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A critical point of the energy dispersion is the momentum where electron velocity vanishes. At the
corresponding energy, the density of states (DOS) exhibits nonanalyticity such as divergence. Critical points can
be first classified as ordinary and high-order ones, and the ordinary critical points have been studied thoroughly
by Léon van Hove, whose DOS is particle-hole symmetric and logarithmically divergent. In this work, we
describe and classify high-order critical points based on topology, scaling, and symmetry. We show that
high-order critical points can have power-law-divergent DOS with particle-hole asymmetry, and can be realized
at generic or symmetric momenta by tuning a few parameters such as twist angle, strain, pressure, and/or external
fields.
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I. INTRODUCTION

The density of states (DOS) of a solid plays an important
role in the thermodynamic properties. A large DOS can en-
hance response functions such as optical absorption and heat
capacity at the single-particle level, and magnify various elec-
tronic instabilities such as magnetism and superconductivity
with interactions. DOS can also affect transport properties
significantly.

The DOS in the energy domain is determined by band
dispersion in the Brillouin zone (BZ), and large DOS is
usually related to the so-called critical point in BZ, where
electron velocity vanishes and DOS exhibits nonanalyticity
such as divergence at the corresponding energy. Since electron
velocity is zero, the expansion of energy dispersion near a
critical point will be at least second order in momentum
deviation. When the second-order terms are nondegenerate,
we call this critical point an ordinary one, otherwise a high-
order critical point.

Léon van Hove studied the ordinary critical points in the
context of phonons [1], where he found, in two dimensions
(2D), due to the nontrivial topology of BZ, every smooth
energy dispersion will have at least two saddle points if critical
points are all ordinary. At the corresponding energy, DOS is
logarithmically divergent and is now known as the van Hove
singularity (VHS).

The high-order critical points have been proposed occa-
sionally in specific materials under different names in the
context of DOS singularity, including the so-called extended
VHS [2–8], multicritical points [9–12], and high-order VHS
[13]. At the energy of a high-order critical point, the DOS
can be power-law divergent, stronger than ordinary VHS, and
hence we call it a high-order VHS of DOS.

In this work, we provide systematic analysis of high-order
critical points in an isolated band. We mainly focus on 2D,
but also include one-dimensional and three-dimensional cases
for completeness. Our analysis is based on three general
principles: Topology, scaling, and symmetry.

Topology of a critical point describes the asymptotic be-
havior away from the point, which has been applied by van
Hove in studying ordinary critical points. When critical points
are not limited to ordinary ones, topology still applies, and
the general theory includes van Hove’s results as a corollary.
Scaling and symmetry of a critical point describe the asymp-
totic behavior close to the point, which are beyond van Hove’s
framework.

We find that high-order critical points can be generally
realized by tuning the system with one or more parameter
such as twist angle, strain, pressure, and/or external fields.
When the critical point is at a generic point without addi-
tional symmetries, the number of tuning parameters is, in
fact, determined by scaling as well. The number of tuning
parameters can be reduced when the high-order critical point
is at a symmetric point.

Recent experimental progress in two-dimensional moiré
superlattices such as twisted bilayer graphene [14–17] and
graphene heterostructures [18–21] has enabled us to contin-
uously tune electronic band structures in two-dimensional
systems, where high-order VHS can be realized at symmetric
points [13] or generic positions [22], and could be relevant
to experimentally observed insulating and superconducting
phases at magic angle [14–16].

This work is about the single-particle physics at zero tem-
perature. Interaction effects between ordinary saddle points
have been studied intensively [23–32], and some theoretical
treatments have been carried out for high-order critical points
[9,33]. The high-order critical points can also affect transport
properties at finite temperature such as the thermoelectric
effect [34].

This paper is structured as follows. In Sec. II we de-
fine ordinary and high-order critical points [1,13]. We then
describe the topology, scaling, and symmetry of (high-
order) critical points in one dimension (1D) (Sec. III), 2D
(Sec. IV), and three dimesions (3D) (Sec. V), respectively.
Finally in Sec. VI we focus on high-order critical points
that can be realized by tuning one parameter. Our results
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also apply to other quasiparticles such as phonons and
magnons.

II. ORDINARY AND HIGH-ORDER CRITICAL POINTS

A critical point is the momentum where electron velocity
vanishes, which can be local extrema or saddle points of the
energy dispersion. Throughout this paper we set the critical
point to be at zero energy E = 0 and zero momentum p = 0
if not specified otherwise.

One can expand the energy dispersion in the vicinity of
p = 0. To the second order, the Taylor expansion is

E = Di j pi p j, (1)

where D is the symmetric Hessian matrix. Eqquation (1) is
homogeneous and second order, satisfying E (λ

1
2 px, λ

1
2 py) =

λE (px, py) with arbitrary λ > 0. By a linear coordinate trans-
form p̃ = U p [U is a rotation matrix in SO(2)], the dispersion
can be written as the canonical form in the new coordinate

E = α p̃2
x + β p̃2

y, (2)

where α, β �= 0 are eigenvalues of D. When α, β > 0 the
critical point is a local minimum, when α, β < 0 a local
maximum, and when αβ < 0 a saddle point.

At a given energy, the energy contour near an extremum
(minimum or maximum) is a closed loop, and the DOS near
an extremum has a discontinuity at E = 0. The energy contour
near an ordinary saddle point consists of two curves, which
intersects at p = 0 when E = 0. The DOS near such saddle
point is logarithmically divergent [1].

Since αβ �= 0, the critical point is called ordinary, which
is a nondegenerate quadratic form of the momentum (px, py).
When all critical points are ordinary (1), due to the toric
topology of the two-dimensional Brilluoin zone, there exist
at least one minimum, one maximum, and two saddle points
[1]. To illustrate this, one can draw energy contours on the
torus as shown in Fig. 1. Since the torus is finite, the contours
will start and end with points, which correspond to a minimum
and a maximum. Furthermore, there are two types of energy
contours on the torus, i.e., the contractible and noncontractible
loops. By continuity, there will exist two transition points
where a contractible loop bifurcates into two noncontractible
loops, which correspond to two ordinary saddle points.

However, the topological argument above in fact only
guarantees the existence of critical momentum points, but
does not specify the detailed dispersion in their vicinity. When
the energy dispersion is tuned continuously with one or more
external parameters (such as pressure, strain, displacement
field, magnetic field. etc.), the quadratic form of energy dis-
persion near a critical point can be made degenerate

∇pE = 0, det D = 0, (3)

and then high-order terms must be included in the Taylor ex-
pansion. The resulting high-order critical point is the subject
of this study.

As a concrete example, we consider the high-order critical
point introduced in Ref. [13], encountered when one of the
quadratic coefficients is tuned to zero,

E = αp2
x + γ px p2

y + κ p4
y. (4)

FIG. 1. Energy contours of a smooth energy dispersion defined
on the torus.

This dispersion is quasihomogeneous with scaling property
E (λ

1
2 px, λ

1
4 py) = λE (px, py). Under the nonlinear coordinate

transform p̃x = px + γ p2
y/(2α), p̃y = py, the dispersion can

be recast into the canonical form

E = α p̃2
x +

(
κ − γ 2

4α

)
p̃4

y. (5)

When 4ακ − γ 2 > 0 the critical point is a local minimum
(α > 0) or maximum (α < 0), and when 4ακ − γ 2 < 0 a
saddle point. The energy contour near an extremum is still
a closed loop, and the energy contour near a saddle point
is still formed by two curves. When 4ακ − γ 2 = 0, even
higher-order terms need to be included.

Unlike ordinary saddle points, the two energy contours
at energy E = 0 touch tangentially at the high-order sad-
dle point p = 0, and the DOS is power-law divergent with
exponent − 1

4 [13].
In addition to the difference in DOS divergence and scaling

property of energy dispersion, ordinary and high-order critical
points also exhibit different behaviors under perturbations.
Perturbations could generate new terms in the Taylor expan-
sion besides modifying the original dispersion. An ordinary
critical point is robust under perturbations, as zeroth-order
E0 and linear perturbation V · p only shift the momentum
and energy of critical point, second-order perturbations will
slightly modify the Hessian matrix, and third- or higher-order
perturbations do not affect the asymptotic behavior near p= 0.
In contrast, the high-order saddle point in Eq. (4) can split into
two ordinary saddle points and one local extrema under per-
turbations [13]. As will be shown later, the DOS divergence
and response to perturbations are both closely related to the
scaling behavior of energy dispersion.

