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In this paper, we propose a new topological classification for Zeeman split Fermi surfaces of centrosymmetric
metals under external magnetic field, where the Zeeman effect is described by the momentum-dependent g-factor
tensor. With three important experimental effects, modification of spin-zero effect, Zeeman-effect-induced Fermi
surface Chern number, and the in-plane anomalous Hall effect, we reveal that the additional Zeeman-induced
Berry curvature plays a crucial role in the electron dynamics for metals under magnetic field, which has been
overlooked for decades. By first-principles calculations, we study all these effects on two typical material, ZrTe5

and TaAs2 and the results are in good agreement with the existing experiments.
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I. INTRODUCTION

How a condensed matter system responds to an external
magnetic field is one of the key properties signaling its low-
energy electronic structure. For metallic systems, most of the
magnetic responses, such as quantum oscillation spectrum,
magnetoresistance, and Hall effects, are determined by the
Bloch states at the Fermi surfaces (FSs) only, where in
nonmagnetic centrosymmetric metals the effects caused by
the magnetic field can be ascribed to two parts, the Zeeman
effect that splits the otherwise degenerate bands and the
orbital effect that leads to Landau levels. Without magnetic
field, due to the time-reversal and inversion symmetries,
the Fermi surfaces always have twofold degeneracy and the
Berry curvature in this case is SU(2) and traceless. Once a
magnetic field is applied, the Zeeman effect described by
a momentum dependent 2 × 2 g-factor tensor will split the
doubly degenerate FS into two separate ones, with each one
of them being treated as a nondegenerate system carrying
ordinary U(1) Berry curvature, which is crucial to determine
the low-energy dynamics of the Bloch electrons around the
FS. Most importantly, the Zeeman-effect-induced U(1) Berry
curvature can be very large in metals with large spin orbital
coupling under specific external magnetic direction and leads
to several interesting physical phenomena, which have been
overlooked for decades.

In general, for such systems the Zeeman effect is de-
scribed by the g-factor tensor, which can be expressed as a
momentum-dependent vector valued 2 × 2 matrix ĝ(k). As
discussed in detail previously [1–3], the renormalization of the
g-factor tensor from its vacuum value as well as its momentum
dependence are both caused by the high-energy bands through
the down-folding process, or equivalently due to the effective
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screening process for the diamagnetic current. After down-
folding to the lowest bands forming the FS, the Zeeman-
effect-induced Berry connection can be fully determined by
the g-factor tensor ĝ(k) and the original SU(2) non-Abelian
Berry connection Â(k) on the FS.

Such Zeeman-effect-induced Berry connection can lead
to many interesting physical phenomena. First of all, the
induced additional Berry connection will contribute a phase
to the quantization condition for Landau orbits, which can
be detected directly by the quantum oscillation spectrum
[4–6]. As will be introduced below, such additional phase will
strongly modify the spin-zero effect [7] in these materials,
in which the amplitude of quantum oscillation will vanish
completely at some special angles determined by the Zeeman
effect. In traditional materials, the spin-zero angles are fully
determined by the splitting of the areas enclosed by Landau
orbits for two different spin [7]. While, for metals with strong
spin orbital coupling these spin-zero angles acquired consid-
erable contributions from Zeeman-induced Berry phases ac-
cumulated on two different Landau orbits, which will greatly
change the spin-zero angles. Second, the Zeeman-induced
Berry curvature will contribute to the Hall effect in addition
to the ordinary Lorentz force, which has the same origin
with the anomalous Hall effect [8–10] in the ferromagnetic
metals. When the magnetic field is applied within the plane
of current and voltage, the Lorentz force can be neglected and
such an in-plane anomalous Hall effect is mainly contributed
by the Zeeman-effect-induced Berry curvature and can be
quite pronounced in some materials as shown below. This
nonzero in-plane anomalous Hall effect is counterintuitive
and only can be calculated with this momentum-dependent
g-factor tensor for metals with nonconcentrated FS. Last,
most interestingly, such Zeeman-induced Berry curvature can
be integrated over each particular closed FS and leads to
topological metal phase [11–20] under the magnetic field if
such integrations reach nonzero integers. In such cases, these
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otherwise degenerate FS will split into two with opposite
nonzero Chern numbers, which will lead to similar chi-
ral magnetic effect [21–23] and negative magnetoresistance
[24–26] as those Weyl semimetals. Here we want to empha-
size that, different from previous work [3,13,27] where the
Zeeman effect is only considered for Dirac or Weyl semimet-
als and the absolute and momentum-independent (constant)
g-factor is sufficient to induce topological phase transition, in
the present paper we focus on the topological trivial metal
with ordinary doubly degenerate FS, where the Zeeman-
induced Berry curvature and Chern numbers are purely caused
by the topological structure of the g-factor tensor over the
manifold of the FS.

In the present paper, we will first introduce the general
theory for the Zeeman-induced Berry curvature in nonmag-
netic centrosymmetric metals. After that, we will take ZrTe5

and TaAs2 as two typical examples to introduce the spin-zero
effect, in-plane anomalous Hall effect and the field-induced
topological metals in these material systems.

