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Reentrant Kondo effect for a quantum impurity coupled to a metal-semiconductor hybrid contact
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Using the numerical renormalization group (NRG) and Anderson’s poor man’s scaling, we show that a system
containing a quantum impurity (QI), strongly coupled to a semiconductor (with gap 2�) and weakly coupled
to a metal, displays a reentrant Kondo stage as one gradually lowers the temperature T . The NRG analysis of
the corresponding single impurity Anderson model (SIAM), through the impurity’s thermodynamic and spectral
properties, shows that the reentrant stage is characterized by a second sequence of SIAM fixed points, viz., free
orbital (FO) → local moment (LM) → strong coupling (SC). In the higher-temperature stage, the SC fixed
point (with a Kondo temperature TK1) is unstable, while the lower-temperature Kondo screening exhibits a much
lower Kondo temperature TK2, associated to a stable SC fixed point. The results clearly indicate that the reentrant
Kondo screening is associated to an effective SIAM, with an effective Hubbard repulsion Ueff , whose value is
clearly identifiable in the impurity’s local density of states. This low-temperature effective SIAM, which we
dub as reentrant SIAM, behaves as a replica of the high-temperature (bare) SIAM. The second-stage RG flow
(obtained through NRG), whose FO fixed point emerges for T ≈ � < TK1, takes over once the RG flows away
from the unstable first-stage SC fixed point. The intuitive picture that emerges from our analysis is that the
first Kondo state develops through impurity screening by semiconducting electrons, while the second Kondo
state involves screening by metallic electrons, once the semiconducting electrons are out of reach to thermal
excitations (T < �) and only the metallic (low) spectral weight inside the gap is available for impurity screening.
This switch implies that the first Kondo cloud is much smaller than the second since the NRG results show that,
for all parameter ranges analyzed, TK2 � TK1. Last, but not least, we analyze a hybrid system formed by a QI
“sandwiched” between an armchair graphene nanoribbon (AGNR) and a scanning tunneling microscope (STM)
tip (an AGNR + QI + STM system), with respective couplings set to reproduce the generic model described
above. The energy gap (2�) in the AGNR can be externally tuned by an electric-field-induced Rashba spin-orbit
interaction. We analyzed this system for realistic parameter values, using NRG, and concluded that the reentrant
SIAM, with its associated second-stage Kondo, is worthy of experimental investigation.
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I. INTRODUCTION

Understanding the low-temperature physics of a many-
body interacting system is always a challenging task. Despite
the simple form of the mutual interaction between pairs of
its constituents, such a system, collectively, ofttimes behaves
in an unexpected manner. Indeed, this aspect of nature has
been insightfully discussed in a seminal paper by Anderson
[1]. Within this context, the archetypal example, in condensed
matter physics, is that of the ground state of the many-body
Kondo problem [2,3].

The Kondo physics of a single magnetic impurity coupled
to a metallic host is a well-understood problem [3], which can
be experimentally studied in detail by coupling a quantum dot
(QD) to a metallic contact [4], while its essential physical
properties are captured by the well-known single impurity
Anderson model (SIAM) [5]. A renormalization-group (RG)
analysis of the SIAM [6] shows that the system crosses over
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three different fixed points as the temperature is lowered:
(i) the unstable free orbital (FO) fixed point, in which the
impurity is effectively decoupled from the conduction band,
(ii) the also unstable local moment (LM) fixed point, where
the impurity acquires a highly fluctuating magnetic moment,
and (iii) the stable strong coupling (SC) fixed point, in
which the magnetic moment of the impurity becomes fully
screened by the conduction band electrons. The characteristic
temperature below which the impurity moment is screened
is the so-called Kondo temperature TK . The SIAM, so to
speak, provides a rich, although the simplest, description of
the Kondo physics in QDs. The scenario presented above
provides a generic picture of the physics of the SIAM, which
remains qualitatively valid whenever the density of states of
the conduction electrons exhibits no special features close to
the Fermi level. Richer Kondo physics can be found if the
conduction band exhibits structures such as a pseudogap or
zero-energy peaks, like van Hove singularities. These features
have been studied in great detail by several authors [7].