Besides Eq. (4), there exists many other types of high-order
critical points, some of which require tuning more than one
parameter. We would like to classify different types of (high-
order) critical points within an isolated band and determine
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the appropriate Taylor expansion of energy dispersion in the
vicinity of the critical point p = 0:

E = Di j pi p j + �i jk pi p j pk + · · · . (6)

From the examples of ordinary and high-order critical points
discussed in this section, we find that scaling property is
important in determining the allowed form of dispersions near
critical points. In addition, the topology of the critical point
(i.e., saddle point or local extrema) constrains the sign of
coefficients in the Taylor expansion.

III. HIGH-ORDER CRITICAL POINTS IN 1D

As discussed above, our strategy is to use topology and
scaling to classify critical points. To illustrate our strategy
explicitly, we analyze critical points in 1D in terms of topol-
ogy and scaling. The dispersion can be easily written down as
E = Dn pn with n = 2 denoting ordinary and n � 3 denoting
high order, and we then need to determine integer n and
coefficient Dn by topology and scaling.

In 1D, the carrier is either a left-mover or a right-mover.
On the two sides away from a critical point p = 0, carriers can
have the same or opposite types of movers, which is described
by the topological index

I ≡ 1
2 [sgnv(+δ) − sgnv(−δ)], (7)

where v = dE/d p is the velocity and p = 0 is the only critical
point in the interval [−δ,+δ]. For critical point E = Dn pn, the
topological index is determined by the sign of coefficient I =
1
2 [1 + (−1)n]sgn(Dn). For example, the ordinary critical point
has topological index I = sgn(D2) = ± while a high-order
critical point n = 3 has topological index I = 0. In this way,
we relate both the integer n and coefficient Dn to topology.

As a byproduct, since our dispersion is defined with
periodic boundary condition, after winding around the BZ
(a circle), the velocity should go back to itself. As a result,
the total topological index over the whole BZ should be zero∑

i

Ii = 0. (8)

Since dispersion is bounded, it will at least have a minimum
and a maximum, which already satisfies the topological con-
straint (8). Hence there can be situations with no saddle points
in 1D. The results can be different in 2D and 3D as discussed
in later sections.

Next we find the scaling property E (λp) = Dn(λp)n =
λnE (p) is purely determined by the integer n. There are two
ways to reveal the scaling property. First, one can compute
the DOS ρ, which diverges ρ(E ) ∝ |E |ν with power-law ex-
ponent ν = 1

n − 1, for example, at an ordinary critical point
n = 2, ν = − 1

2 .
Second, we can add perturbations h j to the dispersion E =

Dn pn + ∑n−1
j=1 h j pj . As E is a polynomial of degree n, dE/d p

is of degree n − 1 and the equation dE/d p = 0 has at most
n − 1 real solutions. In other words, the critical point E (p) =
Dn pn will split into at most μ = n − 1 critical points under
perturbations.

In the above discussions, we derive topology and scaling
from the explicit form of energy dispersion. However, we can
also do it reversely, i.e., derive the explicit form of energy

dispersion from topology and scaling. This can be writ-
ten as the one-to-one correspondence (n, sgnDn) ↔ (I, ν) ↔
(I, μ), provided the compatibility conditions I = μ(mod 2)
and I2 � 1. Since |Dn| cannot be reproduced, the dispersion
obtained in this strategy is unique up to an invertible and
smooth coordinate transform.

We will employ this strategy and generalize results in this
section to 2D and 3D in Secs. IV and V, respectively, where
symmetry also constrains the form of energy dispersion.

IV. HIGH-ORDER CRITICAL POINTS IN 2D

In this section, we classify critical points and hence DOS
singularities of the two-dimensional Taylor expansion (6)
according to topology, scaling properties, and symmetry.

A. Topology

We now introduce an integer topological index for the
critical point p = 0 in 2D

I ≡ 1

2π
Im

˛
C

dvx + idvy

vx + ivy
, (9)

which is the winding number of the velocity field v = ∇pE
around the critical point 0. Here the counterclockwise contour
C encloses a single critical point 0 only. To ensure that
C always exists, it is assumed that the velocity field only
vanishes at isolated points. This condition is expected to hold
generically, as the alternative scenario of a line of critical
points generally requires tuning an infinite number of control
parameters.

As concrete examples, we can work out the velocity v =
2Dp of dispersion (1), and critical point p = 0 has topological
index I = sgn(det D) = ±1 for extrema (+) or saddle points
(−).

For the high-order dispersion (4), the velocity is v =
(2αpx + γ p2

y, 2γ px py + 4κ p3
y ) and the topological index of

critical point p = 0 is I = sgn(4ακ − γ 2).
In both cases, the topological index is invariant under the

coordinate transform of momentum (linear or nonlinear), as
long as it is invertible and smooth. In fact, the topological
index of an isolated critical point can be computed by the
following formula:

I = 1 −
⌊

ne + nh

2

⌋
, (10)

where ne(nh) is the number of segments in the energy contour
at E > 0 (E < 0) within the region enclosed by C, and �x�
denotes the largest integer smaller than or equal to x. From its
definition (9), we find the topological index is invariant under
energy inversion E → −E , which is reflected by the exchange
symmetry ne ↔ nh of Eq. (10).

To prove this formula, we just enumerate all cases of
isolated critical points. Near a local extremum, all the energy
contours are closed loops centered around the local extremum
itself, and we can then choose C to be an energy contour
at E �= 0. Since velocity vectors are perpendicular to energy
contours, the counterclockwise winding angle of the velocity
along C is 2π [Fig. 2(a)], and the topological index of a
local extremum is I = 1. Formula (10) is thus valid for local
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FIG. 2. Winding of velocity vector (blue arrows) along the coun-
terclockwise contour C (solid arrowed curves). In (a) local minimum
(left) and local maximum (right), C is the energy contour at E > 0 or
E < 0, respectively. In (b) and (c) saddle point, solid thick lines are
energy contours at E = 0 which divide the 2D plane into 2n sectors,
and the gray line Li connects energy contours Ci at E > 0 in sector
i and Ci+1 at E < 0 in sector i + 1, so that C = ∩2n

i=1(Ci ∩ Li ). In
(a), (b), and (c) the velocity vector is perpendicular to the energy
contour.

extrema where ne = 1, nh = 0 for minimum, and ne = 0,

nh = 1 for maximum.
On the contrary, near a saddle point, the energy contours

are not contractible. Instead, the energy contour at E = 0
consists of several curves intersecting at the critical point,
which divide the two-dimensional momentum space into dif-
ferent sectors. By continuity of the energy dispersion in 2D,
energy contours at E > 0 and E < 0 will form an alternating
pattern in different momentum sectors, as shown in Fig. 2(b).
Hence ne = nh ≡ n and there are in total 2n sectors labeled
by i = 1, . . . , 2n, such that the sign of energy dispersion in
sector i is (−)i. We then choose C to be formed by energy
contours Ci in all sectors, connected by lines Li near sector
boundaries, as shown in Fig. 2(c). Within each sector, the
winding angle of velocity vector along C is θi − π , where θi is
the angle of this sector. The total winding angle along C hence
reads

∑2n
i=1(θi − π ) = ∑2n

i=1 θi − 2nπ = 2π (1 − n), and the
topological index of a saddle point is thus a nonpositive
integer given by I = 1 − n � 0. Formula (10) hence also
applies to saddle points.

The total topological index of all critical points in the
whole momentum space reflects the topology of the toric BZ,
which is equal to its Euler characteristic [35]

∑
i

Ii = 0. (11)

This result is known as the Poincaré-Hopf theorem, which in
fact applies to any dimension as shown in Sec. III and will be
shown in Sec. V.

