d5/2 → 5 f and
4d3/2 → 5 f transitions, respectively [99]. The x-ray absorp-
tion branching ratio B is defined as the relative strength of
the 4d5/2 absorption line [101]. If the electrostatic interaction
between core and valence electrons is skipped, the expression
for B is given as follows [54,102]:

B = 3

5
− 4

15

1

14 − n5/2 − n7/2

(
3

2
n7/2 − 2n5/2

)
. (8)

Here, n7/2 and n5/2 are the 5 f occupation numbers for the
5 f7/2 and 5 f5/2 states, respectively. They can be calculated via
the following equation:

nα = 1

β

∑
n

eiωn0+
Gα (iωn), (9)

where Gα (iωn) is the Matsubara Green’s function and α is
the orbital index. The x-ray absorption branching ratio B is
a crucial physical quantity to represent the strength of the
spin-orbital coupling interaction in the f shell. It is usually
extracted from the x-ray absorption spectroscopy and electron
energy-loss spectroscopy or obtained via the atomic physics
computations [27,99]. In order to gain a comprehensive in-
sight into the interactions of 5 f electrons, in the present work
we calculated B via the Eqs. (8) and (9) additionally. The
calculated results, together with the available experimental
values [55,96,99,100] and the DFT + G [69] (or DFT +
DMFT [54,55,65]) results, are summarized in Table II.

Clearly, our DFT + DMFT values are marginally smaller
than the experimental data, while the DFT + G results over-
estimate B. However, the accuracy of the experimental data
is still questionable. For example, for α-Pu, the two exper-
imental values deviate from each other quite significantly
[99,100]. Nevertheless, we find that the expression B(α) <

B(β ) ∼ B(γ ) < B(ε) ∼ B(δ′) ∼ B(δ) approximately holds
[69]. Similar (or reverse) trend has been identified in the elec-
tronic correlation strengths C [75] [or 5 f integrated spectral
weights near the Fermi level I5 f , see Eq. (5)]. According to
Eq. (8), to calculate B not only the total 5 f occupancy n5 f ,
but also the orbital-resolved occupancies for the 5 f5/2 and
5 f7/2 states, i.e., n5/2 and n7/2, are essential inputs. These
data are also collected and listed in Table II. We find that the
α phase has the largest 5 f occupancy (n5 f ∼ 5.37). For the
other phases, the 5 f occupancy gets close to 5.2, which agrees
quite well with the experiments [95,96,103]. Note that α phase
has the smallest n5/2 (≈3.71) and the largest n7/2 (≈1.67),
while for the other phases n5/2 ≈ 3.90 and n7/2≈1.30.
All these facts suggest that the electronic structure of the α

phase is unique and different from the other phases. Besides,
the 5 f5/2 and 5 f7/2 orbitals are sixfold and eightfold degenera-
cies, respectively. So, the averaged occupancies per orbital are
n̄5/2 ≈ 0.62 and n̄7/2 ≈ 0.21 for the α phase, and n̄5/2 ≈ 0.65
and n̄7/2 ≈ 0.16 for the other phases. This implies there exists
nontrivial orbital differentiation in Pu 5 f orbitals [65]. We
will discuss this issue in the next subsection.

(a) (b)

FIG. 6. Imaginary parts of the Matsubara self-energy functions
of Pu in the low-frequency regime by DFT + DMFT calculations.
(a) 5 f5/2 components. (b) 5 f7/2 components.

E. Orbital-dependent 5 f electronic correlations

In general, all electronic correlations beyond the DFT level
(single particle picture) can be encapsulated in self-energy
functions. In Fig. 6, the Matsubara self-energy functions (only
the imaginary parts at low frequency) for 5 f orbitals of Pu
are shown. These self-energy functions show the following
features. First of all, no doubt, the low-frequency parts of self-
energy functions are concave, implying metallic solutions.
Second, the intercept in yaxis means the low-energy electron
scattering rate γ . We find that γ is the smallest (largest) for
the α (δ’) phase. Third, the 5 f5/2 and 5 f7/2 states exhibit
quite different behaviors. The low-energy scattering rates of
the 5 f7/2 states are smaller than those of the 5 f5/2 states.
As for the 5 f5/2 states, the self-energy functions for various
Pu allotropes are distinct. While for the 5 f7/2 states, it is
hardly to distinguish self-energy functions for the six phases
of Pu. Finally, it seems that the self-energy functions at low
frequency region is not linear, deviating from the prediction
of Landau’s Fermi-liquid theory [77]. This might be a possible
explanation for the bad metal behaviors of Pu observed below
room temperature [1–3].

We can further evaluate the quasiparticle weights Z and
electron effective masses m∗ through the following equation:

Z−1 = m∗

me
≈ 1 − Im�(iω0)

ω0
. (10)

Here, ω0 ≡ π/β and me means the mass of the free band
electron [77]. We tried to calculate the orbital-dependent Z
and m∗ for the six allotropes of Pu. The results are collected
in Table III. Though Eq. (10) might be not accurate enough
at high temperature, we still have some interesting findings.
First, the 5 f electrons in Pu are strongly correlated. The 5 f
bands are strongly renormalized. The quasiparticle weights
are between 0.1 and 0.2, and electron effective masses m∗ are
between 5.0me and 9.0me. Second, the 5 f7/2 bands are more
renormalized than the 5 f5/2 bands at the high-temperature
δ, δ’ and ε phases, while they become less renormalized at
the low-temperature α, β, and γ phases. Actually, we can
define a new quantity, R ≡ Z5/2/Z7/2. We realize that R > 1
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TABLE III. Calculated orbital-dependent quasiparticle weights
Z and electron effective masses m∗ for Pu.