An interesting, but less studied, situation is the case in
which the conduction band is that of a semiconductor, i.e.,
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a spectra characterized by a finite gap �. The richness of the
Kondo physics resulting from the interplay between TK and
� has been studied since almost three decades ago using a
variety of numerical and analytical techniques, for instance:
quantum Monte Carlo (QMC), by Takegahara et al. [8,9]
and Saso [10], poor man’s scaling (PMS), 1/N expansion,
noncrossing approximation (NCA) and QMC, by Ogura and
Saso [11], using Green’s function, within equation-of-motion
techniques, plus Hartree-Fock, by Cruz et al. [12], density
matrix renormalization group (DMRG), by Yu and Guerrero
[13], numerical renormalization group (NRG), by Takegahara
et al. [8,9] and Chen and Jayaprakash [14], density matrix
NRG (DM-NRG), by Moca and Roman [15], as well as
perturbation theory and the local moment approach, by Galpin
and Logan [16,17].

The earliest results pointed to the existence of a Kondo
ground state (a SC fixed point) whenever � < �c, where the
critical gap �c should fulfill the relation �c � TK , being TK

defined as the Kondo temperature for � = 0. However, NRG
results [8,14,15] have indicated that a finite critical gap �c

only exists away from half-filling, while at half-filling any
arbitrarily small gap (i.e., any � > 0) results in the ground
state becoming a doublet, i.e., switching from the standard
Kondo-singlet SC fixed point (for � = 0) to a doublet LM
fixed point. This qualitative difference (half-filling vs away-
from-half-filling) has been confirmed by analytical calcula-
tions [16] and the local moment approach [17], where it was
shown that the ground state away from half-filling is a so-
called generalized Fermi liquid, while it is a non-Fermi liquid
for all finite values of � at half-filling. In addition, DM-NRG
calculations [15] studied the quantum phase transition (QPT)
occurring away from half-filling for � = �c and showed the
formation of a single bound state when the system is in the
SC regime (� < �c), and the formation of an additional one
once the system transitions to the LM regime (� > �c).

In this work, we study two systems: the first is a slightly
different model from the one already analyzed in the works
described above, as it is composed of a QD [or a quantum
impurity (QI)] that is strongly coupled on the right to a
semiconducting lead (with a gap 2�) and on the left it is
weakly coupled to a metallic lead (see Fig. 1). The second
system, which we believe to be a feasible experimental real-
ization of the model just described, is based on a QI strongly
coupled to an armchair graphene nanoribbon (AGNR), which
is in an externally induced insulating phase [18], and weakly
coupled, through a small coupling �tip, to a scanning tunnel-
ing microscope (STM) tip (modeled as a metalliclike band).
This AGNR + QI + STM system is particularly attractive,
as Kondo physics in carbon-based materials, mainly in bulk
samples, has attracted a great deal of attention in the last few
years [19–28]. The Kondo physics in graphene results from
localized magnetic moments formed at vacancy sites [29–32]
or through the surface deposition of magnetic atoms [33,34],
in which the local density of states may be modified by either
disorder [35,36] or by ripples induced by the underlying sub-
strate [34]. Contrasting to the plethora of studies addressing
the Kondo state in carbon nanotubes and on bulk graphene,
less attention has been devoted to this effect in nanoribbon
systems [37–40]. Depending on the shape of the edges of a
graphene nanoribbon, either zigzag or armchair, its density

FIG. 1. Schematic representation of a QD coupled to a metallic
lead (left) and to a semiconducting lead (right). The metallic lead is
represented by a flat density of states ρM (ω), while the semiconduct-
ing lead is modeled by an energy-dependent density of states ρS (ω)
characterized by a gap 2�. D is a cutoff energy and represents the
bandwidth of conduction electrons and is taken as our energy unit.