A smooth and bounded energy dispersion will have at least
one minimum and one maximum. According to Eq. (11) there
will also be at least one saddle point. When all critical points
are ordinary, there will be at least two ordinary saddle points,
which correspond to the case of van Hove [1]. When there is
only one saddle point, according to our topological argument,
its topological index must be −2, with three segments in each

energy contour, which will be discussed in Sec. IV F and
Appendix B.

B. Scaling

We rewrite the dispersion (6) as the sum of two parts

E (p) = E (p) + h · H (p). (12)

The first part, canonical dispersion E (p) has vanishing linear
terms ∇pE |p=0 = 0 and is scale-invariant

E (λa px, λ
b py) = λE (px, py), (λ > 0), (13)

with scaling exponents a, b > 0. All possible scaling expo-
nents of the analytic energy dispersions will be worked out in
the next subsection.

The second part, perturbation H is formed by monomials
not satisfying scaling property (13) and h denotes corre-
sponding Taylor coefficients. For every monomial perturba-
tion H (p) (a component of H), we can work out its scaling
behavior under scaling the transform in Eq. (13)

H (λa px, λ
b py) = λγ H (px, py), γ �= 1. (14)

As we approach the critical point λ → 0+, the perturbation H
becomes relevant when γ < 1 and irrelevant when γ > 1.

We separated canonical dispersion and perturbations in
Eq. (6) according to the scaling property. In the following two
subsections we then study canonical dispersion and perturba-
tions, respectively.

C. Canonical dispersion

In addition scaling property, analyticity, and topology will
impose constraints to the canonical dispersion. In this subsec-
tion we show that the interplay between scaling property, an-
alyticity, and topology will eventually determine the possible
values of scaling exponents and the corresponding canonical
dispersions.

Since canonical dispersion is analytic, we can write

E (p) =
∑

m+n�2

cmn pm
x pn

y (m, n = 0, 1, 2, . . . ), (15)

where the vanishing of linear terms leads to the condition
m + n � 2. Here we construct a one-to-one mapping between
the monomial pm

x pn
y and the ordered integer pair (m, n). Com-

bining the analyticity condition (15) and scaling property (13),
we find the scaling exponents a, b should satisfy ma + nb = 1
if monomial (m, n) is allowed in the canonical dispersion.
This motivates us to construct the canonical dispersion as
follows.

We first choose two pairs of integers (m1, n1) and (m2, n2)
to determine scaling exponents a = (n2 − n1)/, b = (m1 −
m2)/, where  ≡ m1n2 − m2n1 �= 0 and (m1 − m2)(n1 −
n2) < 0. To make p = 0 a critical point, we further require
mi + ni � 2 for i = 1, 2. After determining scaling exponents
a, b, we then work out all integer solutions (m, n) to the equa-
tion ma + nb = 1 and hence determine the form of canonical
dispersion. To find out all integer solutions, we can draw
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0 1 2 3 4
0

1

2
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n

FIG. 3. Integer grid in 2D, where each dot denotes a pair of inte-
gers (m, n) with 0 � m, n � 4, and each line ma + nb = 1 denotes a
pair of scaling exponents (a, b) with a, b > 0. There are two pairs of
integers on the green line, three pairs of integers on the red and blue
lines and five pairs of integers on the yellow line.

the line ma + nb = 1 in the two-dimensional integer grid as
shown in Fig. 3, and count all integer dots on the line. In the
following we consider some specific examples to work out
this procedure explicitly.

When we choose integer pairs (2, 0) and (0,2) we find a =
1
2 , b = 1

2 , and there are three pairs of integer solutions to 1
2 m +

1
2 n = 1 as shown in the red line of Fig. 3, which correspond
to three terms p2

x, px py, p2
y in the dispersion (1) of an ordinary

critical point.
When we choose integer pairs (2, 0) and (0,4) we find a =

1
2 , b = 1

4 , and there are three pairs of integer solutions to 1
2 m +

1
4 n = 1 as shown in the blue line of Fig. 3, which correspond
to three terms p2

x, px p2
y, p4

y in the dispersion (4) of a high-order
critical point.

When we choose integer pairs (3, 0) and (0,4) we find
a = 1

3 , b = 1
4 , and there are only two pairs of integer solutions

to 1
3 m + 1

4 n = 1 as shown in the green line of Fig. 3, which
correspond to the high-order critical point E6 discussed in
Sec. IV F.

In fact the two pairs of integers cannot be chosen arbi-
trarily. For example, ma + nb = 1 cannot be parallel to one
of the axes. Formally, this is a topological requirement: We
require the canonical dispersion to contain isolated critical
points only. As a result, the canonical dispersion has to contain
at least two terms, which are either {pm

x , pn
y}, {pm

x py, pn
y},

{pm
x , px pn

y}, or {pm
x py, px pn

y}, known as principal classes. If all
principal classes are excluded, the canonical dispersion will
have the common factor p2

x or p2
y, making px = 0 or py = 0 a

critical line, respectively.
Up to an exchange of px and py, {pm

x py, pn
y} and {pm

x , px pn
y}

are equivalent and there are three inequivalent principal
classes, which determine the possible scaling exponents of an

isolated critical point as (m, n � 2)

{
pm

x , pn
y

}
: a = 1

m
, b = 1

n
, (16)

{
pm

x py, pn
y

}
: a = n − 1

mn
, b = 1

n
, (17)

{
pm

x py, px pn
y

}
: a = n − 1

mn − 1
, b = m − 1

mn − 1
. (18)

Notice that principal classes are necessary, but not sufficient
conditions for isolated critical points. Even with terms in
principal classes, when the coefficients are fine tuned (e.g.,
forming a complete square), the critical point can also not be
isolated.

To summarize, the general procedure to work out the
canonical dispersion of an isolated critical point has two steps.
We first choose a pair of scaling exponents (a, b) in Eqs. (16)
to (18), and then work out all allowed terms in the canonical
dispersion according to all integer solutions (m, n) to the
equation ma + nb = 1, as shown in Fig. 3.

As another application of scaling property, in the following
we will discuss the DOS of canonical dispersions.

D. Density of states

The critical point p = 0 of canonical dispersion corre-
sponds to a DOS singularity at E = 0. According to its
definition

ρ(ε) =
ˆ

d2 p
(2π )2

δ[ε − E (p)], (19)

the DOS of canonical dispersion is also scale-invariant
ρ(λε) = λa+b−1ρ(ε), and hence follows the power law ρ(ε) ∝
|ε|ν with exponent ν = a + b − 1.

From the results of possible scaling exponents in Eqs. (16)
to (18), DOS exponent ν can only take specific rational values
in the range −1 < ν � 0. When ν = 0, the critical point is
ordinary, and the DOS singularity at E = 0 can be discon-
tinuity (extrema) or logarithmic divergence (saddle points).
When ν < 0, E = 0 is a power-law-divergent singularity of
DOS. The exponent ν = −1 can only be approached when
m, n → ∞. A given value of ν may correspond to more than
one pair of scaling exponents.

Since the scaling parameter has to be positive λ > 0, ρ(ε)
and ρ(−ε) cannot be related by scaling property (13). Instead,
they can be related by the analyticity of Green’s function
G(ε) = ´

p[ε − E (p)]−1, whose imaginary part determines
DOS ρ(ε) = −ImG(ε + i0+)/π . Combine this property with
the scaling property and we can write the DOS of the canoni-
cal dispersion in the following compact form:

ρ(ε) = Re(Cεν ) = |C||ε|ν ×
{

cos θ, ε < 0,

cos(θ + νπ ), ε > 0,
(20)

where C = |C|eiθ is a complex number with ε > 0 as the
branch cut of εν . For local minima, θ = 1

2π , while for local
maxima θ = ( 1

2 − ν)π . For a saddle point the particle-hole
asymmetry ratio η ≡ ρ(−|ε|)/ρ(|ε|) = cos θ/ cos(θ + νπ ) is
well defined and nonzero.
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The ordinary saddle point (1) has ν = 0 and θ = 0, hence
the DOS peak is logarithmically divergent and particle-hole
symmetric.