II. THEORY

In nonmagnetic centrosymmetric systems, the Bloch states
are always doubly degenerate at any k point, which is guaran-
teed by the combination of time-reversal and space-inversion
symmetry PT . There is a SU(2) gauge freedom stemming
from the degenerate subspace at each k point, and the non-
Abelian traceless Berry connection Âaa′ (k) = i〈ψa|∂kψa′ 〉
and Berry curvature F̂ (k) = ∇k × Â − iÂ × Â can be de-
fined, which determines the low-energy dynamics for the
quasiparticles near the Fermi level. Here |ψa〉 represents bases
of the degenerate subspace. Under a U(2) gauge transforma-
tion Û (k), the above Berry connection and curvature are trans-
formed in the following way [28]: Â′ = Û †ÂÛ + iÛ †∂kÛ ,
F̂ ′ = U †F̂U . When magnetic field is applied, the Zeeman’s
coupling Ĥ z

aa′ = μBĝaa′ (k) · B will break the time-reversal
symmetry and split the degenerate states. In this case, the
Berry connection reduces to U(1) and can be obtained from
the previous SU(2) Berry connection Â(k) and a specific
SU(2) matrix Û (k), which diagonalize the Zeeman’s cou-
pling at each particular k point as A± = ± 1

2 Tr[Û †ÂÛ σ̂z +
iÛ †∂kÛ σ̂z] with the ± sign representing the two branches of
bands after splitting and σ̂z representing the third Pauli matrix.
Since the original SU(2) Berry connection Â(k) is traceless,
we always have A+ = −A−. Details about the properties of
SU(2) Berry connection under PT symmetry are given in
Appendix A. It is worth emphasizing that the U(1) Berry
connection A±(k) is determined not only by the topological
features of the degenerate band structure before the Zeeman
splitting, the SU(2) Berry connection Â(k), but also by the
topological structure hidden in the momentum-dependent g-
factor ĝ(k). Therefore, to determine the topological features
of a metallic system with Zeeman split FS, the dependence of
the g-factor on the FS is essential.

In our previous paper [3], we have already developed the
computational method to compute the momentum-dependent
g factor, which will be briefly sketched here. In solid-state
systems, not only the spin but also the orbital responses
contribute to the g factor. The spin contribution ĝs can be

calculated directly from the corresponding Bloch eigenstates
ĝs

mm′ = 2
h̄ 〈ψKm|ŝ|ψKm′ 〉,where ŝ is the spin operator. The orbit

contribution caused by the high-energy bands through the
down-folding process is introduced as follows. Around the
wave vector K, the bare k · p Hamiltonian has the form [29]

Ĥnn′ = δnn′

(
εn + h̄2k2

2me

)
+ v̂nn′ · k. (1)

Here εn is the band energy at K, and me is the electron
rest mass in vacuum. At the wave vector k + K, the term
v̂nn′ · k result in the mixing of the eigenstates |ψKn〉 and v̂nn′

depends on K. An unitary transformation can be obtained
by the quasidegenerate perturbation to decouple the subspace
we focus on (called low-energy subspace) from all the other
bands (called high-energy subspace) [29,30]

Ĥmm′ = δmm′

(
εm + h̄2k2

2me

)
+ v̂mm′ · k

+ 1

2

∑
l,i j

(
1

εm − εl
+ 1

εm′ − εl

)
v̂i

ml v̂
j
lm′kik j, (2)

where the index m, m′ are the band indexes for the low-energy
subspace, and l is the band index for the high-energy sub-
space. In the presence of magnetic field, according to Peierls
substitution the momenta ki should be replaced by the canon-
ical momentum operators ki → (−i∂ i + e

h̄ Ai ), where Ai is the
vector potential. Hence kik j → (−i∂ i + e

h̄ Ai )(−i∂ j + e
h̄ A j ),

which can be decomposed into a symmetric component with
gauge-dependent explicit form 1

2 {−i∂ i + e
h̄ Ai,−i∂ j + e

h̄ A j}
and an antisymmetric component with gauge-independent
explicit form 1

2 [−i∂ i + e
h̄ Ai,−i∂ j + e

h̄ A j] = − ie
2h̄

∑
k εi jkBk ,

which contributes to orbital Zeeman’s coupling. In summary,
under magnetic field the total Hamiltonian consists of two
parts: a gauge-dependent explicit form part, which leads
to Landau level HL

mm′ and a gauge-invariant explicit form
part, which is the Zeeman’s coupling HZ

mm′ , which can be
written as,

ĤL
mm′ = δmm′εm + v̂mm′ ·

(
− i∇ + e

h̄
A

)

+
∑

i j

M̂i j
mm′

(
− i∂ i + e

h̄
Ai

)(
− i∂ j + e

h̄
A j

)
(3)

ĤZ
mm′ = μB

(
ĝo

mm′ + ĝs
mm′

) · B, (4)

where

M̂i j
mm′ = δmm′δi j

h̄2

2me
+ 1

4

∑
l

(
1

εm − εl
+ 1

εm′ − εl

)

× (
v̂i

ml v̂
j
lm′ + v̂

j
ml v̂

i
lm′

)
(5)

ĝo
mm′ = − ime

2h̄2

∑
l,i jk

(
1

εm − εl
+ 1

εm′ − εl

)
v̂i

ml v̂
j
lm′εi jkek. (6)