α β γ δ δ’ ε

Z5/2
a 0.125 0.158 0.135 0.120 0.122 0.138

Z7/2
a 0.118 0.134 0.136 0.154 0.164 0.175

Z5/2
b 0.07 0.05

Z7/2
b 0.21 0.28

m∗
5/2

a 8.03me 6.31me 7.39me 8.35me 8.17me 7.23me

m∗
7/2

a 8.48me 7.46me 7.35me 6.51me 6.11me 5.70me

m∗
5/2

b 14.0me 20.0me

m∗
7/2

b 4.70me 3.57me

aThe present work. Z and m∗ are evaluated using Eq. (10).
bSee Ref. [65]. Note that the one-crossing approximation (OCA)
quantum impurity solver was used. So, Z and m∗ were evalu-
ated directly using the real-axis self-energy functions: Z−1 = 1 −
∂

∂ω
Re�(ω)|ω=0. The data for the β phase are actually averaged values

for all of the nonequivalent atomic sites.

for α- and β-Pu; R ≈ 1 for γ -Pu; R < 1 for δ-, δ’-, and
ε-Pu. At last, the orbital differentiations (between the 5 f5/2

and 5 f7/2 states) are quite sizable, except for the γ phase.
It is suggested that R is a good indicator to measure the
orbital differentiation of 5 f orbitals. Lately, Brito et al. have
published DFT + DMFT results for β- and δ-Pu [65]. Though
they used a completely different quantum impurity solver
based on one-crossing approximation [32], conspicuous or-
bital differentiations in Z and m∗ were also observed. Thus,
we can conclude that the 5 f electronic correlations in Pu
are moderately orbital-dependent, and orbital-dependent 5 f
electronic correlation may be a common characteristic in Pu
[65] and the other actinide-based materials [97].

Finally, we would like to stress that the Hund’s exchange
interaction has a big influence on Z and m∗. C. A. Marianetti
et al. have studied the electronic coherence in δ-Pu by using
the DFT + DMFT approach [60]. They found that when the
full rotationally invariant exchange is included (JH = 0.5 eV),
Z5/2 and Z7/2 are 0.26 and 0.32, respectively. However, in
the absence of exchange, Z5/2 and Z7/2 are 0.41 and 0.7,
respectively. Since we adopted a larger JH (see Table I) in the
present calculations, it is not surprised we got smaller Z5/2 and
Z7/2. Similar effect was also identified in β-Pu [65]. Clearly,
Hund’s exchange would suppress Z and enhance electronic
correlation in Pu.

V. COMPARED TO THE EXPERIMENTAL RESULTS

It is well-known that plutonium is not only highly reac-
tive, but also highly radioactive and toxic. Experimentally,
working on plutonium metal demands special facilities. So,
it is very difficult to conduct extensive experiments to study
the electronic structures and the other physical properties of
Pu [1–3]. Basically, most of the calculated results presented
above can be considered as critical predictions. In this section,
we would like to compare our data with the experimental
results (if available) and the previously theoretical results. We
hope that these comparisons will enhance the rationality and
significance of our predictions.

(a) (b)

FIG. 7. Comparisons of theoretical and experimental density of
states for Pu. (a) α-Pu. (b) δ-Pu. The calculated spectra are rep-
resented as solid blue lines. The experimental data (filled orange
circles) are taken from Ref. [92]. The Fermi level EF is represented
by vertical dashed line.

Band structures and spectral functions. As far as we know,
nowadays only the photoemission spectra for α-Pu and δ-Pu
have been measured [6,92,104–109]. No ARPES experiments
for Pu were reported in the public literatures. In Fig. 7,
we make a detailed comparison between the theoretical and
experimental spectra. For α-Pu, one has very good agreement
between the experimental and theoretical spectra between
−4.0 eV and the Fermi level. Especially, our spectrum shows
a peak near −1.0 eV, which is consistent with the experiment
[92] but contrary to the previous DFT + DMFT calculations
which employed the simple T -matrix fluctuation-exchange
approximation as the quantum impurity solver [58]. For δ-Pu,
the calculated spectrum agrees quite well with the experiment
in the vicinity of Fermi level. For lower energies below
−0.5 eV, the agreement is less satisfactory. As already pointed
out in both the DFT + DMFT studies [54] and photoe-
mission experiments [6,92,104–109] of δ-Pu, there are two
additional satellite peaks below the Fermi level (ω ∼ −0.5
and −1.0 eV). However, our spectral function only exhibits
a weak single peak near −1.0 eV. Interestingly, we considered
the atomic eigenstates with N ∈ [3, 7] in the present calcula-
tions. Nevertheless, if we try to restrict the atomic eigenstates
to satisfy N ∈ [4, 6], the discrepancy between theory and
experiment disappears and we can reproduce the double-peak
structure near −1.0 eV (see Fig. 8). Next we will discuss
this issue in depth. Besides, we identify a few broad peaks
around -2.0 eV in the spectral function. Though these peaks
have been pointed out by Pourovskii et al. [58], Gorelov
et al. [110], and Shim et al. [54,56] in their prior DFT +
DMFT studies as well, they are all missing in the experimental
spectra. According to Fig. 3, these peaks do not stem from the
5 f states. It is the spd conduction states who make significant
contributions to the photoemission spectra in this region. Fi-
nally, we would like to point out that the experimental spectra
for α-Pu and δ-Pu are remarkably similar (though their crystal
volumes, lattice structures, and mechanical properties are a bit
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FIG. 8. 5 f density of states for δ-Pu. Here, the spectra obtained
by considering the N ∈ [3, 7] and N ∈ [4, 6] atomic eigenstates are
represented as blue and orange solid lines, respectively. The former
is shifted upward as a whole. The vertical dashed line (black) means
the Fermi levels EF . In this figure, the two-peak structure between−2
and 0 eV is labeled (A and B).

different), besides δ-Pu has a sharper and narrower Kondo
peak than α-Pu. However, we can easily distinguish the calcu-
lated spectral functions of α-Pu and δ-Pu, since the difference
is very apparent.

Valence state fluctuations. Next, let us concentrate on the
ground state 5 f weights of α- and δ-Pu. The calculated and
experimental data for the proportions of 5 f 4-5 f 7 configura-
tions are listed in Table IV. For α-Pu, overall the experimental
data are in accordance with our prediction, besides the pro-
portion of 5 f 4 is somewhat overestimated while those of 5 f 5

and 5 f 6 are slightly underestimated. For δ-Pu, the available
DFT + DMFT and experimental data are quite diverse. Some

TABLE IV. Distributions of 5 f configurations for α- and δ-Pu.