of states near the Fermi level will be that of a semimetal,
for zigzag nanoribbons, owing to the remarkable existence
of metallic states localized at its edges, or it could alter-
nate between being semiconducting or metallic, for armchair
nanoribbons, depending on its width [41]. Interesting Kondo
physics can be exploited from graphene nanoribbons, as re-
cently shown by Li et al. [39], which reported an unexpected
Kondo resonance behavior in a magnetic-molecule/Au(111)
coupled system, in which an AGNR was used as a bridge
to connect the molecule to the Au(111) surface, forming a
hybrid structure. Their results showed that, thanks to their
peculiar electronic properties, AGNRs were able to provide an
effective coupling between the localized spin and the itinerant
electrons in the Au(111) surface.

The main result in this work is that the PMS and NRG
analysis, of the appropriate SIAM for modeling the first
system mentioned in the preceding paragraph, reveals, as one
lowers the temperature, a sequence of two Kondo stages.
Both are characterized by the traditional sequence of SIAM
fixed points (FO-LM-SC), where the higher-temperature SC
fixed point is unstable, with Kondo temperature TK1, while
the second stage has a stable SC fixed point with a much lower
Kondo temperature TK2. We dub the lower-temperature Kondo
state as a “reentrant Kondo state,” which is associated to an
“emergent” effective SIAM, with an effective Hubbard Ueff ,
in contrast to the “bare” SIAM associated to the first-stage
Kondo effect. The AGNR + QI + STM system, on the other
hand, is a “real life” system where we claim, supported by
NRG results for realistic parameters, the reentrant Kondo state
may be experimentally observable.

The general organization of this work is as follows. In
Sec. II we present the SIAM that describes the first sys-
tem and the specific parameter values used. For the sake of
completeness, in Sec. II A we disconnect the QI from the
metallic band (keeping its coupling just to the semiconductor)
and present a preliminary analysis, using Anderson’s PMS
[3,42], highlighting the interesting interplay between TK and
�. In Sec. II B, we additionally (weakly) couple the magnetic
impurity to the metallic band and study, through an analysis
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of the impurity thermodynamic properties, as well as its local
density of states (LDOS), an interesting effect, the reentrant
Kondo effect, that can be briefly described as consisting of a
sequence of two Kondo effects, where the Kondo temperature
of the first (TK1) is orders of magnitude higher that the second
one (TK2). Despite similarities with the so-called two-stage
Kondo effect [43], there are important differences, the main
one being that, in our system, the first Kondo effect is asso-
ciated to an unstable SC fixed point, thus, there is only one
true Kondo state, which occurs below TK2. In Sec. III we
apply the ideas developed for the reentrant Kondo effect to
a real system, viz., a QI coupled to an AGNR and an STM tip
(see Fig. 8). In Sec. IV we present a summary of the results,
together with our conclusions.

II. MODEL AND NUMERICAL RESULTS

The first system that we have studied is schematically
described in Fig. 1. In it, the semiconducting and the metallic
density of states (DOS) seen by the QD are depicted to its right
and left, respectively. As shown below, the presence of this
metallic DOS will qualitatively change the many-body ground
state of this system, in comparison to the ones analyzed in the
literature, as described in the Introduction.

Thus, our model consists of an interacting QD coupled
to a metallic lead, as well as to a semiconducting one (see
Fig. 1). This system is modeled by a Hamiltonian HSIAM =
Himp + HS + HM + HHyb, whose first term is given by

Himp =
∑

σ

εd d†
σ dσ + Und↑nd↓, (1)

where d†
σ (dσ ) creates (annihilates) an electron with energy εd

and spin σ =↑↓ in the QD, ndσ = d†
σ dσ is the QD occupancy,

and U represents the Coulomb interaction. The leads are
described by

HS/M =
∑
kσ

a = S, M

εakc†akσ
cakσ , (2)

where c†akσ
(cakσ ) creates (annihilates) an electron with mo-

mentum k, energy εak, and spin σ in the metallic (a = M)
or in the semiconducting (a = S) lead. Finally, the QD-leads
hybridization is given by