Here ek is the unit direction vector and μB is the Bohr mag-
neton. Please note that only in this paragraph by saying the
g-factor tensor is momentum-dependent we mean the g-factor
tensor depends on K not k.
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III. VANISHING QUANTUM OSCILLATIONS

The first observable that manifests the momentum and
field direction dependence of the Zeeman’s coupling is the
spin-zero effect [7], where the Shubnikov-de Haas oscillation
(SdH) or de Haas-Von Alphen (dHV) effect vanishes when
the field is applied along some special directions. The SdH
or dHV effect is the oscillation of the resistance or magnetic
susceptibility that occurs under magnetic field. According to
the Lifshitz-Kosevich formula, in the semiclassical limit the
oscillations contributed by one FS are expressed as �ρ(B) ∝
cos(h̄Sex/eB + γ + φ), where Sex is the area of the extreme
cross section of the FS, which is perpendicular to the magnetic
field (Refs. [7,31] have detailed explanation about the extreme
cross section and Lifshitz-Kosevich formula), φ is the Berry
phase over the boundary of the extreme cross section ∂Sex,
the extra phase γ equals −π/4 or π/4 for maximum or
minimum extreme cross section, respectively, and the sum is
over the different extreme cross-section area. A striking effect,
called spin-zero effect, manifests itself as the vanishing of
quantum oscillations at some certain field directions, could
happen when the doubly degenerate FS split into two under
the Zeeman effect and thus contribute two oscillation terms
with slightly different frequency and phases. More specif-
ically, the Zeeman effect described by the g-factor tensor
ĝ(k) leads to not only the splitting of the cross-section area
Sex = S0

ex ± αB but also an extra splitting U(1) Berry phase
±φ as we introduced above. Here the Sex (S0

ex) represents the
cross-section area with (without) magnetic field. Hence, by
applying the sum-to-product identity, the total oscillations of
the two splitting FS are expressed as

�ρ(B) ∝ cos

(
h̄S0

ex

eB
+ γ

)
cos

(
h̄α

e
+ φ

)
, (7)

where

α =
∮

∂S0
ex

√|det[μBĝ(k) · eB]|
χ |∇kε(k) × eB| dk (8)

φ =
∮

∂S0
ex

A+(k) · dk. (9)

Here χ = −1 for electronlike valley, χ = 1 for holelike val-
ley, ε(k) is the band energy of FS states at k, φ is the Berry
phase accumulated along one of the split FS’s extreme area
and eB is the direction of the magnetic field. The last part
of Eq. (7) Rs = cos( h̄α

e + φ) is the amplitude of oscillations,
which depends on the direction of magnetic field. The spin-
zero effect would happen at certain field directions where
Rs equals zero. We would emphasize that for materials with
strong SOC in order to obtain the right field direction for
the spin-zero effect one has to compute both the coefficient
α (for the splitting of FS area) and φ [for the splitting of U(1)
Berry phase]. As shown in Eq. (8) and (9), both of them can
be obtained from the momentum-dependent g-factor tensor on
the FS (details are given in Appendix B).

The narrow gap semiconductor ZrTe5, which only has
small ellipsoid FS around the � point and shows strong
anisotropy [32–35], is an ideal platform to study the spin-zero
effect. With the parameters given in Ref. [3], we calculate the
oscillation amplitude factor of the oscillation Rs for all the

FIG. 1. Numerical calculations of the direction dependence of
oscillation amplitudes factor Rs(eB ) based on GGA parameters given
by Ref. [3] with Fermi energy μF = 0.026 eV(μF = 0 eV is at the
middle of the gap) in ZrTe5. Oscillation amplitudes (a) with Berry
phase contribution and (b) without Berry phase contribution are
plotted individually. The angular for vanishing quantum oscillation
are indicated by bold red line. The angles measured in Ref. [36] are
indicated by green dotted line. We only keep linear approximation of
k because of the tiny FS in ZrTe5. Inset is a schematic illustration of
the geometry for axes. The FS is an ellipsoid with principal semiaxes
ka = 0.118 nm−1, kb = 0.666 nm−1, and kc = 0.153 nm−1, which
agrees well with the experiments [36].

field directions as illustrated in Fig. 1, from which we can
obtain the angles of spin zero, which are summarized and
compared with experiments [36] in Table I. The theoretical
results are consistent with the experimental results only when
the Berry phase contributions are included. If we only con-
sider the splitting of FS area, the corresponding results cannot
match the experimental data even qualitatively.

IV. IN-PLANE HALL EFFECT AND FIELD-INDUCED
TOPOLOGICAL METALS

In the presence of magnetic field, the Zeeman effect splits
the degenerate states into |�±(k)〉 with splitting energy ±�εz.
The Chern numbers defined on each split Fermi surface

TABLE I. The angles of spin-zero effect

Theory Theory (no Berry phases) Experiment [36]

θbc 72.0 73.7 83.8
θba 86.1 ∅ 86.5
θac ∅ 56.8 ∅

125118-3



SUN, SONG, WENG, AND DAI PHYSICAL REVIEW B 101, 125118 (2020)