α-Pu

Method 5 f 3 5 f 4 5 f 5 5 f 6 5 f 7

DFT + DMFTa 00.89% 15.78% 55.23% 26.02% 02.08%
Experimentsb 9.6% 58.8% 31.6%
Experimentsc 19.0% 46.0% 35.0%

δ-Pu

Method 5 f 3 5 f 4 5 f 5 5 f 6 5 f 7

DFT + DMFTa 00.55% 14.92% 70.76% 13.40% 00.37%
DFT + DMFTd 7.5% 62.1% 30.4%
DFT + DMFTe 12.0% 66.0% 21.0%
Experimentsb 5.7% 66.4% 27.8%
Experimentsc 17.0% 38.0% 45.0%

aThe present work.
bSee Ref. [96]. Using the core-hole photoemission spectroscopy.
cSee Ref. [95]. Using the resonant x-ray emission spectroscopy.
dSee Ref. [54].
eSee Ref. [55].

data deviate from the others apparently. For example, the data
obtained via resonant x-ray emission spectroscopy suggest
that the 5 f electronic configuration fractions for the 5 f 4,
5 f 5, and 5 f 6 states are 17%, 38%, and 45%, respectively
(see Fig. 5 as well) [95]. Though the δ-Pu sample used in
this experiment is not pure element (containing 1.9 at.% Ga),
such a large fraction for 5 f 6 configuration is hard to be
understood and contrast to most of the DFT + DMFT [54,55]
and experimental results [96]. Anyhow, our calculated results
for δ-Pu are excellently consistent with the very recent DFT
+ DMFT results [55], and close to the experimental results
obtained by using the core-hole photoemission spectroscopy
[96].

Error analysis. In general, our DFT + DMFT calculated
and experimental results are reasonably consistent. But obvi-
ous deviations are present. We believe that these discrepancies
between theory and experiment can be explained by the
following reasons: (i) Temperature effect. The photoemission
experiments for α-Pu and δ-Pu have been done at the same
temperature 80 K [92], while we carried out our DFT +
DMFT calculations for α-Pu and δ-Pu at 290 and 645 K
(see Table I), respectively. (ii) Mixture of α and δ phases.
As a matter of fact, pure δ-Pu is metastable or even unstable
below room temperature and the Pu δ-α transition easily
occurs [2]. In other words, one sample is supposed to be
pure δ phase, but it is actually a mixture of α and δ phases.
As mentioned before, Ga can stabilize the δ phase at low
temperature. However, due to the segregation effect of Ga
atom, the surface of δ phase Pu-Ga alloy usually tends to form
α phase like structure [3]. (iii) Limitations of DFT + DMFT
calculations. In order to let the computational resources be
affordable, we make some approximations in the calculations.
A few approximations are severe. For example, we ignore the
inequivalent Pu atoms in the α-, β-, and γ -Pu, and truncate the
atomic eigenstates (only those with N ∈ [3, 7] are kept). Even
we used the same Coulomb interaction parameters (U and JH)
for various phases of Pu (see Table I for more details). These
assumptions and approximations are probably major sources
of error and uncertainty of our calculated results.

VI. DISCUSSION

In this section, we would like to address several important
issues and problems.

A. Evolution of 5 f electron localization

According to the calculated results, we find that the 5 f
electronic structures of the six allotropes of Pu share a lot of
features. For example, the 5 f electrons are strongly correlated
with large electron effective masses m∗ and small renormal-
ization factors Z . They are in the midway of completely
itinerant and localized. The electronic correlation is orbital-
dependent. However, this is not the full story. The 5 f elec-
tronic structures of various phases of Pu are quite different.
On one hand, the low-temperature and low-symmetry phases
(α, β, and γ phases) are likely typical Racah metals. They
exhibit quasiparticle multiplets in the density of states at
the Fermi level. Their 5 f electrons favor the itinerant state
more or less. The valence state fluctuation and mixed-valence
behavior are quite remarkable, especially in the α phase. On

125123-11



LI HUANG AND HAIYAN LU PHYSICAL REVIEW B 101, 125123 (2020)

the other hand, in the high-temperature and high-symmetry
phases (δ, δ’, and ε phases), the quasiparticle multiplets are
merged into a single Kondo resonance peak. The 5 f electrons
become more localized and the valence state fluctuation are
somewhat restrained, especially in the δ and δ’ phases. In δ’-
Pu, the proportion of 5 f 5 configuration is the largest, while the
percentages of 5 f 4 and 5 f 6 configurations are the smallest.
These results are consistent with such a fact that the δ′ phase
has the largest atomic volume and the smallest density when
extrapolated to zero temperature [2] (and thus its 5 f electrons
are more close to fully localized) [69]. From the α to δ (δ’)
phases, the lifetime for 5 f 5 states increases while the ones for
5 f 4 and 5 f 6 states decrease, we also expect a crossover for 5 f
electrons from itinerant state to partially localized state.

Finally, we would like to note that since the many-body
electronic effects in the α and β phases can be indeed site
selective (we will discuss this issue in the following), some of
the Pu sites in the α and β phases could be strongly correlated,
surpassing the correlation effects in δ-Pu and δ′-Pu. Recently,
L. Havela et al. tried to measure the specific heat of ξ -Pu19Os,
which is regarded as a close analog to β-Pu [111]. They
found that the linear electronic coefficient γ (which is related
to the quasiparticle density of states at the Fermi level) of
it is larger than the one of δ-Pu. Thus they deduced that
β-Pu is probably the most strongly correlated Pu phase. The
site-selective electronic structures of β-Pu may be a key to
understand this abnormal phenomenon.