HHyb =
∑
kσ

a = S, M

(Vakd†
σ cakσ + H.c.), (3)

where Vak represents the hybridization matrix element that
couples the impurity either to the metallic (a = M) or to
the semiconducting (a = S) lead. Here, we assume that
the metallic lead is characterized by a flat DOS ρM (ω) =
(1/2D)�(D − |ω|), where D is the half-bandwidth (� is the
Heaviside step function), while the semiconducting-lead DOS
(schematically shown in Fig. 1) is given by

ρS (ω) = ρ0
|ω|√

ω2 − �2
�(|ω| − �)�(D − |ω|). (4)

Here, 2� is the semiconducting gap and ρ0 = 1
2
√

D2−�2 is
a normalization factor. This particular expression for ρS (ω)

[Eq. (4)] is appropriate for a dimerized chain, for instance,
and was used in Ref. [12] to model the DOS of trans-
polyacetylene. Its overall profile is schematically shown on
the right side of Fig. 1, and it is very similar to the DOS
of an AGNR [see Fig. 8(b)]. Assuming Vak ≡ Va to be k
independent, for simplicity, the hybridization functions are
defined as �a = πV 2

a ρa (for a = S,M).
The Kondo physics in our model, for �S = 0, corresponds

to the traditional SIAM, which has been extensively studied
over the last decades. In contrast, the situation where the QD
couples solely to the semiconducting lead has received less
attention (see the Introduction). Experimentally, the Kondo
physics for magnetic impurities adsorbed in metallic surfaces
has been studied through low-bias transport spectroscopy
using an STM tip weakly coupled to the impurity. In our
setup, the metallic lead serves not only to represent the STM
tip, but also plays an important role in the NRG calculations,
as it introduces a small, but finite, hybridization function at
energies inside the semiconducting gap 2� (see Fig. 1).

In this work, we focus on the regime in which the QD
is so weakly coupled to the metallic lead, in comparison to
its coupling to the semiconducting lead (�M � �S), that any
possible Kondo screening generated by conduction electrons
in the metallic lead will occur at temperatures much lower
than those associated to a possible Kondo screening occurring
through electrons in the semiconducting lead. For our analysis
in what follows, it is useful to define �0 = �M + �S ≈ �S.

Note that all the calculations presented in this work, aside
from those in Sec. III, where different parameters (when
considered) are explicitly stated, were done for the following
parameter values: D = 1, the half-bandwidth, is our unit of
energy, U = 0.5 is the Coulomb repulsion for impurity double
occupancy, the impurity energy level is set at the particle-
hole-symmetric point εd = −U/2, and �0 = 0.05. The NRG
approach was performed using Wilson’s discretization param-
eter set to 
 = 2.5, 2000 many-body states were retained after
each NRG iteration, and we made use of the z-trick averaging
in the discretization procedure [44].

A. Interplay between TK and �: Effective Kondo
Hamiltonian and scaling analysis

To reveal the intricate interplay between TK [45] and �, we
will do a scaling analysis of the effective Kondo model, which
can be derived from the SIAM by performing a Schrieffer-
Wolff transformation [3,46]. For now, we are solely interested
in the impurity plus semiconductor subsystem, thus, we set
VM = 0. The resulting Kondo model can be written as

HK =
∑
kσ

εSkσ c†Skσ
cSkσ +

∑
kk′

JSkk′ [Sz(c†Sk↑cSk′↑ − c†Sk↓cSk′↓)

+ S+c†Sk↓cSk′↑ + S−c†Sk↑cSk′↓], (5)

where JSkk′ is a Kondo coupling that can be written in terms
of the SIAM parameters. For simplicity, we assume VSk to be
k independent and real, thus denoting it by VS , resulting in
JSkk′ ≈ JS = V 2