The high-order saddle point (4) has ν = − 1
4 and θ = 0,

hence the DOS peak is power-law divergent with exponent
− 1

4 but particle-hole asymmetric with asymmetry ratio η =
sec(νπ ) = √

2 [13].

E. Perturbation

Next we add perturbations to the canonical dispersion and
find out the evolution of critical points. With irrelevant pertur-
bations only, the critical point at p = 0 is not affected since
irrelevant perturbations become negligible when approaching
p = 0. As a result, the total DOS is asymptotically power-law
divergent (20) as ε → 0, up to a nonsingular background
contribution [13].

With relevant perturbations only, the total dispersion (12)
can have m � 1 critical points, whose properties depend on
coefficients h. If we allow h to vary freely (i.e., without
constraints from symmetry etc.), then the maximal number
μ ≡ max{m} of critical points in Eq. (12) is only determined
by the scaling property of canonical dispersion [36–39]

μ = (a−1 − 1)(b−1 − 1). (21)

We define the positive integer μ as the multiplicity (also
known as the Milnor number) of the critical point (13). From
all the possible scaling exponents in the three principal classes
in Eqs. (16) to (18), we can also work out the corresponding
multiplicity in each class. It can be found that a given multi-
plicity can correspond to more than one canonical dispersion,
which can belong to the same or different principal classes.

We find μ = 1 for the ordinary critical point (1), namely
ordinary extrema and saddle points are robust against per-
turbations and do not need additional tuning of the band
structure [1]. For high-order critical point (4), μ = 3, and
under perturbations it will split into, at most, three ordinary
critical points. When high-order critical point (4) is at a
generic point, one needs to tune two parameters to realize it,
while at a mirror-invariant point only one parameter is needed,
such as the twist angle in twisted bilayer graphene [13].

For a critical point with multiplicity μ, the number of in-
dependent relevant perturbations is, at most, μ − 1 since this
critical point will split into, at most, μ critical points. Details
and examples of relevant perturbations will be discussed in
Secs. IV F and IV G.

At last we discuss the relation between the topological
index and multiplicity of an isolated critical point. A critical
point with topological index I and multiplicity μ will even-
tually split into, at most, e ordinary extrema and s ordinary
saddle points under perturbations, which obey e + s = μ and
e − s = I . To ensure that e, s are both positive integers, μ

and I should have the same parity and μ � |I|. In fact, this
inequality can be stronger [35]

I � 1, I2 � μ, I = μ(mod2). (22)

Conversely, if two integers μ, I satisfy the compatibility
conditions above, there always exists a critical point with
topological index I and multiplicity μ.

We then apply Eq. (22) to specific cases. When μ =
1, from conditions (22) the topological index can only be
I = ±1, namely only ordinary critical points in Eq. (1) are
robust against perturbations. When μ = 3, the topological
index can only be I = ±1, namely only high-order critical
points in Eq. (4) can split into three ordinary critical points
(e = 1, s = 2, I = −1 or e = 2, s = 1, I = +1).

The multiplicity of a local extremum is always odd since
its topological index I = 1 is odd, while the multiplicity of a
saddle point can be any nonpositive integer. These results will
find explicit applications in the following subsections when
we discuss specific examples of critical points.

F. Simple versus complicated critical points

We can introduce two different classification schemes for
critical points in 2D. One way is to classify the critical point
by DOS exponent. Notice that in 1D, the DOS of an ordinary
critical point is already power-law divergent with exponent
− 1

2 . When ν > − 1
2 , the critical point is called simple, and

when ν � − 1
2 the critical point is complicated.

We find three classes of simple critical points in 2D: A
class with b = 1

2 , D class with 2a + b = 1, and E class with
b = 1

3 , up to an exchange of a and b. Among them, A and D
classes are infinite series, while the E class consists of three
inequivalent critical points. In the following we will derive the
canonical dispersions of simple critical points, depending on
the topology and scaling.

The saddle point in the A class can have any integer
multiplicity μ � 1 with canonical dispersion

Aμ = pμ+1
x − p2

y, (23)

while the local extremum in the A class can only have odd
multiplicity μ = 2n − 1 (n � 1) with canonical dispersion

A′
μ = pμ+1

x + p2
y. (24)

The odd multiplicity of a local extremum is due to constraint
(22) as discussed in the last subsection.

Notice that A1, A′
1 describe ordinary critical points (1) and

(2), and A3, A′
3 are the high-order critical points in Eqs. (4) and

(5). As shown in Fig. 4, A2n denotes a beak point of a single
energy contour, with topological index 0. While A2n−1 denotes
a merging point of two energy contours, with topological
index −1.

The simple saddle point in the D class with multiplicity μ

has one of the following two canonical dispersions:

Dμ = p2
x py − pμ−1

y , D′
μ = p2

x py + pμ−1
y . (25)

Notice that D2n−1 and D′
2n−1 are equivalent upon coordinate

transform py → −py.
As shown in Fig. 4, D2n describes three energy contours

merging at the singular point with topological index −2. On
the other hand, D2n−1 describes one straight energy contour
meeting with another energy contour at its beak point, and
the topological index is −1. Notice that for low multiplicity
μ� 3, D1 describes a singular line px = 0 instead of an
isolated singular point, D2 is regular at p = 0, and D3 is
equivalent to A3 according to the scaling property as shown
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FIG. 4. Energy contours of A and D classes, where the origin is the critical momentum point, colors denote energy (orange is higher and
blue is lower), and black lines are energy contours at critical point energy. Here C3 = Re[(px + ipy )3], D4 = p2

x py − p3
y and C3

∼= D4 means
they are equivalent up to a linear coordinate transform.
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FIG. 5. Energy contours of E and C classes, where the origin is the critical momentum point and black lines are energy contours at critical
point energy. The continuous parameters of all three C classes are the same r = −0.4.

in Appendix A. In the following we always require μ � 4 in
the D class.

Critical points in the E class are all saddle points,
whose multiplicity can only be μ = 6, 7, 8 with canonical
dispersions

E6 = p4
x + p3

y, E7 = p3
x py + p3

y, E8 = p5
x + p3

y, (26)

and the topological index is I (Eμ) = 1
2 [(−)μ − 1]. The nergy

contours of the E class are shown in Fig. 5.

The topological index, multiplicity, DOS exponents, and
asymmetry property of simple saddle points are summarized
in Table I. We find that the scaling exponents and topological
index can uniquely determine the dispersion of a simple
critical point up to a coordinate transform, just like the one-
dimensional cases in Sec. III. In fact, one-dimensional cases
are equivalent to the A class.

Under the relevant perturbations listed in Table II, a simple
critical point can split into simple critical points with lower
multiplicities through a topological transition [36–39]. The

TABLE I. Properties of saddle points in classes A, D, D′, E ,C. In classes A and D, even/odd denotes the parity of integer n, the asymmetry
of the DOS peak is either described by angle θ or η = cos θ/ cos(θ + νπ ). In classes C, |r| < 1, Argz is the phase of complex number z, K(s)
is the complete elliptic integral of the first kind, Fn(s) ≡ 2F1( 2

n , 1
2 , 1; s) is the hypergeometric function, and the argument is s = 2/(r + 1). The

DOS exponent also applies to local extrema of the same class.

Critical point Topological index Multiplicity DOS exponent DOS asymmetry

An (n � 1) − 1
2 [1 − (−)n] n 1

n+1 − 1
2 θ = −π

2n+2 (even), θ = 0 (odd)

Dn (n � 4) − 1
2 [3 + (−)n] n 1

2(n−1) − 1
2 η = 1 (even), θ = π

4 (odd)

D′
2n (n � 2) 0 2n 1

2(2n−1) − 1
2 η = 1

E6 0 6 − 5
12 θ = π

12

E7 −1 7 − 4
9 η = 1

E8 0 8 − 7
15 η = 1

C2 −1 9 − 1
2 θ = −ArgK(s)

Cn (n = 4, 6) 1 − n (n − 1)2 2
n − 1 θ = (

1
2 − 2

n

)
π − ArgFn(s)
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TABLE II. Canonical dispersions, relevant perturbations, and scaling exponents of critical points in classes A, D, E ,C, where C has a
single continuous parameter r �= ±1. In perturbation, H (G) denotes the linearly independent perturbations allowed at the momentum point
with symmetry group G. When G = {1} we denote H (G) simply as H . As mentioned previously, H (Dn) = H (Cnv) in 2D.