B. Truncation approximation for atomic eigenstates

In the present DFT + DMFT calculations, we employed
the numerically exact CT-HYB quantum Monte Carlo al-
gorithm as quantum impurity solver to solve the Anderson
impurity models for 5 f electrons. The most time-consuming
part for the CT-HYB quantum impurity solver is to com-
pute the local trace which involves a sequence of matrix
multiplications between the time evolution operators and
creation/annihilation operators for the impurity electrons
[81–83]. For the 5 f shell, the size of operator matrix is 214 ×
214 which requires huge computer memory to save the data,
and one typically needs to multiply a few hundred of these
matrices at each Monte Carlo step. We couldn’t imagine how
to simulate this without any approximations. In order to over-
come this bottleneck, we chose some good quantum numbers
such as N and J to divide the whole Hilbert space into sub-
blocks to meet the memory limit [83], and then utilized the
Lazy trace evaluation trick [84] to accelerate the calculation.
Even though these strategies are used, the calculations are
still unaffordable. Certainly, we need to adopt more aggres-
sive approximations. In the present work, we considered the
truncation approximation for the atomic eigenstates to gain
further acceleration. The truncation we adopted is in relation
to the nominal occupancy N of atomic eigenstates. Explicitly,
only those atomic eigenstates whose occupancy N satisfy
N ∈ [Nlow, Nhigh] will be taken into accounts in the local trace
evaluation. Obviously, though such a truncation will improve
the computational efficiency greatly, it will introduce some
uncontrollable biases at the same time. Therefore we have to
evaluate carefully how large the discrepancies are due to this
severe truncation.

As for Pu, the situation is in a dilemma. The nominal 5 f
occupancy is about 5, so one of the most radical truncations is
to consider the N ∈ [4, 6] atomic eigenstates, which can save
a lot of computer resources indeed. A somewhat safe choice
is to retain the N ∈ [3, 7] atomic eigenstates, but it consumes
much more memories and CPU hours. Which one is better? At
first, let’s go back to Fig. 4. We discover that the contributions
from the N = 3 and N = 7 atomic eigenstates (i.e., the 5 f 3

and 5 f 7 electronic configurations) are considerable. Specially,
for α-Pu and β-Pu, the contributions from the N = 7 atomic
eigenstates are 2.08% and 0.67%, respectively, which couldn’t
be simply ignored. In α-Pu and β-Pu, the 5 f electrons are less
localized and the valence state fluctuations are more conspicu-
ous. Hence the N = 3 and N = 7 atomic eigenstates are more
important for them. Second, let’s focus on the density of states
of δ-Pu again. We recalculated it with two different trunca-
tions, i.e., N ∈ [4, 6] and N ∈ [3, 7]. The results are compared
in Fig. 8. The spectra obtained within N ∈ [4, 6] truncation
show multiple sharp peaks near EF which are associated with
the atomic multiplets. Particularly, in the energy range of
[−2 eV, 0 eV], we observed two additional peaks besides the
Kondo resonance peak at EF . The two peaks belong to the
5 f5/2 and 5 f7/2 states, respectively, and are marked with ver-
tical red lines in Fig. 8. Note that the two peaks were already
identified in the early DFT + DMFT calculations [54] and
photoemission experiments [92,104–109]. On the contrary,
if we consider more atomic eigenstates with N ∈ [3, 7], the
calculated spectrum looks slightly different. In the spectrum,
the peaks from the atomic multiplets are replaced with a broad
“hump.” The Kondo resonance peak still exists, but the two
additional peaks between −2.0 and 0.0 eV are merged into a
single shoulder peak which is consistent with the very recent
DFT + DMFT results [55]. Since the more atomic eigenstates
are included in the calculations, the more virtual charge
fluctuations between different atomic eigenstates contribute to
the spectrum. Finally, the new spectrum will become broader,
and more and more featureless. Actually, it just looks like
an envelop of the old one on the whole. Nevertheless, we
believe that even for δ- and δ’-Pu which have more localized
5 f electrons than α- and β-Pu, the influences from the N = 3
and N = 7 atomic eigenstates are still remarkable. So it is
essential to keep them in the DFT + DMFT calculations
for Pu at a cost of greatly increasing computational resource
consumptions.

C. Negative sign problem

In the present work, we chose CT-HYB as quantum im-
purity solver, which is based on a stochastic sampling of
a perturbation expansion in the impurity-bath hybridization
parameter [83]. Note that the CT-HYB quantum impurity
solver is not sign-problem-free. In other words, for a given
term in the perturbation expansion series, the weight might
be not always positive. This is the well-known negative sign
problem for fermionic quantum Monte Carlo algorithms [82].
It will deteriorate the computational accuracy tremendously.
The negative sign problem even gets worse when spin-orbital
coupling is activated, system temperature and crystal sym-
metry are lowered, and off-diagonal terms in hybridization
function emerge. In our calculations, we find that the averaged
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(a) (b)

FIG. 9. Imaginary parts of the Matsubara self-energy functions
of Pu in the low-frequency regime by DFT + DMFT calculations.
(a) 5 f5/2 components. (b) 5 f7/2 components. Note that in these
DFT + DMFT (CT-HYB) calculations, the weights of Monte Carlo
sampling are fixed to be positive.

signs 〈s〉 are around 0.50 (α), 0.52 (β), 0.61 (γ ), 0.76 (δ), 0.82
(δ’), 0.82 (ε). These are still acceptable. However, for the α,
β, and γ phases, the negative sign problems are almost out of
control.

We have to increase the computational time as much as
possible to relieve the impact of negative sign problem. An al-
ternative method is to ignore the negative weights completely.
That is to say, we can enforce the weights of Monte Carlo
sampling to be positive. In order to validate this idea, we
performed benchmark calculations with the same parameters
and setups (see Table I). Most of the calculated results, such
as band structures, density of states, and valence state his-
tograms are similar. It seems that they are not sensitive to the
negative sign problem. However, we find some extraordinary
phenomena in the Matsubara self-energy functions. In Fig. 9,
new Matsubara self-energy functions are shown. They were
obtained in the benchmark calculations without negative sign
problem. Compared to the Matsubara self-energy functions
shown in Fig. 6, Im�5/2(iωn) is quite close. But the low-
frequency behaviors of Im�7/2(iωn) for the α, β, and γ

phase are a bit exceptional. Their Im�7/2(iωn) increase at
first, reach maximum values when ωn ≈ 0.4, and then de-
crease gradually with respect to ωn. Note that the negative
sign problem is much more severe in these phases than the
high-temperature phases. Clearly, ignoring the negative sign
problem in the present cases leads to unphysical Matsubara
self-energy functions. And in a very recent DFT + DMFT
study for the β phase, similar Matsubara self-energy functions
like those shown in Fig. 9 are observed as well. So, we believe
that the negative sign problem must be carefully taken into
consideration once the CT-HYB quantum impurity solver is
adopted in the DFT + DMFT studies of f -electron systems
(lanthanides and actinides), in which the spin-orbital coupling
is strong and the crystal structures are usually quite complex.