S ( 1
U+εd

− 1
εd

). (Note that, in what follows, for
reasons that will be apparent soon, we will refer to JS as the
bare coupling and denote it as J (0)

S .) In the above, we have
neglected a scalar scattering potential, which in fact vanishes
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at the εd = −U/2 particle-hole-symmetric point. Following
Anderson’s original idea [3,42], the scaling analysis consists
of integrating out the degrees of freedom in the conduction
band whose energies lie within the interval [D − δD, D], for
electrons, and [−D,−D + δD], for holes, where δD > 0. By
doing so, we obtain an effective Kondo Hamiltonian where
now the electrons are within a narrowed D̃ = D − δD conduc-
tion bandwidth, and with a renormalized coupling J̃S , which
obeys the scaling equation

dJ̃S

d (ln D̃)
= −2ρS (D̃)J̃2

S . (6)

This equation has to be integrated from D to some arbitrary
energy D̃ < D. Using Eq. (4) for ρS , we obtain the general
solution

1

J̃S (D̃)
− 1

J̃S (D)
= 2ρ0

[
ln

(
�

D + √
D2 − �2

)
�(� − D̃)

+ ln

(
D̃ +

√
D̃2 − �2

D + √
D2 − �2

)
�(D̃ − �)

]
,

(7)

where J̃S (D) = J (0)
S is the initial condition, which corresponds

to (as mentioned above) the so-called bare Kondo coupling
(i.e., the coupling before the rescaling of the conduction
band). As D̃ decreases, the expected SC fixed point is reached
when JS (D̃) → ∞. At this fixed point, the impurity and
the conduction electrons form a many-body Kondo singlet.
Within the PMS, the value of D∗, defined as J̃S (D̃ = D∗) =
∞, is identified with the Kondo temperature of the system.

The two terms inside the square brackets on the right-hand
side of Eq. (7), each multiplied to a different Heaviside step
function, will thus be finite for different intervals of D̃: the
first term for D̃ < � and the second one for D̃ > �. This
implies, as we shall see, a qualitative change in the solutions
when D̃ crosses �. Starting with D̃ < � (thus the second term
vanishes), we obtain that

1

J̃S (D̃)
− 1

J (0)
S

= 2ρ0 ln

(
�

D + √
D2 − �2

)
, (8)

which results in a finite, but constant, coupling J̃S (D̃), for
any finite �. Hence, no strong coupling fixed point [i.e., no
divergence of J̃S (D̃)] is expected.

On the other hand, the solution to Eq. (7) for D̃ > � [first
term in Eq. (7) vanishes], given by

1

J̃S (D̃)
− 1

J (0)
S

= 2ρ0 ln

(
D̃ +

√
D̃2 − �2

D + √
D2 − �2

)
, (9)

allows for an infinite J̃S (D̃). Indeed, by setting 1/J̃S (D∗) = 0
in Eq. (9), after some algebraic manipulations we obtain that
D∗ can be written as

D∗ = 1

2

[
(D +

√
D2 − �2)e−g + �2

D + √
D2 − �2

eg

]
, (10)

where g = (2ρ0J (0)
S )

−1
. Obviously, D∗ is meaningful only if

it lies within the interval � < D∗ < D. Upon imposing this
condition on Eq. (10), we find that, for a given �, the bare

−6.0 −5.5 −5.0 −4.5 −4.0 −3.5
log10(Δ)

0.01

0.02

0.03

0.04

0.05

0.06

Γ
c

NRG
PMS

FIG. 2. �c obtained by PMS [(blue) dots], Eq. (12), and by NRG
[(red) squares], as a function of � (in log scale). The bare parameter
values were U = 0.5 and εd = −0.25.

coupling J (0)
S has to be larger than a critical Jc, given by [47]

ρ0Jc = 1

2

[
ln

(
D + √

D2 − �2

�

)]−1

. (11)