Critical point Canonical dispersion Relevant perturbation Scaling exponents

An (n � 1) pn+1
x ± p2

y H = H (My ) = {
pj

x|1 � j � n − 1
}

a = 1
n+1 , b = 1

2

H (Mx ) = {
p2 j

x |1 � j � 1
2 (n − 1)

}
(n is odd)

Dn (n � 4) p2
x py ± pn−1

y H = {
px, p2

x, pj
y|1 � j � n − 3

}
a = n−2

2(n−1) , b = 1
n−1

H (Mx ) = {
p2

x, pj
y|1 � j � n − 3

}
D4

∼= C3 3p2
x py − p3

y H (C3) = H (C3v ) = {p2} a = b = 1
3

E6 p4
x + p3

y H = {
px, p2

x, py, px py, p2
x py

}
a = 1

4 , b = 1
3

H (Mx ) = {
p2

x, py, p2
x py

}
E7 p3

x py + p3
y H = {

px, p2
x, p3

x, p4
x, py, px py

}
a = 2

9 , b = 1
3

E8 p5
x + p3

y H = {
px, p2

x, p3
x, py, px py, p2

x py, p3
x py

}
a = 1

5 , b = 1
3

C2 Re[(px + ipy )2]p2 + r p4 H (C2) = {
p2

x, p2
y, px py

}
a = b = 1

4

H (C2v ) = {
p2

x, p2
y

}
Cn (n = 4, 6) Re[(px + ipy )n] + r pn H (Cn) = H (Cnv ) = {

p2 j |1 � j � n
2 − 1

}
a = b = 1

n

intermediate and final products of such topological transitions
are summarized in Fig. 6.

Unlike simple critical points, complicated critical points
cannot be fully classified. In the next subsection, we will list
some examples of complicated critical points at symmetric
positions.

G. Symmetric versus generic critical points

Another way is to classify the critical point by symmetry.
At a momentum point with little group G, the dispersion has
to satisfy symmetry constraints

E (gp) = E (p), (∀g ∈ G). (27)

When a critical point is invariant under mirror symmetry
M : pi → −pi (i = x or y), the simple critical point belongs
to either the A, A′ class, D, D′ classes, or E6 class. We find that
some simple critical points can still satisfy mirror symmetry,
but the allowed perturbations may be restricted, as listed in
Table II.

When the critical point has twofold in-plane rotation sym-
metry C2 : p → −p, simple critical points can only belong
to A2n−1 or A′

2n−1 class (n � 1). In the presence of more

FIG. 6. Hierarchy diagram of simple critical points (including
saddle points and local extrema). Under relevant perturbation, a
simple critical point can split to simple critical points with lower
multiplicities indicated by the arrows. Here A, D classes also include
variants A′, D′.

than twofold in-plane rotation symmetry, when second-order
terms do not vanish, we find the critical point can only be
an ordinary energy extremum A′

1, independent of in-plane
rotation symmetry.

Without second-order terms and with C3 symmetry, there
can be a simple saddle point C3 = Re[(px + ipy)3], which is
equivalent to D4 up to a linear coordinate transform, denoted
as C3

∼= D4. When second-order terms vanish while C4 or C6

symmetry is present, no simple critical point can exist. As
shown in Appendix B, one can realize C3 saddle point at �

or K points in the BZ of a triangular lattice.
The symmetry-restricted relevant perturbations of simple

critical points are summarized in Table II.
Besides simple critical points, we can consider the compli-

cated critical point whose dispersion is a homogeneous poly-
nomial of order N and symmetric under in-plane rotations.
The scaling exponents in this case are a = b = 1/N and the
multiplicity is μ = (N − 1)2. When N is even, the critical
point can be a saddle point or a local extremum, while for odd
N the critical point can only be a saddle point. In the special
case of N = 2, the homogeneous critical point is ordinary, and
when N = 3 a simple saddle point C3

∼= D4. In the following,
we consider complicated critical points with N � 4 which can
be usually realized at rotation-invariant momentum points.

When the critical point has C2 symmetry, the homogeneous
dispersion can have order N = 4

C2 = Re[(px + ipy)2]p2 + r p4, (28)

and contains a continuous parameter |r| �= 1, where p2 =
p2

x + p2
y. The multiplicity is 9, and the topological index is

I = sgn(|r| − 1). When r = +1 or r = −1 there will be a
critical line px = 0 or py = 0, respectively.

With Cn symmetry (n = 4, 6), the homogeneous dispersion
can have order N = n

Cn = Re[(px + ipy)n] + r pn, (29)
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FIG. 7. DOS asymmetry ratio η of C2,C4, and C6 as functions of
the continuous parameter r ∈ (−1, 1).

with a continuous parameter |r| �= 1 and odd multiplicity
μ = (n − 1)2. When |r| > 1, the topological index is I = 1.
When |r| < 1 the topological index is I = 1 − n < 0 and
μ = I2 holds. When |r| = 1 there will be 1

2 n critical lines
passing through the critical point with polar angles ϕ satis-
fying cos nϕ = −r.

As shown in the second line of Fig. 5, when |r| < 1, the
saddle point Cn(n = 2, 4, 6) describes an intersecting point of
n energy contours.

Critical points in the finite series of the Cn (n = 2, 3, 4, 6)
class can also exist at momentum points with symmetry
group G ⊂ Cn or Cnv , while the allowed perturbations may be
restricted. The canonical dispersion and allowed perturbations
for different symmetry groups are listed in Table II for the C
class critical points. The topological index, multiplicity, DOS
exponents, and asymmetry are summarized in Table I for the
C class saddle points.

We find that critical points C2,C4 have the same scaling
exponents a = b = 1

4 . Local extrema C2,C4 have the same
topological index I = 1, saddle points C2,C4 have different
topological indices, but the same DOS asymmetry parameter
as shown in Fig. 7 together with that of C6.

In the following, we introduce the general method to
describe critical points in 3D, also based on general principles
of topology, scaling, and symmetry.

V. HIGH-ORDER CRITICAL POINTS IN 3D

A. Topology

To describe the topology of a critical point in 3D, we can
introduce the topological index

I ≡ 1

4π

‹
S

v̂ · ∂ v̂

∂ p‖
× ∂ v̂

∂ p⊥
d p‖d p⊥ (30)

as the winding number of the group velocity v = ∇pE along
a closed surface S which encloses p = 0 as the only critical
point, where p⊥,‖ are orthogonal coordinates on the surface
and v̂ = v/|v|. To make the topological index well defined,
p = 0 has to be the only critical point in its neighborhood,
which is known as an isolated critical point. When we choose
spherical coordinates p⊥ = θ, p‖ = φ, the winding direction
of v is chosen as θ : −π → π and φ : 0 → 2π .

As a concrete example, we consider an ordinary critical
point in 3D whose dispersion reads E = pTDp with Hessian
matrix D. We work out the topological index I = sgn(det D).
Hence a local minimum has topological index I = +1 and a
local maximum has I = −1. For a saddle point, the topologi-
cal index can either be I = +1 or I = −1.

In general the topological index of an isolated critical
point is

I = ne − nh, (31)

where ne(nh) is the number of patches of the energy surface
at E > 0 (E < 0) within the region enclosed by S . From its
definition (30), we find the topological index in 3D is odd
under energy inversion E → −E , which is reflected by the
odd parity of Eq. (31) under exchange ne ↔ nh.

To prove this formula, we notice that the solid angle of ve-
locity vector winding around an energy surface is ±(4π − �),
where � is the total solid angle of open regions and ±
applies to electron (hole) surface. Thus the total solid angle
of velocity vector winding around the surface S is � =
4π (ne − nh) − (�e − �h) where �e(h) is the total solid angle
of open regions in electron (hole) surfaces. Notice that by
continuity, the electron and hole surfaces will share the same
open regions �e = �h, and the topological index is found to
be I = �/(4π ) = ne − nh.