D. Site-dependent electronic structures

As mentioned before, the α, β, and γ phases contain
multiple nonequivalent Pu atoms. In principle, each nonequiv-

alent Pu atom is described by a unique quantum impurity
model, which should be solved individually in the framework
of DFT + DMFT approach [32,79]. Despite that the CT-
HYB quantum impurity solver is already the most power-
ful established impurity solver so far, solving the quantum
impurity problems for 5 f electrons (Pu) is still extremely
memory-consuming and time-consuming owing to the expo-
nentially increasing Hilbert space and severe negative sign
problem. So to study these low-symmetry phases using the
DFT + DMFT approach without any simplifications be-
comes a formidable task. This is also the major reason why
most of the previous DFT + DMFT calculations concern-
ing with Pu metal were conducted for the high-symmetry
δ phase. Actually, only a few years ago, Zhu et al. [61]
reported the first DFT + DMFT calculations for α-Pu. They
have discovered the site-resolved electronic structures. To the
best of our knowledge, it is the first time and perhaps the
unique one to address the electronic structures represented
by nonequivalent atoms in α-Pu by employing charge fully
self-consistent DFT + DMFT calculations. Their calcula-
tions cost huge computational resources (288 CPU cores,
1152 GB memory, and >2000 noninterrupted CPU wall-
clock hours). The latest advances were made by Brito et al.,
who studied the site-dependent electronic structures in the
β phase [65]. They employed the OCA quantum impurity
solver, which is faster than CT-HYB, but is not numerically
exact [32]. To carry out similar calculations for all allotropes
of Pu is far beyond the ability of computational resources
we owned. For this reason, in the present work, we have to
restrict ourselves to consider only the completely degenerated
Pu atoms. This assumption simplifies the calculations greatly,
but undoubtedly leads to deviations to some extent. A detailed
comparison was made between our results and those from
Zhu and Brito et al. Actually, the stripelike features seen
in the band structures of the α and β phases have counter-
parts in the site-resolved 5 f partial density of states. From
the site-resolved 5 f partial density of states, we can easily
distinguish the detailed structures of the stripelike features.
Overall, the deviations induced by such an assumption are
limited and controlled. Zhu and Brito et al. [61,65] have
revealed moderate site dependence in the electronic structures
of α-Pu and β-Pu. We thus expect that in the γ phase, the
5 f electronic structure would exhibit some kinds of nontrivial
site-dependent features. This is still an open and interesting
question. We will reexamine it in the future.

E. Similarities and differences between the f electronic
structures of Ce and Pu

We already knew, the mechanical and lattice dynamical
properties of Ce and Pu are somewhat similar [16,23–25,112–
118]. The electronic structures of Ce and Pu share many
similarities as well [86,119]. Here we will attempt to sum-
marize them as follows. First, both Ce and Pu are mixed-
valence strongly correlated metals with noninteger 4 f and
5 f occupations. Second, the low-temperature phases (α-Ce,
β-Ce, α-Pu, β-Pu, and γ -Pu) show stronger valence state
fluctuations and weaker f electronic correlation strengths.
On the contrary, in the high-temperature phases (γ -Ce, δ-
Ce, δ-Pu, δ′-Pu, and ε-Pu), f electrons tend to be more
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localized and manifest stronger electronic correlations. From
low temperature to high temperature, the f electrons become
more and more incoherent, and a itinerant-localized crossover
might emerge. Third, the 4 f (5 f ) electronic correlations are
orbital-dependent. Finally, the 4 f 0, 4 f 1, and 4 f 2 final states
in Ce correspond to the 5 f 4, 5 f 5, and 5 f 6 final states in Pu
[105]. The photoemission spectra of Ce and Pu display similar
features, i.e., the quasiparticle resonance peaks (4 f 1 → 4 f 2,
5 f 5 → 5 f 6) at low binding energy and broad Hubbard bands
(4 f 0 → 4 f 1, 5 f 4 → 5 f 5) at high binding energy.

The most remarkable difference for the electronic struc-
tures of Ce and Pu is that there are quasiparticle multiplets
in the low-temperature phases of Pu, while they are absent in
Ce [86]. The quasiparticle multiplets will strongly affect the
optical conductivity, resistivity, specific heat, and many other
physical properties of Pu [15]. Besides, the low-temperature
and low-symmetry phases of Pu are supposed to exhibit non-
trivial site-dependent electronic structures [61,65]. However,
for Ce, this possibility is already excluded theoretically. Very
recently, we examined the site dependence of the 4 f electronic
structure in the β phase of Ce, which has two nonequivalent
Ce atoms, via DFT + DMFT calculations. The calculated
results suggest that it does not exhibit a site-selective 4 f
localized state [86,119], opposite to our assumption.

VII. CONCLUDING REMARKS

In the present paper, we employed the ab initio many-body
approach, namely the charge fully self-consistent DFT +
DMFT method, to investigate the 5 f electronic structure of
strongly correlated Pu metal. We endeavored to calculate the
momentum-resolved spectral functions, total and 5 f partial
density of states, histograms of atomic eigenstates, x-ray
branching ratios, 5 f orbital occupancies, and Matsubara self-
energy functions for the six allotropes of Pu under ambient
pressure. On one hand, the calculated results are in well con-
sistent with the available experimental results. On the other
hand, most of the calculated results presented in this paper
can be regarded as essential predictions and require further
experimental or theoretical examinations. The major findings
of this work are as follows: (1) α-, β-, and γ -Pu belong to the
so-called Racah metals [65,93,94] which show quasiparticle
multiplets [91] near the Fermi level in the spectral functions.
While in the high-temperature phases (δ-, δ’-, and ε-Pu), the
quasiparticle multiplets merge into a single Kondo resonance
peak. (2) Plutonium is a typical mixed-valence metal. Its
valence state fluctuation is the strongest in the α phase, and
the weakest in the δ′ phase. (3) The 5 f electronic correlation
is orbital dependent. We define a new variable R to account for
the 5 f orbital differentiation. Further analysis reveals that the
5 f5/2 bands are more renormalized in the δ, δ′, and ε phases.