As mentioned in the Introduction, we know that this is an
artifact of the poor man’s scaling approach since, at half-
filling, as shown through NRG and confirmed by other meth-
ods, there is no SC fixed point for any finite gap � in the
semiconductor spectra. In the following, we will compare
the critical coupling given by Eq. (11) with the numerical
results obtained from NRG calculations for the corresponding
Anderson model. To do so, it is convenient to express Jc in
terms of the Anderson model parameters. Defining �

(0)
S =

πV 2
S ρ0, we can write J (0)

S = 4V 2
S /U = 4�

(0)
S /(πρ0U ), at the

particle-hole-symmetric point [48]. Thus, Eq. (11) can be
rewritten as

�c = πU

8

[
ln

(
D + √

D2 − �2

�

)]−1

. (12)

In Fig. 2, we plot �c vs � (in log scale) for U = 0.5 and
εd = −0.25, as obtained through the expression in Eq. (12)
(blue dots) and compare it with the critical �c obtained by
NRG (red squares). To determine whether there is a tendency
to Kondo screening or not in the NRG calculations, we mon-
itor the impurity magnetic moment μ2

imp(T ) = kBT χimp(T )
for decreasing temperature (not shown). Following Wilson’s
criterion [3], we say that the Kondo screening takes place
only if μ2

imp(T ) becomes smaller than 0.07 as the system is
cooled down. Thus, �c is defined as the smallest value of �,
as obtained through NRG (red squares in Fig. 2), for which
this condition is still satisfied. It is interesting to notice that
the �c obtained by NRG is systematically larger than the one
obtained by PMS [Eq. (12)]. We note that there is a qualitative
agreement between the PMS and NRG results, showing that
�c increases with �. This means that, as intuitively ex-
pected, a larger � requires stronger hybridization between the
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TK1 ≈ TKTK2TK2TK2TK2

FIG. 3. Impurity contribution to (a) entropy Simp, (b) magnetic
moment μ2

imp, and (c) charge fluctuation Q2
imp, as a function of

temperature for 10−4 < �M/�0 < 10−3 and � = 10−5. Note the ap-
pearance of a second SC fixed point (for all �M/�0 � 0.0002) at
lower temperatures, which can be identified by an increase in charge
fluctuation at around T ≈ 10−5 [(c)], followed by an LM regime,
followed by an impurity-band singlet formation [(b)] at the second
SC fixed point, with lowering onset temperature, as �M decreases.
To facilitate the discussion, the estimated values for TK1 and TK2

(obtained through Wilson’s criterion) are indicated in (b). See text
for details.

impurity and the (semiconducting) conduction electrons for
the Kondo screening to take place. Last, but not least, taking
into account that, as shown above, there is no SC fixed point
for D̃ < �, the NRG results in Fig. 2 (red squares) do not
describe the ground state of the VM = 0 Hamiltonian, but
rather what we may call a finite-temperature Kondo phase
(see below) associated to an unstable SC fixed point. As
described in the Introduction, the ground state of the VM = 0
Hamiltonian corresponds to a doublet LM fixed point [16,17].

B. Reentrant effective Anderson Hamiltonian

Let us now turn our attention to the full system, which
includes the metallic contact. In particular, we are interested in
studying what happens to the system for temperatures below
TK , where, again, TK is the Kondo temperature for � = 0 and
VM = 0. To do this, we fix �0 = 0.05 and � = 10−5, and vary
�M. Note that, as can be checked from the NRG curve in
Fig. 2 (red squares), for these parameter values we have that
�0 > �c. Our results now rely just on NRG calculations since
PMS breaks down before D̃ < �, as shown in the previous
section. We will see that an intriguing “revival” of an effective
Anderson Hamiltonian is observed as the temperature tends
to zero. This assertion will become clear after we analyze the
impurity thermodynamic properties, where it will become evi-
dent the appearance of the two Kondo temperatures mentioned
in Sec. I, TK1 and TK2, with TK1 � TK2 [see Fig. 3(b)]. In
addition, it should be noted that, as expected [and indicated
in Fig. 3(b)], the higher Kondo temperature TK1, obtained
for finite �M and �, has approximately the same value as

the Kondo temperature TK , corresponding to the �M = � = 0
case, as long as �M and � are � TK .