In 3D, we have the similar Poincaré-Hopf theorem
∑

i

Ii = 0. (32)

Due to the finite and periodic BZ, the smooth and bounded
energy dispersion will have at least one minimum and one
maximum. According to Eq. (32) there can be situations with
no saddle points in 3D. Unlike 1D, the dispersion in 3D
without saddle points usually requires additional tuning.

B. Scaling

The discussion of scaling properties in 2D can be general-
ized to 3D and also 1D without much modifications. The way
we define canonical dispersion and perturbations will be the
same, while the exponents are slightly modified.

The canonical dispersion in 3D also has vanishing linear
terms ∇E |p=0 = 0 and is scale-invariant

E (λa px, λ
b py, λ

c pz ) = λE (px, py, pz ), (33)

with three scaling exponents a, b, c > 0, where λ > 0 is an
arbitrary positive number. The multiplicity and DOS exponent
of the canonical critical point are

μ = (a−1 − 1)(b−1 − 1)(c−1 − 1), (34)

ν = a + b + c − 1. (35)

The canonical dispersion of an isolated critical point has
to contain at least one of the seven principal classes listed in
Table III to avoid critical lines and critical planes, and hence
all the possible scaling exponents are exhaustively worked out
in Table III. For the same reason as in the two-dimensional
case, principal classes are necessary but not sufficient for the
isolated critical point.
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TABLE III. Principal classes and corresponding scaling expo-
nents for isolated critical points.

Principal Class Scaling Exponents{
pm

x , pn
y, pl

z

}
a = 1

m , b = 1
n , c = 1

l{
pm

x , pn
y, pl

z py

}
a = 1

m , b = 1
n , c = n−1

nl{
pm

x , pn
y px, pl

z px

}
a = 1

m , b = m−1
mn , c = m−1

ml{
pm

x , pn
y pz, pl

z py

}
a = 1

m , b = l−1
nl−1 , c = n−1

nl−1{
pm

x , pn
y pz, pl

z px

}
a = 1

m , b = ml−m+1
mnl−1 , c = m−1

ml−1{
pm

x py, pn
y px, pl

z px

}
a = n−1

mn−1 , b = m−1
mn−1 , c = (m−1)n

(mn−1)l{
pm

x py, pn
y pz, pl

z px

}
a = nl−l+1

mnl+1 , b = ml−m+1
mnl+1 , c = mn−n+1

mnl+1

In 3D, due to similar reasons, we can derive the compati-
bility conditions

|I| � μ, I = μ(mod2). (36)

From scaling exponents in Table III, we find DOS is not
necessarily divergent as −1 < ν � 1

2 . The three-dimensional
high-order critical point with divergent DOS (ν � 0) should
have even higher order than its two-dimensional counterpart.
In fact, for a given critical point with canonical dispersion
E2D(px, py), its trivial extension to 3D is given by

E3D(px, py, pz ) = E2D(px, py) + W p2
z , (37)

with the following topological index, multiplicity, and DOS
exponent:

I3D = I2D · sgnW, μ3D = μ2D, ν3D = ν2D + 1
2 . (38)

By trivial extension, simple critical points will not produce
divergent DOS but only complicated ones do.

In the following sections we study critical points which can
be realized by tuning one parameter, where we study two-
dimensional examples in Sec. VI A, and three-dimensional
ones in Sec. VI B.

VI. HIGH-ORDER CRITICAL POINTS WITH SINGLE
TUNING PARAMETER

In this section we consider the high-order critical points
which can be realized by tuning one parameter, which can
be twist angle, strain, pressure or external fields. In 2D, they
are A2 at generic points, A3, A′

3 at mirror-invariant points,
and C3,C4 at rotation-invariant points. In 3D, we consider
an example with cubic symmetry. In all these cases, the total
topological index is always conserved.

A. Two-dimensional examples

At generic points, only the A2 saddle point can be stably
realized by tuning one parameter h

E = hpx + p3
x − p2

y. (39)

Under perturbation h, there will be at most two critical points
according to the multiplicity of A2. Since the topological index
of A2 is 0, there are either two ordinary critical points with
opposite topological indices, or one A2 critical point, or no
critical points in Eq. (39).
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A
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h=0
h>0
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A
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h=0
h>0
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FIG. 8. DOS as the indicators of topological transitions in A2

and A3, A′
3 critical point classes according to Eqs. (40) and (42),

respectively. In both figures, red, black, and blue lines denote
h = −0.2, 0, and +0.2, respectively. Black lines can also be de-
scribed by Eq. (20), where A2 class has DOS exponent ν = − 1

6

and asymmetry parameter η = √
3, while for A3 class ν = − 1

4 and

η = √
2, for A′

3 class ν = − 1
4 and η = 0.

To see the critical points explicitly, we can compute DOS
of dispersion (39). The DOS of dispersion (39) can be ex-
pressed in terms of the elliptic integral of the first kind K(z)
as

ρ(ε) = 1

π2
Re

{
1√

z1 − z2
K

(
z1 − z0

z1 − z2

)}
, (40)

where z j = 1
3ω j f − hω− j f −1 with ω = e2π i/3 and f =

( 3
2

√
81ε2 + 12h3 − 27

2 ε)
1/3

.
As shown in Fig. 8, when h < 0 there is a logarithmic DOS

peak at ε = −2(|h|/3)3/2 and a DOS drop at ε = 2(|h|/3)3/2,
induced by ordinary saddle point and local energy maximum
at momenta ±(

√−h/3, 0), respectively. On the contrary,
when h > 0 the DOS is a smooth function of energy without
singularities. Right at h = 0, DOS has a power-law-divergent
singularity at E = 0 with exponent ν = − 1

6 and particle-hole
asymmetry η = √

3. These results are consistent with our
previous expectation.

At mirror-invariant points, A3 or A′
3 critical point can be

stably realized by tuning one parameter h

E = −Ihp2
x + p4

x + I p2
y, (41)

where I = ± denotes the topological index for A′
3(+) or

A3(−). Under perturbation h, there will be at most three
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critical points according to the multiplicity. Since the topolog-
ical index is nonzero I �= 0, there will be at least one critical
point in above dispersion.

The DOS of this dispersion can also be expressed in terms
of K(z) as [13]

ρ(ε) = sgn(h)√
2π2

Re

{
1√
z−

K

(
1− z+

z−

)
−�(Ih)

2i√
z+

K

(
z−
z+

)}
,

(42)

where z± ≡ h ± √
h2 + 4ε. Here the sign function is defined

as sgn(h) = −1 for h < 0 and sgn(h) = 1 for h � 0, and
�(h) ≡ 1

2 [1 − sgn(−h)] is the step function.
As shown in Fig. 8, when h < 0 there is a logarithmic DOS

peak at ε = −h2/4 and a DOS drop at ε = 0, induced by two
ordinary saddle points at opposite momenta ±(

√−h/2, 0)
and one local energy maximum at p = 0, respectively. On
the contrary, when h > 0 the DOS has only one logarithmic
peak due to the ordinary saddle point at energy ε = 0 and
momentum p = 0. Right at h = 0, DOS has a power-law-
divergent singularity at E = 0 with exponent ν = − 1

4 and
particle-hole asymmetry η = √

2.
Saddle point A3 and topological transition can be re-

alized in twisted bilayer graphene by changing twist an-
gle [13,17], and also related to overdoped copper oxides
(Bi,Pb)2Sr2CuO2+δ [49].

While for A′
3 local minimum, when h > 0 there is a DOS

drop at ε = −h2/4 and a logarithmic DOS peak at ε = 0,
induced by two local energy minimum at opposite momenta
±(

√−h/2, 0) and one ordinary saddle point at p = 0, respec-
tively. When h < 0 the DOS has only one drop due to the ordi-
nary energy minimum at energy ε = 0 and momentum p = 0.
Right at h = 0, DOS has a power-law-divergent singularity
at E = 0 with exponent ν = − 1

6 and particle-hole asymmetry
η = 0.