While in the α and β phases, so do the 5 f7/2 bands. (4) The
5 f electrons in δ′-Pu is the most localized, which matches up
the fact that δ′-Pu has the largest atomic volume when extrap-
olated to zero temperature [69]. (5) In order to obtain reliable
results, we must retain the contributions from N = 3 and 7
atomic eigenstates, and consider the negative sign problem
explicitly. (6) The site dependence of 5 f electronic structures
for the α, β, and γ phases is probably nontrivial. Finally, we
highlight the differences and similarities between Ce-4 f and
Pu-5 f electronic structures. These calculated results support
the conjecture that Pu lies on a knife edge of 5 f electron
localization, and the six allotropes of Pu are totally different
metals [31].

We have to admit that there are some limitations and sim-
plifications in our calculations. For instance, we ignore the site
dependence of 5 f electronic structures in the low-temperature
phases of Pu, we also make severe truncations in treating
the contributions of atomic eigenstates, the crystal structures
are not optimized, the phase transition and phase stability of
the six allotropes of Pu are not discussed, and so on. We will
try to overcome these challenges and problems in the future by
employing the recent advances in the DFT + DMFT approach
and its extensions. For example, the ab initio full cell GW +
DMFT method [120] could be a promising theoretical tool to
eliminate the uncertainty in Coulomb interaction parameters
and unveil site-dependent electronic structures of α, β, and
γ phases of Pu. Nevertheless, in the present calculations, we
not only reproduce the experimental results and provide some
useful supplements to the experiments, but also discover some
new physics and enrich our understanding about the extraor-
dinary properties of Pu. Our work demonstrates again that the
state-of-the-art DFT + DMFT method can be applied to study
the intricate and delicate 5 f electronic structures of strongly
correlated actinide metals quantitatively, shedding new light
on the ab initio calculations for lanthanides and actinides.
Besides Pu, notice that the electronic structures for most of the
other actinide metals (such as Pa, U, Np, Am, Cm, Bk, and Cf)
remain unclear in some ways. These elements show complex
phase diagrams and phase transitions as a function of tempera-
ture and pressure [27,121–124]. Therefore it would be highly
desired to apply the DFT + DMFT method to survey their
lattice properties and electronic structures in the near future.
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Griveau, and R. Eloirdi, J. Phys.: Condens. Matter 30, 085601
(2018).

[112] A. V. Nikolaev and A. V. Tsvyashchenko, Phys. Usp. 55, 657
(2012).

[113] David C. Koskenmaki and Karl A. Gschneidner Jr., in Hand-
book on the Physics and Chemistry of Rare Earths, edited by
Karl A. Gschneidner Jr. and LeRoy Eyring (Elsevier, 1978),
Vol. 1, Chap. 4.

[114] M. Krisch, D. L. Farber, R. Xu, D. Antonangeli, C. M. Aracne,
A. Beraud, T.-C. Chiang, J. Zarestky, D. Y. Kim, E. I. Isaev,
R. Ahuja, and B. Johansson, Proc. Natl. Acad. Sci. USA 108,
9342 (2011).