FIG. 2. Schematic diagrams for the mechanism of topological
phase transition induced by the Zeemans coupling. The ellipses
represent Fermi surfaces in a plane of momentum space. When there
is no magnetic field, the PT symmetry make the states doubly
degenerate indicated by bold curve in (a). In the presence of magnetic
field, the Zeeman’s coupling splits the degenerate states and Fermi
surfaces split into two. For some directions of magnetic field, the
Chern number of both Fermi surfaces are zero as shown in (b) and
there is no Weyl point enclosed by the Fermi surfaces. For other di-
rections of magnetic field, the Fermi surfaces have opposite nonzero
Chern numbers as shown in (c) and there is a Weyl point enclosed
by the Fermi surfaces. Here we only plot the most common and
simple case.

are well-defined topological invariances that characterize the
topological nature of that particular metal under magnetic
field, which can be expressed as

C± = 1

2π

∫
FS

dS · F±(k). (10)

We can calculate the Chern numbers of all the Fermi surfaces
with Willson loop method after including the Zeeman effect
described by the g-factor tensor introduced previously. It is
easy to prove that such FS Chern numbers will be only
determined by the direction of the field and in general they
can vary with the field direction, which defines the topological
phase transition on the FS. A schematic plot of Zeeman-effect-
induced nonzero Chern number on FS is shown in Fig. 2.
Theoretically, classifications of topological metals with PT
symmetry has been studied in Ref. [37]. Experimentally, the
nonzero Chern numbers on FS will lead to similar chiral
anomaly phenomena [24,26] and negative longitudinal mag-
netoresistance [38,39], which has been observed already in
some of these materials [25,40].

Another way to manifest the Zeeman-effect-induced Berry
phase and curvature on the FS is to look at the anomalous
Hall effect, which is the Hall effect caused not by Lorentz
force but the Zeeman-induced Berry curvature around the
FS. In order to minimize the interference from the Lorentz
force, which exists for generic setup, it is better to apply the
field within the plane of the experimental setup for the Hall
measurement. Generally, anomalous Hall coefficient (AHC)
can be expressed by the integral of Berry curvature over the
Brillouin zone [8,41] as

σi j = −εi jk
e2

h̄

∑
n

∫
BZ

d3k
(2π )3

f (εn(k))F k
n (k). (11)
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FIG. 3. Crystal structure, Brillouin zone and Band structure.
(a) Crystal structure of TaAs2 [42]. (b) The first Brillouin zone for
TaAs2. The yellow plane shows the position of mirror plane and high
symmetry points is indicated by blue dot. (c), (d) Band structure for
TaAs2 (c) without SOC and (d) with SOC. From this we can find two
electron-like pockets and one holelike pocket.

Here, F k
n (k) represent the Berry curvature of the nth band

in k direction at k wave vector and εi jk is the Levi-Civita
notation. At zero magnetic field, the two degenerate states
with opposite Berry curvature will be always both occupied or
unoccupied and their contribution will cancel each other. With
the presence of magnetic field, the Zeeman effect will split
these states and the net contribution to the AHC comes from
a thin shell near the FS where only one of these otherwise de-
generate states is occupied. Using the momentum-dependent
g-factor tensor introduced above, we can express the AHC as
σi j = λi j,kBk , where

λi j,k = −εi jk
e3

me

∫
FS

dS

(2π )3

√|det[ĝ(k) · eB]|
χ |∇kε(k)| F k

+(k). (12)

Here, B is the strength of the magnetic field, F k
+(k) represents

the Berry curvature of split state |�+(k)〉 and the definition of
χ , eB and ε(k) is same as Eq. (8). In particular, if the direction
of magnetic field eB is in the i j plane, we will get the in-plane
AHC, in which the voltage, current, and magnetic field are all
in the same plane.

In the present study, we take TaAs2, an topological trivial
semimetal with a number of tiny Fermi pockets, as a typical
material example for the Zeeman-effect-induced FS Chern
number and in-plane anomalous Hall effect. TaAs2 crystal-
lizes [42] in monoclinic structure with centrosymmetric space
group of C2/m (No.12) as shown in Fig. 3(a). It has a binary
axis (twofold rotation symmetry) along y direction and a
mirror plane perpendicular to y direction. We performed the
first-principles calculations by using the generalized gradient
approximation (GGA) for the exchange-correlation functional
with the Vienna ab initio simulation package (VASP). The
cutoff energy for basis set is 400 eV and k-point sampling
grid is 9 × 9 × 7.

The calculated electronic structure of TaAs2 are shown
in Figs. 3(c), 3(d). Without SOC, the band structure of
TaAs2 contains a number of nodal lines, which is simi-
lar with TaAs. When the SOC is turned on, due to the
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FIG. 4. Fermi surfaces in the first Brillouin zone. According to
the symmetry, there are four nonequivalent Fermi surfaces in the first
Brillouin zone. Two of them indicated in green are electronlike. The
others indicated in red are holelike.