With in-plane threefold rotation symmetry, C3 critical point
can be stably realized by tuning one parameter h

E = hp2 + 3p2
x py − p3

y. (43)

When h �= 0, besides a local maximum (h < 0) or minimum
(h > 0) at p = 0 and zero energy, there will be three ordinary
saddle points at momenta related by C3 symmetry and the
same energy 4h3/27. The sign of h determines the orientations
of these three ordinary saddle points as shown in Fig. 9(a).
This type of critical point and topological transition can be
realized in trilayer graphene on boron nitride by changing
vertical electric field [13].

With in-plane fourfold rotation symmetry, the C4 critical
point can also be stably realized by tuning one parameter h

E = hp2 + Re[(px + ipy)4] + r p4. (44)

When |r| < 1 and h �= 0, besides a local maximum (h < 0) or
minimum (h > 0) is always found at p = 0 and zero energy,
there will be four ordinary saddle points at momentum mag-
nitude p = 1

2 |h(r − sgnh)−1| and energy − 1
4 h2(r − sgnh)−1.

As shown in Fig. 9(b), the four ordinary saddle points are
along the directions px py = 0 if h < 0, otherwise p2

x − p2
y = 0

if h < 0. This type of critical point and topological transition
can be realized in Sr3Ru2O7 by changing the magnetization of
Ru atoms [11,12].

FIG. 9. Topological transitions of critical points C3 and C4 under
single perturbations. Contours denote energy contours with saddle
points.

When |r| > 1 and h �= 0, a local maximum (h < 0) or
minimum (h > 0) is always found at p = 0 and zero energy.
If hr > 0, there are no more critical points. If hr < 0, there
will be four ordinary saddle points at momentum magni-
tude p = 1

2 |h(r − sgnh)−1| and energy − 1
4 h2(r − sgnh)−1,

and four local energy minima at momentum magnitude
p= 1

2 |h(r + sgnh)−1| and energy − 1
4 h2(r + sgnh)−1. When

h < 0, r > 0, ordinary saddle points are along the direction
px py = 0 while local minima are along the direction p2

x −
p2

y = 0. And when h > 0, r < 0, ordinary saddle points are
along the direction p2

x − p2
y = 0 while local minima are along

the direction px py = 0.
Notice that in these topological transitions, the total topo-

logical index is always conserved.

B. Three-dimensional example

Near a critical point with cubic point group Oh, and the
allowed canonical dispersion and perturbation to the fourth
order reads E = Oh + H with

Oh = p4
x + p4

y + p4
z + r p4, H = hp2, (45)

where p2 ≡ p2
x + p2

y + p2
z , r is the continuous parameter of

the canonical dispersion and h is the symmetry-allowed per-
turbation. When h = 0 and r �= −1,− 1

2 ,− 1
3 , the origin p = 0

is an isolated critical point with scaling exponents a = b =
c = 1

4 . Hence the DOS exponent is ν = − 1
4 and multiplicity is

μ= 27.
Under perturbation h �= 0, the high-order critical point

will split into at most μ = 27 ordinary critical points, which
can be grouped into four classes according to symme-
try. There will be one ordinary extremum at origin p =
0 with symmetry Oh, six ordinary saddle points at three
axes pi = p j = 0, pk = ±

√−1
2 h/(1 + r) with symmetry C4v ,

12 ordinary saddle points at six in-plane diagonals |pi| =
|p j | =

√−1
2 h/(1 + 2r), pk = 0 with symmetry C2v , and eight
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TABLE IV. The three-dimensional high-order critical point under perturbation. Here −Oh + 6C4v + 8C3v − 12C2v means one critical point
at origin (symmetry Oh) with topological charge I = −1, six critical points at three axes (symmetry C4v) with topological charge I = +1, eight
at four main diagonals (symmetry C3v) with I = +1, and 12 at six in-plane diagonals (symmetry C2v) with I = −1. In all cases, the distribution
of total critical points preserve Oh symmetry.

Parameter range Topology Split under perturbation h < 0 Split under perturbation h > 0

r > − 1
3 ne = 1, nh = 0, I = +1 −Oh + 6C4v + 8C3v − 12C2v Oh

− 1
2 < r < − 1

3 ne = 1, nh = 8, I = −7 −Oh + 6C4v − 12C2v Oh − 8C3v

−1 < r < − 1
2 ne = 6, nh = 1, I = +5 −Oh + 6C4v Oh − 8C3v + 12C2v

r < −1 ne = 0, nh = 1, I = −1 −Oh Oh − 6C4v − 8C3v + 12C2v

ordinary minimum at four main diagonals |px| = |py| =
|pz| =

√−1
2 h/(1 + 3r) with symmetry C3v . Here (i, j, k) is a

permutation of (x, y, z), and critical points within each group
are also related by Oh symmetry.

When r > − 1
3 , the high-order critical point is a local mini-

mum with topological index I = 1. Under perturbation h < 0,
it will split into 27 ordinary critical points: one ordinary
maximum at origin, six ordinary saddle points with I = +1
at three axes, 12 ordinary saddle points with I = −1 at six
in-plane diagonals, and eight ordinary minima at four main
diagonals. Under perturbation h > 0, it does not split.

When − 1
2 < r < − 1

3 , the high-order critical point is a
saddle point with topological index I = −7. Under perturba-
tion h < 0, it will split into 19 ordinary critical points: one
ordinary maximum at origin, six ordinary saddle points with
I = +1 at three axes, and 12 ordinary saddle points with
I = −1 at six in-plane diagonals. Under perturbation h > 0,
it will split into nine ordinary critical points: one ordinary
minimum at origin and eight ordinary maxima at four main
diagonals.

When −1 < r < − 1
2 , the high-order critical point is a

saddle point with topological index I = 5. Under perturbation
h < 0, it will split into seven ordinary critical points: one
ordinary maximum at origin and six ordinary saddle points
with I = +1 at three axes. Under perturbation h > 0, it will
split into 21 ordinary critical points: one ordinary minimum
at origin, eight ordinary maxima at four main diagonals,
and 12 ordinary saddle points with I = +1 at six in-plane
diagonals.

When r < −1, the high-order critical point is a local
maximum with topological index I = −1. Under perturbation
h < 0, it does not split. Under perturbation h > 0, it will
split into 27 ordinary critical points: one ordinary minimum
at origin, six ordinary maxima at three axes, eight ordinary
saddle points with I = −1 at four main diagonals, and 12
ordinary saddle points with I = +1 at six in-plane diagonals.

In all cases discussed above, the total topological index
does not change with perturbations, and the distribution of
total critical points preserve Oh symmetry. The results are
summarized in Table IV.

VII. CONCLUSION

To summarize, based on general principles of topology,
scaling, and symmetry, we systematically describe and clas-
sify critical points from 1D to 3D, especially high-order
critical points in 2D. Our results include ordinary VHS as a

natural corollary, and could be relevant in realistic materials
such as two-dimensional moiré systems [13,17], ruthenate
[11,12,40–43], and cuprate [2–4,44–49] materials. As the
DOS near high-order critical points can be power-law di-
vergent and particle-hole asymmetric, we expect high-order
critical points can play important roles in transport phenom-
ena and interaction effects, which may help us to understand
correlated phases such as unconventional superconductivity
and non-Fermi liquid.

Note added in proof. Recently, we became aware of a
similar work by Chandrasekaran et al. [50]. We point the
reader to that reference as well. We thank Zhi-Cheng Yang
for recognizing that the works were similar, and bringing the
two groups into contact.
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APPENDIX A: COORDINATE TRANSFORMS

In this Appendix, we derive the canonical dispersions of
simple critical points. For a given simple critical point, we
first write down all terms satisfying the same scaling property
to form the bare dispersion, and then cast this bare dispersion
into a parameter-free binomial form by appropriate coordinate
transforms.