125123-16

https://doi.org/10.1103/PhysRevB.76.245118
https://doi.org/10.1103/PhysRevB.76.245118
https://doi.org/10.1103/PhysRevB.76.245118
https://doi.org/10.1103/PhysRevB.76.245118
https://doi.org/10.1103/PhysRevB.91.165126
https://doi.org/10.1103/PhysRevB.91.165126
https://doi.org/10.1103/PhysRevB.91.165126
https://doi.org/10.1103/PhysRevB.91.165126
https://doi.org/10.1103/PhysRevB.97.039903
https://doi.org/10.1103/PhysRevB.97.039903
https://doi.org/10.1103/PhysRevB.97.039903
https://doi.org/10.1103/PhysRevB.97.039903
https://doi.org/10.1103/PhysRevB.99.125113
https://doi.org/10.1103/PhysRevB.99.125113
https://doi.org/10.1103/PhysRevB.99.125113
https://doi.org/10.1103/PhysRevB.99.125113
https://doi.org/10.1088/1361-648X/aadc7a
https://doi.org/10.1088/1361-648X/aadc7a
https://doi.org/10.1088/1361-648X/aadc7a
https://doi.org/10.1088/1361-648X/aadc7a
https://doi.org/10.1103/PhysRevB.85.035133
https://doi.org/10.1103/PhysRevB.85.035133
https://doi.org/10.1103/PhysRevB.85.035133
https://doi.org/10.1103/PhysRevB.85.035133
https://doi.org/10.1103/PhysRevB.79.075114
https://doi.org/10.1103/PhysRevB.79.075114
https://doi.org/10.1103/PhysRevB.79.075114
https://doi.org/10.1103/PhysRevB.79.075114
https://doi.org/10.1103/PhysRevX.5.011008
https://doi.org/10.1103/PhysRevX.5.011008
https://doi.org/10.1103/PhysRevX.5.011008
https://doi.org/10.1103/PhysRevX.5.011008
https://doi.org/10.1103/PhysRevLett.115.196403
https://doi.org/10.1103/PhysRevLett.115.196403
https://doi.org/10.1103/PhysRevLett.115.196403
https://doi.org/10.1103/PhysRevLett.115.196403
https://doi.org/10.1103/PhysRevB.89.035104
https://doi.org/10.1103/PhysRevB.89.035104
https://doi.org/10.1103/PhysRevB.89.035104
https://doi.org/10.1103/PhysRevB.89.035104
https://doi.org/10.1103/PhysRevB.76.165106
https://doi.org/10.1103/PhysRevB.76.165106
https://doi.org/10.1103/PhysRevB.76.165106
https://doi.org/10.1103/PhysRevB.76.165106
https://doi.org/10.1103/PhysRevB.85.155129
https://doi.org/10.1103/PhysRevB.85.155129
https://doi.org/10.1103/PhysRevB.85.155129
https://doi.org/10.1103/PhysRevB.85.155129
https://doi.org/10.1103/PhysRevB.87.045109
https://doi.org/10.1103/PhysRevB.87.045109
https://doi.org/10.1103/PhysRevB.87.045109
https://doi.org/10.1103/PhysRevB.87.045109
https://doi.org/10.1080/14786430902720960
https://doi.org/10.1080/14786430902720960
https://doi.org/10.1080/14786430902720960
https://doi.org/10.1080/14786430902720960
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/PhysRevB.81.195107
https://doi.org/10.1103/PhysRevB.81.195107
https://doi.org/10.1103/PhysRevB.81.195107
https://doi.org/10.1103/PhysRevB.81.195107
https://doi.org/10.1103/PhysRevLett.115.256402
https://doi.org/10.1103/PhysRevLett.115.256402
https://doi.org/10.1103/PhysRevLett.115.256402
https://doi.org/10.1103/PhysRevLett.115.256402
https://doi.org/10.1103/PhysRevLett.97.076405
https://doi.org/10.1103/PhysRevLett.97.076405
https://doi.org/10.1103/PhysRevLett.97.076405
https://doi.org/10.1103/PhysRevLett.97.076405
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1103/PhysRevB.75.155113
https://doi.org/10.1103/PhysRevB.75.155113
https://doi.org/10.1103/PhysRevB.75.155113
https://doi.org/10.1103/PhysRevB.75.155113
https://doi.org/10.1103/PhysRevB.90.075149
https://doi.org/10.1103/PhysRevB.90.075149
https://doi.org/10.1103/PhysRevB.90.075149
https://doi.org/10.1103/PhysRevB.90.075149
https://doi.org/10.1016/0370-1573(95)00074-7
https://doi.org/10.1016/0370-1573(95)00074-7
https://doi.org/10.1016/0370-1573(95)00074-7
https://doi.org/10.1016/0370-1573(95)00074-7
https://doi.org/10.1103/PhysRevB.99.045122
https://doi.org/10.1103/PhysRevB.99.045122
https://doi.org/10.1103/PhysRevB.99.045122
https://doi.org/10.1103/PhysRevB.99.045122
https://doi.org/10.1103/PhysRevLett.96.226402
https://doi.org/10.1103/PhysRevLett.96.226402
https://doi.org/10.1103/PhysRevLett.96.226402
https://doi.org/10.1103/PhysRevLett.96.226402
https://doi.org/10.1103/PhysRevB.74.245125
https://doi.org/10.1103/PhysRevB.74.245125
https://doi.org/10.1103/PhysRevB.74.245125
https://doi.org/10.1103/PhysRevB.74.245125
https://doi.org/10.1103/PhysRevB.23.5048
https://doi.org/10.1103/PhysRevB.23.5048
https://doi.org/10.1103/PhysRevB.23.5048
https://doi.org/10.1103/PhysRevB.23.5048
https://doi.org/10.1103/PhysRevB.81.035105
https://doi.org/10.1103/PhysRevB.81.035105
https://doi.org/10.1103/PhysRevB.81.035105
https://doi.org/10.1103/PhysRevB.81.035105
https://doi.org/10.1103/PhysRevB.62.1773
https://doi.org/10.1103/PhysRevB.62.1773
https://doi.org/10.1103/PhysRevB.62.1773
https://doi.org/10.1103/PhysRevB.62.1773
https://doi.org/10.1038/srep15429
https://doi.org/10.1038/srep15429
https://doi.org/10.1038/srep15429
https://doi.org/10.1038/srep15429
https://doi.org/10.1103/PhysRevB.87.020505
https://doi.org/10.1103/PhysRevB.87.020505
https://doi.org/10.1103/PhysRevB.87.020505
https://doi.org/10.1103/PhysRevB.87.020505
https://doi.org/10.1073/pnas.1200725109
https://doi.org/10.1073/pnas.1200725109
https://doi.org/10.1073/pnas.1200725109
https://doi.org/10.1073/pnas.1200725109
https://doi.org/10.1103/PhysRevB.82.045114
https://doi.org/10.1103/PhysRevB.82.045114
https://doi.org/10.1103/PhysRevB.82.045114
https://doi.org/10.1103/PhysRevB.82.045114
https://doi.org/10.1103/PhysRevB.99.045109
https://doi.org/10.1103/PhysRevB.99.045109
https://doi.org/10.1103/PhysRevB.99.045109
https://doi.org/10.1103/PhysRevB.99.045109
https://doi.org/10.1088/0034-4885/44/1/001
https://doi.org/10.1088/0034-4885/44/1/001
https://doi.org/10.1088/0034-4885/44/1/001
https://doi.org/10.1088/0034-4885/44/1/001
https://doi.org/10.1103/PhysRevLett.93.097401
https://doi.org/10.1103/PhysRevLett.93.097401
https://doi.org/10.1103/PhysRevLett.93.097401
https://doi.org/10.1103/PhysRevLett.93.097401
https://doi.org/10.1103/PhysRevB.73.033109
https://doi.org/10.1103/PhysRevB.73.033109
https://doi.org/10.1103/PhysRevB.73.033109
https://doi.org/10.1103/PhysRevB.73.033109
https://doi.org/10.1103/PhysRevA.38.1943
https://doi.org/10.1103/PhysRevA.38.1943
https://doi.org/10.1103/PhysRevA.38.1943
https://doi.org/10.1103/PhysRevA.38.1943
https://doi.org/10.1209/0295-5075/85/17007
https://doi.org/10.1209/0295-5075/85/17007
https://doi.org/10.1209/0295-5075/85/17007
https://doi.org/10.1209/0295-5075/85/17007
https://doi.org/10.1103/PhysRevB.78.245101
https://doi.org/10.1103/PhysRevB.78.245101
https://doi.org/10.1103/PhysRevB.78.245101
https://doi.org/10.1103/PhysRevB.78.245101
https://doi.org/10.1103/PhysRevB.68.155109
https://doi.org/10.1103/PhysRevB.68.155109
https://doi.org/10.1103/PhysRevB.68.155109
https://doi.org/10.1103/PhysRevB.68.155109
https://doi.org/10.1103/PhysRevB.71.165101
https://doi.org/10.1103/PhysRevB.71.165101
https://doi.org/10.1103/PhysRevB.71.165101
https://doi.org/10.1103/PhysRevB.71.165101
https://doi.org/10.1088/1742-6596/273/1/012023
https://doi.org/10.1088/1742-6596/273/1/012023
https://doi.org/10.1088/1742-6596/273/1/012023
https://doi.org/10.1088/1742-6596/273/1/012023
https://doi.org/10.1103/PhysRevB.65.235118
https://doi.org/10.1103/PhysRevB.65.235118
https://doi.org/10.1103/PhysRevB.65.235118
https://doi.org/10.1103/PhysRevB.65.235118
https://doi.org/10.1103/PhysRevB.75.035101
https://doi.org/10.1103/PhysRevB.75.035101
https://doi.org/10.1103/PhysRevB.75.035101
https://doi.org/10.1103/PhysRevB.75.035101
https://doi.org/10.1088/0953-8984/20/12/125204
https://doi.org/10.1088/0953-8984/20/12/125204
https://doi.org/10.1088/0953-8984/20/12/125204
https://doi.org/10.1088/0953-8984/20/12/125204
https://doi.org/10.1103/PhysRevB.82.085117
https://doi.org/10.1103/PhysRevB.82.085117
https://doi.org/10.1103/PhysRevB.82.085117
https://doi.org/10.1103/PhysRevB.82.085117
https://doi.org/10.1088/1361-648X/aaa520
https://doi.org/10.1088/1361-648X/aaa520
https://doi.org/10.1088/1361-648X/aaa520
https://doi.org/10.1088/1361-648X/aaa520
https://doi.org/10.3367/UFNe.0182.201207b.0701
https://doi.org/10.3367/UFNe.0182.201207b.0701
https://doi.org/10.3367/UFNe.0182.201207b.0701
https://doi.org/10.3367/UFNe.0182.201207b.0701
https://doi.org/10.1073/pnas.1015945108
https://doi.org/10.1073/pnas.1015945108
https://doi.org/10.1073/pnas.1015945108
https://doi.org/10.1073/pnas.1015945108