presence of inversion symmetry, a complete gap will be
opened on all the line nodes and the band structure has
been checked to be completely trivial in contrast to its
cousin TaAs. Since the conduction and valence bands are
still overlapping after including the SOC, TaAs2 becomes a
typical trivial semimetal with compensating electron and hole
pockets. Around each pocket, the effective k · p models are
4 × 4 and can be generically described by a anisotropic Dirac
equations with tiny mass terms (comparing to the chemical
potential) leading to strong mixing between the conduction
and valence bands near the band minimum (maximum),
which is the microscopic origin for the strong momentum-
dependent g-factor tensor. The Fermi surface plot in Fig. 4
clearly shows that totally there are nine FS in the first Bril-
louin zone, which can be divided into four nonequivalent
types according to the crystal symmetries. From the first-
principles results, we can construct the second-order k · p
model Hamiltonian near the centers of each FS together
with the k-dependent g-factor tensor, with which the FS
chern numbers after the Zeeman splitting have been cal-
culated and shown in Fig. 5 (details of our calculations
are given in Appendix B). We find that indeed there are
topological phase transitions in this material when we vary
the direction of magnetic field. Please note that the zero
Chern number of Hole-1 for all field directions is ensured
by the inversion symmetry. For those FS with nonzero
Chern numbers under the magnetic field, we have confirmed
that there are Zeeman-effect-induced Weyl points enclosed
within these FS. These Weyl points may contribute to neg-
ative magnetoresistance, which has already been found in
TaAs2 [43,44]

We also calculated the in-plane anomalous Hall coeffi-
cients of TaAs2 in xy, yz, and zx planes. By considering the
crystal symmetries, the only allowed in-plane anomalous Hall
coefficients are λxy,x and λyz,z, which are plotted in Fig. 6 as
the function of chemical potential. We find that significant
magnitude of in-plane anomalous Hall effect can be realized
in TaAs2. Interestingly, the sign of such in-plane anomalous
Hall coefficient keeps unchanged even when the carrier type
changes from n to p as the function of chemical potential,
which is qualitatively different with the ordinary Hall effect
caused by Lorentz force.

FIG. 5. The Chern number of four nonequivalent Fermi surfaces
under different magnetic field directions. Directions of magnetic field
are represented by points on the unit sphere. Chern number = 1
is indicated in green and Chern number −1 is indicated in blue.
Here we plot the Chern number of Fermi surface states |�+(k)〉. The
other one |�−(k)〉 must have the opposite Chern number. They are in
accordance with the symmetry possessed by the Fermi surface. As a
result of inversion symmetry possessed by Hole-1, the Chern number
is zero for all magnetic field directions shown in (c).

V. SUMMARY

In summary, we have proposed that the Zeeman effect
caused by the external magnetic field can be in general de-
scribed by momentum-dependent g-factor tensor, which can
be also viewed as the effective low-energy Hamiltonian on

FIG. 6. In-plane anomolous Hall coefficient of TaAs2 as the
function of chemical potential. The In-plane anamolous Hall coef-
ficient in xy plane λxy,x is indicated in blue line and coefficient in yz
plane λyz,z is indicated in red line.
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the FS of centrosymmetric metals. The topological features
hidden in such g-factor tensor can manifest themselves by
generating additional Zeeman-effect-induced Berry phase for
Landau orbits, in-plane Hall effect, and even nonzero Chern
numbers on Zeeman split FS. All these exotic effects are
demonstrated on two of the typical materials, ZrTe5 and
TaAs2, by means of first-principles calculations indicating that
the effects proposed in the present study should widely exist
in metals with inversion symmetry and strong SOC.
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APPENDIX A: PT SYMMETRY

Generally for a nonmagnetic centrosymmetric crystal, the
representation of operation P and T can be written as follows:

P|ψ1(k)〉 = |ψ2(−k)〉 P|ψ2(k)〉 = |ψ1(−k)〉 (A1)

T |ψ1(k)〉 = |ψ2(−k)〉 T |ψ2(k)〉 = −|ψ1(−k)〉. (A2)

Hence for little group at any wave vector k there is at least one
generator named PT , and the representation is

PT |ψ1(k)〉 = |ψ2(k)〉 PT |ψ2(k)〉 = −|ψ1(k)〉 (A3)

or equivalently in matrix form

D(PT ) =
(

0 −1
1 0

)
, (A4)

where PT |ψi(k)〉 = |ψ j (k)〉Dji(PT ). Under an unitary
transformation U ∈ U(2), the representation of D(PT ) trans-
forms as follows:

D′(PT ) = U †D(PT )U ∗, (A5)

where |ψ ′
i 〉 = |ψ j〉Uji. Here we want to emphasize that the

conjugate operation in Eq. (A5) comes from the antiunitary
property [45] of time-reversal operator T . Furthermore, we
can divide the U(2) matrix U into SU(2) part and U (1) part as

Û = eiθ exp

(
i
∑

i

σi

2
ωi

)
. (A6)

By taking Eq. (A6) into Eq. (A5) and applying anticommuta-
tion relation of Pauli matrix, we get

D′(PT ) = e−2iθ D(PT ), (A7)

which means that the SU(2) part of the unitary transformation
do not change the representation of PT . Generally because
we want the representation of PT is independent of k, θ

should be k independent and ω could be k dependent. Hence
that is where the SU(2) gauge [SU(2) Berry connection and
SU(2) Berry curvature] comes from.