According to scaling exponents, the bare dispersion of
A2n−1 has three terms

E = αp2n
x + βp2

y + γ pn
x py. (A1)

Under coordinate transform

p̃x = px, p̃y = py + γ

2β
pn

x (A2)

the dispersion becomes binomial

E = α̃ p̃2n
x + β p̃2

y (A3)

with α̃ = α − γ 2/(4β ). Finally, after the scaling transforms
on momentum and energy

˜̃px = 2n
√

|α̃|p̃x, ˜̃py =
√

|β| p̃y, Ẽ = sgn(α̃)E (A4)
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we arrive at the parameter-free binomial form of the canonical
dispersion

E = p2n
x + I p2

y, (A5)

where we dropped the tilde accent for simplicity, and I ≡
sgn(α̃β ) = sgn(4αβ − γ 2) is the topological index.

According to scaling exponents, the bare dispersion of
D2n+2(n � 2) has three terms

E = αp2
x py + βp2n+1

y + γ px pn+1
y . (A6)

Under coordinate transform

p̃x = px + γ

2α
pn

y, p̃y = py (A7)

the dispersion becomes binomial

E = α p̃2
x p̃y + β̃ p̃2n+1

y (A8)

with β̃ = β − γ 2/(4α). Finally, after the scaling transforms
on momentum and energy

˜̃px =
√|α|
β

1
2n+1

p̃x, ˜̃py = β
1

2n+1 p̃y, Ẽ = sgn(α)E (A9)

we arrive at the parameter-free binomial form of the canonical
dispersion

E = p2
x py + (I + 1)p2n+1

y , (A10)

where we dropped the tilde accent for simplicity, I ≡
sgn(4αβ − γ 2) − 1 is the topological index.

According to scaling exponents, the bare dispersion of D4

has four terms

E = a1 p3
x + a2 p2

x py + a3 px p2
y + a4 p3

y. (A11)

Under linear coordinate transform p̃ = Ap where A ∈ R2×2

has four independent parameters, this homogeneous disper-
sion becomes parameter-free

E = p̃2
x p̃y ± p̃3

y, (A12)

which is canonical dispersion D4 or D′
4 in Eq. (25).

Except for the critical points above, bare dispersions of
other simple critical points are all binomial and can be cast
into parameter-free forms in Sec. IV F under scaling trans-
forms on momentum and energy.

When the critical point has C2 symmetry, the homogeneous
dispersion of order N = 4 has five terms

E = b1 p4
x + b2 p3

x py + b3 p2
x p2

y + b4 px p3
y + b5 p4

y. (A13)

Under linear coordinate transform p̃ = Bp where B ∈ R2×2

has four independent parameters, this homogeneous disper-
sion can contain one parameter r

E = Re[( p̃x + i p̃y)2] p̃2 + r p̃4, (A14)

which is canonical dispersion C2 in Eq. (28).

APPENDIX B: TIGHT-BINDING MODELS

In this Appendix, we propose three tight-binding models,
each with two independent tuning parameters but different
symmetries, and we can realize A2, A3, A′

3,C3,C4, O critical
points in these models. In all these tight-binding models, there

FIG. 10. Energy contours of model Hamiltonian (B1) with t ′
x =

1
2 tx, φ = 1

2 π (Left panel) and t ′
x = 1

4 tx, φ = 0 (right panel) respec-
tively. In the left panel, A2 class saddle point is realized at ( 1

2 π, 0),
while A3 is realized at (π, 0) in the right panel, both marked by stars.
In both cases ty = tx .

are always at least three critical points, and the total topolog-
ical index of all critical points is zero due to the constraint in
Eq. (11). Except the special cases mentioned below, all other
critical points of the tight-binding models are ordinary.

We first consider the following rectangular lattice tight-
binding model:

Ha =
∑

j

− tya†
j a j+ŷ − txa†

j a j+x̂ − t ′
xeiφa†

j a j+2x̂ + H.c. (B1)

where ty, tx, t ′
x > 0 are hopping amplitudes and φ denotes the

phase of hopping. The symmetry group of this model is C1v

with mirror symmetry. This model could be relevant in some
ruthenate systems [40–43].

When 1/4 < t ′
x/tx � 1/2, we can always find with an

appropriate phase φ = φ(t ′
x/tx ) so that a saddle point of the A2

class is realized at a point of ky = 0 line. An example is shown
in the left panel of Fig. 10, where we find four critical points:
two saddle points A1, A2 at ky = 0 line, one local maximum,
and one local minimum which are both ordinary (i.e., A′

1).
When t ′

x/tx = 1/4, if φ = 0 a saddle point A3 is realized
at X = (π, 0), and a local maximum A′

3 is realized at M =
(π, π ). If φ = π , a saddle point A3 is realized at Y = (0, π ),
and a local minimum A′

3 is realized at � = (0, 0). In both
cases, the system has emergent C2v symmetry. In the example
shown in the right panel of Fig. 10, where we find four critical
points: one saddle point A13 at X , one saddle point A1 at Y ,
one local maximum A′

3 at M, and one local minimum A′
1 at �.

The tight-binding model (B1) is invariant under the op-
eration φ → φ + π, k → k + M, E → −E . Thus φ = 0 and
φ = π are related as discussed above, and φ ∈ [0, π ) is suffi-
cient to capture the φ dependence of this system.

Next we consider a square lattice tight-binding model with
nearest, next-nearest, and next-next-nearest neighbor hopping
terms

Hb = −
3∑

n=1

tn
∑
〈i j〉n

b†
i b j, (B2)

where t1, t2, t3 ∈ R are hopping integrals. The symmetry
group of this model is C4v , which contains mirror and fourfold
rotation symmetries. This model can be relevant in some
cuprate systems [2–4,49].
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FIG. 11. Left panel: Energy contours of model Hamiltonian (B3)
with t2 = 0, � = 1

2 π , and C3 class saddle point is realized at �

point. Right panel: Energy contours of model Hamiltonian (B2) with
t2 = −1.5t1, t3 = 0.5t1, and C4 class saddle point is realized at �

point.

When 1
2 t1 + t2 + 2t3 = 0, critical point C4 is realized at �

point (Fig. 11, right panel), where t3 > 0 corresponds to a
saddle point while t3 < 0 a local extremum. When − 1

2 t1 +
t2 + 2t3 = 0, critical point C4 is realized at M = (π, π ) point,
where t3 < 0 corresponds to a saddle point while t3 > 0 a
local extremum. In the above cases, when t3 = 0 there will
be two critical lines instead of a single critical point.

When ± 1
2 t1 − t2 + 2t3 = 0, critical point A3 or A′

3 is real-
ized at both X = (π, 0) and Y = (0, π ) points due to fourfold
rotation, and the topological index depends on the details.

To realize C3 and O class critical points, we can use a
triangular lattice tight-binding model with nearest and next-
nearest neighbor hopping terms [13,20,21]

Hc =
∑
τ=±

⎧⎨
⎩

∑
〈i j〉

t1ei�τ c†
iτ c jτ +

∑
〈〈i j〉〉

t2c†
iτ c jτ

⎫⎬
⎭, (B3)

where τ = ± denotes two orbitals, t1,2 > 0 are hopping am-
plitudes and � denotes the phase of hopping. The symme-
try group of this model is C3v , which contains mirror and
threefold rotation symmetries. This model may be relevant in
moiré systems of trilayer graphene on boron nitride [18–20]
and transition metal dichalcogenides [21,22].

When 3t2 = −t1 cos � but sin � �= 0, there will be the C3

class saddle point realized at � point of the BZ, as shown
in the left panel of Fig. 11. In this case we have, in total,
three critical points in the entire BZ: one saddle point C2 at
� point, ordinary local maximum and local minimum at ±K,
respectively. Here three is the minimum number of critical
points allowed by topology (11).

When 3t2 = −t1 cos � and sin � = 0, � point is a local ex-
tremum of O class and the system has emergent C6v symmetry.

The dispersion of Eq. (B3) is invariant under trans-
form � → � + 2π/3, k → k + K where K = (4π/3, 0). Af-
ter this transform, the criteria of high-order critical point at �

point can be applied to ±K points.
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