NATURE OF THE 5 f ELECTRONIC STRUCTURE OF … PHYSICAL REVIEW B 101, 125123 (2020)

[115] L. Huang and C.-A. Chen, J. Phys.: Condens. Matter 19,
476206 (2007).

[116] C. Stassis, T. Gould, O. D. McMasters, K. A. Gschneidner,
and R. M. Nicklow, Phys. Rev. B 19, 5746 (1979).

[117] C. Stassis, C. K. Loong, O. D. McMasters, and R. M. Nicklow,
Phys. Rev. B 25, 6485 (1982).

[118] I. Loa, E. I. Isaev, M. I. McMahon, D. Y. Kim, B. Johansson,
A. Bosak, and M. Krisch, Phys. Rev. Lett. 108, 045502 (2012).

[119] H. Lu and L. Huang, J. Phys.: Condens. Matter 30, 395601
(2018).

[120] T. Zhu and G. K.-L. Chan, arXiv:2003.01349 [cond-mat].

[121] S. Heathman, R. G. Haire, T. Le Bihan, A. Lindbaum, M. Idiri,
P. Normile, S. Li, R. Ahuja, B. Johansson, and G. H. Lander,
Science 309, 110 (2005).

[122] A. Lindbaum, S. Heathman, K. Litfin, Y. Méresse, R. G.
Haire, T. Le Bihan, and H. Libotte, Phys. Rev. B 63, 214101
(2001).

[123] S. Heathman, T. Le Bihan, S. Yagoubi, B. Johansson, and R.
Ahuja, Phys. Rev. B 87, 214111 (2013).

[124] S. Heathman, R. G. Haire, T. Le Bihan, A. Lindbaum, K.
Litfin, Y. Méresse, and H. Libotte, Phys. Rev. Lett. 85, 2961
(2000).

125123-17

https://doi.org/10.1088/0953-8984/19/47/476206
https://doi.org/10.1088/0953-8984/19/47/476206
https://doi.org/10.1088/0953-8984/19/47/476206
https://doi.org/10.1088/0953-8984/19/47/476206
https://doi.org/10.1103/PhysRevB.19.5746
https://doi.org/10.1103/PhysRevB.19.5746
https://doi.org/10.1103/PhysRevB.19.5746
https://doi.org/10.1103/PhysRevB.19.5746
https://doi.org/10.1103/PhysRevB.25.6485
https://doi.org/10.1103/PhysRevB.25.6485
https://doi.org/10.1103/PhysRevB.25.6485
https://doi.org/10.1103/PhysRevB.25.6485
https://doi.org/10.1103/PhysRevLett.108.045502
https://doi.org/10.1103/PhysRevLett.108.045502
https://doi.org/10.1103/PhysRevLett.108.045502
https://doi.org/10.1103/PhysRevLett.108.045502
https://doi.org/10.1088/1361-648X/aadc7c
https://doi.org/10.1088/1361-648X/aadc7c
https://doi.org/10.1088/1361-648X/aadc7c
https://doi.org/10.1088/1361-648X/aadc7c
http://arxiv.org/abs/arXiv:2003.01349
https://doi.org/10.1126/science.1112453
https://doi.org/10.1126/science.1112453
https://doi.org/10.1126/science.1112453
https://doi.org/10.1126/science.1112453
https://doi.org/10.1103/PhysRevB.63.214101
https://doi.org/10.1103/PhysRevB.63.214101
https://doi.org/10.1103/PhysRevB.63.214101
https://doi.org/10.1103/PhysRevB.63.214101
https://doi.org/10.1103/PhysRevB.87.214111
https://doi.org/10.1103/PhysRevB.87.214111
https://doi.org/10.1103/PhysRevB.87.214111
https://doi.org/10.1103/PhysRevB.87.214111
https://doi.org/10.1103/PhysRevLett.85.2961
https://doi.org/10.1103/PhysRevLett.85.2961
https://doi.org/10.1103/PhysRevLett.85.2961
https://doi.org/10.1103/PhysRevLett.85.2961