The Zeeman’s coupling Ĥ z(k) = ∑
i di(k)σi fix the SU(2)

gauge Û (k), which diagonalize the Zeeman’s coupling

Û =
(

cos θd
2 −e−iφd sin θd

2

eiφd sin θd
2 cos θd

2

)
, (A8)

where

cos θd = dz

|d| eiφd = dx + idy√
d2

x + d2
y

. (A9)

By applying the antiunitary property and representation of
PT , we can prove that

A1(k) = i〈ψ1(k)|∂kψ1(k)〉 = i〈PT ∂kψ1(k)|PT ψ1(k)〉
= i〈∂kPT ψ1(k)|PT ψ1(k)〉 = i〈∂kψ2(k)|ψ2(k)〉
= −i〈ψ2(k)|∂kψ2(k)〉 = −A2(k).

Hence the Berry curvature

F1(k) = ∇k × A1(k) = −∇k × A2(k)

= −F2(k). (A10)

By saying the k · p Hamiltonian satisfy the PT symmetry,
we mean PT H(k) = H(k)PT , which in matrix form means
that

D(PT )Ĥ∗(k) = Ĥ (k)D(PT ). (A11)

Similarly the Zeeman’s coupling satisfy the PT symmetry
means that

D(PT )ĝ∗(k) = −ĝ(k)D(PT ). (A12)

Here the minus sign comes from that under PT operation the
magnetic field reverse the direction B → −B.

APPENDIX B: k · p HAMILTONIAN AND 2 × 2 g-FACTOR
TENSOR ĝ(k) CALCULATIONS

Now we discuss the first-principles calculation of nonmag-
netic centrosymmetric semimetals specifically. To balance the
accuracy and the efficiency of the calculation we take the
two-step down-folding process as introduced below.

As shown in Eq. (6), the ĝ(k) is inversely proportional
to the energy difference εm − εl between the low-energy
subspace and the high-energy subspace. And as shown in
Fig. 3(d), for semimetals like TaAs2, the FS contains a number
of electron or hole pockets, which are called valleys in this
paper. For each valley, we can choose the lowest conduction
and highest valence bands as the low-energy subspace (all
the rest bands as the high-energy subspace) for the first step
and construct the 4 × 4 k · p model near the valley center
K. Since within each valley, the average energy distance
between the high energy and low energy bands are much
bigger than the band dispersion, we can safely approxi-
mate the g-factor tensor by a k-independent constant for the
4 × 4 model.

Here, in particular, we take the representation of the PT as
follows:

D(PT ) =

⎛
⎜⎜⎝

0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0

⎞
⎟⎟⎠. (B1)
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TABLE II. Parameters of k · p Hamiltonian for TaAs2.

Ele-1 Ele-2 Hole-1 Hole-2 Ele-1 Ele-2 Hole-1 Hole-2

�(0) −0.27 −0.15 0.37 0.19 �
(1)
2,3 0.00 0.00 0.28 −2.03

�
(1)
1 −0.00 −0.00 −0.00 −0.46 �

(1)
3,1 0.26 0.78 −0.00 −0.64

�
(1)
2 −0.74 −0.86 0.00 −0.80 �

(1)
3,2 −0.00 −0.00 −0.65 −0.75

�
(1)
3 0.00 −0.00 −0.00 −0.45 �

(1)
3,3 0.36 −3.33 0.00 −1.02

�
(2)
11 −3.31 3.39 −0.41 −3.52 �

(2)
0,11 −10.96 −0.62 −0.00 1.81

�
(2)
12 , �

(2)
21 0.00 0.00 −0.00 1.55 �

(2)
0,12, �

(2)
0,21 0.00 0.00 −0.00 −2.24

�
(2)
13 , �

(2)
31 7.21 0.79 1.26 2.67 �

(2)
0,13,�

(2)
0,31 1.89 −0.34 0.00 3.08

�
(2)
22 10.45 −4.24 −28.23 −1.67 �

(2)
0,22 −8.07 2.59 −0.00 −1.55

�
(2)
23 , �

(2)
32 0.00 −0.00 0.00 1.20 �

(2)
0,23, �

(2)
0,32 0.00 −0.00 −0.00 −0.58

�
(2)
33 4.06 3.56 −0.18 6.32 �

(2)
0,33 −5.74 −0.06 −0.00 6.01

�(0) −0.07 −0.09 −0.22 −0.10 �
(2)
1,11 −0.00 −0.00 −0.00 −1.35

�
(1)
1 −0.00 0.00 −0.00 0.46 �

(2)
1,12, �

(2)
1,21 7.81 1.02 −0.00 0.40

�
(1)
2 −0.74 −0.88 −0.00 0.80 �

(2)
1,13,�

(2)
1,31 0.00 0.00 −0.00 −1.31

�
(1)
3 0.00 −0.00 −0.00 0.45 �

(2)
1,22 −0.00 −0.00 0.00 −1.69

�
(2)
11 −4.13 0.46 0.56 0.14 �

(2)
1,23, �

(2)
1,32 2.33 −0.93 −0.00 −0.44

�
(2)
12 , �

(2)
21 0.00 −0.00 −0.00 1.43 �

(2)
1,33 0.00 −0.00 −0.00 −3.71

�
(2)
13 , �

(2)
31 0.30 −0.03 5.10 −0.26 �

(2)
2,11 −3.67 −1.52 −0.00 −0.08

�
(2)
22 −3.05 0.29 21.01 0.77 �

(2)
2,12, �

(2)
2,21 0.00 −0.00 0.00 −2.53

�
(2)
23 , �

(2)
32 −0.00 −0.00 0.00 0.42 �

(2)
2,13,�

(2)
2,31 1.21 −1.26 0.00 −0.71

�
(2)
33 −2.45 −0.04 −1.22 −2.29 �

(2)
2,22 −1.23 7.13 −0.00 −2.15

�
(1)
0,1 −0.00 −0.00 −3.27 −0.44 �

(2)
2,23, �

(2)
2,32 0.00 0.00 0.00 −1.85

�
(1)
0,2 −1.22 0.83 0.00 −1.94 �

(2)
2,33 0.47 −1.15 −0.00 1.32

�
(1)
0,3 0.00 −0.00 −0.85 1.88 �

(2)
2,11 0.00 0.00 −0.00 1.32

�
(1)
1,1 0.35 −0.49 −0.00 −0.14 �

(2)
3,12, �

(2)
3,21 1.32 −1.94 0.00 −1.56

�
(1)
1,2 0.00 0.00 −0.06 0.28 �

(2)
3,13,�

(2)
3,31 −0.00 −0.00 0.00 0.20

�
(1)
1,3 0.14 2.17 0.00 −0.73 �

(2)
3,22 −0.00 −0.00 −0.00 −0.70

�
(1)
2,1 0.00 −0.00 0.03 −0.79 �

(2)
3,23, �

(2)
3,32 0.73 1.70 0.00 −1.17

�
(1)
2,2 0.47 2.81 −0.00 −1.00 �

(2)
3,33 0.00 0.00 0.00 1.59

By applying Eq. (A11), we find that the Hamiltonian has the
following form:

Ĥ (k) = �(k) +
(

�(k) �μ(k)σμ

�μ(k)σ †
μ −�(k)

)
, (B2)

where �(k), �(k), and �μ(k) are real functions of k, μ =
0, 1, 2, 3, and σμ are Pauli matrices except σ0

σ0 = i

(
1 0
0 1

)
. (B3)

And for f = �,�,�μ the k dependence has the following
form:

f (k) = f (0) +
∑

i

f (1)
i ki +

∑
i j

f (2)
i j kik j . (B4)

The corresponding 4 × 4 g-factor matrix has the following
form (here we have included the spin contribution in the low-
energy subspace and orbital contribution from the high-energy

subspace):

ĝ(4) =

⎛
⎜⎜⎜⎝

ga gb + igc ge + ig f gg + igh

gb − igc −ga −gg + igh ge − ig f

ge − ig f −gg − igh gl gm + ign

gg − igh ge + ig f gm − ign −gl

⎞
⎟⎟⎟⎠.

(B5)

The corresponding parameters for ZrTe5 are summarized in
Ref. [3] and parameters for TaAs2 are summarized in Table II
and Table III. All these parameters are obtained by first-
principles calculation introduced in the main text and Ref. [3].

The eigenvalue of k · p Hamiltonian is

ε±(k) = �(k) ±
√

�(k)2 +
∑

μ

�μ(k)2. (B6)

And the unitary transformation, which can diagonalize the
k · p Hamiltonian is
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TABLE III. Parameters of 4 × 4 g factor for TaAs2.

Ele-1 Ele-2 Hole-1 Hole-2 Ele-1 Ele-2 Hole-1 Hole-2

ga
1 −0.71 −0.28 −0.60 0.28 gg

1 0.00 −0.00 −0.00 0.10

ga
2 −0.00 0.00 −0.00 −0.08 gg

2 −1.50 −0.24 0.00 −0.41

ga
3 −0.64 0.44 −0.88 0.12 gg

3 0.00 −0.00 −0.00 −0.44

gb
1 0.06 −0.07 0.46 0.03 gh

1 0.42 −0.17 −0.00 0.06

gb
2 0.00 −0.00 0.00 0.12 gh

2 −0.00 0.00 −0.00 −0.74

gb
3 −1.63 0.45 −0.63 −0.44 gh

3 0.70 −0.93 −0.00 0.63

gc
1 0.00 0.00 −0.00 −0.93 gl

1 0.25 0.64 0.21 0.44

gc
2 −0.25 −0.17 0.97 0.76 gl

2 0.00 −0.00 −0.00 0.78

gc
3 0.00 −0.00 0.00 0.70 gl

3 −0.59 −0.15 −2.06 0.93

ge
1 0.00 0.00 0.00 −0.02 gm

1 −0.54 1.82 0.72 −0.05

ge
2 0.04 −0.92 −0.00 −0.17 gm

2 −0.00 0.00 0.00 −0.10

ge
3 0.00 0.00 0.00 −0.39 gm

3 −1.37 0.42 −1.43 0.03

gf
1 −0.81 0.18 −0.00 −0.07 gn

1 −0.00 0.00 −0.00 −0.41

gf
2 −0.00 0.00 0.00 0.53 gn

2 −0.75 0.17 0.91 −0.86

gf
3 0.08 −0.45 −0.00 0.60 gn

3 −0.00 −0.00 −0.00 −0.30

V̂ (k) =

⎛
⎜⎜⎝

√
ε−−�+�
2(ε−−�)

⎛
⎜⎜⎝

(
1 0
0 1

)
1

ε−−�+�

(
�3 − i�0 �1 − i�2

�1 + i�2 −�3 − i�0

)
⎞
⎟⎟⎠

√
ε+−�−�
2(ε+−�)

⎛
⎜⎜⎝

1
ε+−�−�

(
�3 + i�0 �1 − i�2

�1 + i�2 −�3 + i�0

)
(

1 0
0 1

)
⎞
⎟⎟⎠

⎞
⎟⎟⎠. (B7)

Now we take the second down-folding process. Around any
wave vector k, the k · p Hamiltonian in linear approximation
transformed by the unitary transformation V̂ (k) at k has the
following form:

H̃mm′ (k + �k) = V̂ (k)†H (k + �k)V̂ (k) (B8)

= εm(k)δmm′ + ṽmm′ (k) · �k, (B9)

where ṽ(k) = V̂ †(k) ∂Ĥ (k)
∂k V̂ (k), ε1,2 = ε−(named holelike

bands), ε3,4 = ε+(named electronlike bands). Then the g fac-
tor for holelike (electronlike) bands contributed by the elec-
tronlike (holelike) bands can be calculated with Eq. (6) as
follows, which is k dependent

ĝ(2)
pp′ (k) = ime

h̄2

χ

ε+ − ε−
∑
q,i jk

ṽpq,i(k)ṽqp′, j (k)εi jkek, (B10)

where, for electronlike bands, χ = −1, p, p′ = 3, 4, and q =
1, 2; for holelike bands, χ = 1, p, p′ = 1, 2, and q = 3, 4.
Hence the total g factor is

ĝpp′ (k) = ĝ(2)
pp′ (k) +

∑
mm′

V̂ †
pm(k)ĝ(4)

mm′Vm′ p′ (k). (B11)

APPENDIX C: DERIVATIONS FOR EQ. (7), EQ. (8),
AND EQ. (12)

Accroding to Lifshitz-Kosevich formula, the quantum os-
cillation contributed by one FS is �ρ(B) ∝ cos(h̄Sex/eB +
γ + φ), where Sex is the area of the extreme cross section of

the FS, which is perpendicular to the magnetic field as shown
in Fig. 7.

For centrosymmetric semimetals such as ZrTe5, under
magnetic field the Zeeman effect splits the otherwise degen-
erate FS and induces extra Berry phases. Hence, the quantum
oscillation is

�ρ(B) ∝ cos

(
h̄(S0

ex + �Sex)

eB
+ γ + φ

)

+ cos

(
h̄(S0

ex − �Sex)

eB
+ γ − φ

)
. (C1)

FIG. 7. Schematic diagram for the Zeeman splitting of FS’s
extreme cross section. The boundary of FS’s extreme cross section
∂S0

ex (∂Sex) without (with) magnetic field is indicated in black (blue)
dotted line. For concision only the shrunk one of the split extreme
cross sections is plotted.
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Here the S0
ex is the extreme cross-section area without mag-

netic field. By applying sum-to-product identity, we have

�ρ(B) ∝ cos

(
h̄S0

ex

eB
+ γ

)
cos

(
h̄�Sex

eB
+ φ

)
. (C2)

Because the change of the FS induced by Zeeman effect
is small for magnetic field strength that can be achieved
in experiments, �Sex can be expressed as a line integral
of splitting width �l along the boundary of S0

ex as shown
in Fig. 7

�Sex =
∮

∂S0
ex

�l dk. (C3)

And the splitting width �l can be expressed as splitting
energy

√
det|μBĝ(k) · B| divided by the projection of energy

gradient |∇kε(k) · ( dk
dk × eB)| (because generally the energy

gradient ∇kε(k) is not in the plane of extreme cross section).
The projection of energy gradient can be simplified as∣∣∣∣∇kε(k) ·

(
dk
dk

× eB

)∣∣∣∣ =
∣∣∣∣dk
dk

· (∇kε(k) × eB)

∣∣∣∣
=|∇kε(k) × eB|. (C4)

Hence the splitting width is

�l =
√

det|μBĝ(k) · B|
|∇kε(k) × eB| . (C5)

With combing Eq. (C2), Eq. (C3), and Eq. (C5) and taking
α = �Sex/B, we get Eq. (7) and Eq. (8). And for electron
(hole) pocket, the sign χ is defined as −1 (+1), because under
Zeeman effect the FS with positive Zeeman splitting energy
will shrink (expand).

Now the derivation of Eq. (12) is straightforward. As stated
in the main text, with the presence of magnetic field, the
Zeeman effect will split these states and the net contribution to
the AHC comes from a thin shell near the FS where only one
of these otherwise degenerate states is occupied. Hence the
AHC is a surface integral for the product of Berry curvature
F k

+ and the splitting width �d

σi j = −εi jk
e2

h̄

∑
n

∫
FS

2 �d F k
+(k) dS. (C6)

Similarly the splitting energy width �d can be expressed as
splitting energy

√
det|μBĝ(k) · B| divided by energy gradient

|∇kε(k)| (no projection)

�d =
√

det|μBĝ(k) · B|
|∇kε(k)| . (C7)

By combining σi j = λi j,kBk and Bohr magnetic μB = eh̄
2me

,
Eq. (C6) and Eq. (C7), we get Eq. (12).
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