Figure 3 shows the impurity contribution to the entropy
Simp [Fig. 3(a)], magnetic moment μ2

imp [Fig. 3(b)], as well
as the charge fluctuations Q2

imp [Fig. 3(c)], as a function of
temperature for five different values of �M in the interval
10−4 � �M/�0 � 10−3. We first note that, for temperatures
in the interval 100 > T � 10−5 = �, all impurity thermo-
dynamic properties are independent of �M, and the results
display the traditional SIAM behavior, in which the system
crosses over from the FO to the LM to an SC fixed point, as the
temperature decreases. These three fixed points are marked,
respectively, by entropy values Simp/kB ∼ ln 4, ∼ ln 2, and ∼0,
as seen in Fig. 3(a). This is accompanied by an enhancement
of the magnetic moment μ2

imp, at the LM fixed point, followed
by its complete suppression in the SC fixed point, as shown
in Fig. 3(b). Finally, notice also the strong suppression of
the impurity charge fluctuations Q2

imp (at the LM and SC
points) [Fig. 3(c)]. Interestingly, as mentioned above, all these
features are independent of the �M value. This can be easily
concluded from the superposition of all the curves in all panels
in Fig. 3 in the temperature interval 100 > T � 10−5. This
behavior may be associated to the fact that the largest �M used
in the results shown in Fig. 3 (given by 10−3�0 = 5 × 10−5)
was still much smaller than TK ≈ 10−3.

It is well known that the thermodynamic properties pre-
sented above (for the temperature interval 100 > T � 10−5)
are characteristic of the SIAM [3]. However, for a traditional
SIAM, the values of the thermodynamic quantities, for T �
TK , i.e., well into the SC regime, remain unchanged down
to T → 0, as the system would have already reached the
stable SC fixed point and would stay there. Remarkably, in
the present case, when T approaches � = 10−5 (from above),
the system deviates from this standard behavior, as it can
be easily seen in Fig. 3, since all thermodynamic properties
have additional structures for T < �. Indeed, when T → �,
the system flows to a second free orbital (SFO) fixed point,
marked by an increase of Simp, μ2

imp, and Q2
imp, to values that

go back to their high-temperature (T = D) values. Further
decrease of T shows that the system crosses over fixed points
that have very similar properties to the ones crossed in the
temperature interval 100 > T � 10−5. The similarity between
the low- and high-temperature fixed points indicates that, for
T < �, the system seems to be governed by an effective
SIAM with renormalized parameters and a much lower Kondo
temperature. Note that the extent of the plateaus in the entropy
(at kB ln 2) and in the magnetic moment (at ≈ 1

4 ), which mark
how long the system stays close to the LM fixed point, depend
strongly on �M, showing that the Kondo temperature for the
reentrant effective SIAM, denoted as TK2, depends strongly on
�M. To highlight that, in Fig. 3(b) we use Wilson’s criterion
to determine the characteristic Kondo temperatures TK1 and
TK2, which can be extracted from the intersection of the gray
dashed line (corresponding to μ2

imp = 0.07) with the μ2
imp

curves for different �M values. The higher Kondo tempera-
ture, TK1, indicated on the right side of Fig. 3(b), which is
clearly independent of �M, and similar to the � = �M = 0
Kondo temperature TK , is accompanied by a �M-dependent
TK2 Kondo temperature, much lower than TK1 and associated
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FIG. 4. Energy spectrum vs NRG iteration step N (odd values
only) obtained for the lowest-energy levels. Note the fixed points in
the traditional Anderson model seen in the iterations ranging from
N ≈ 5 to N ≈ 35, which are traversed again at higher N values (N �
41), showing the reentrance of the Anderson model behavior at low
energies. The model parameters used here were �0 = 0.05, �M/�0 =
5 × 10−4.

to a stable SC fixed point. Thus, the thermodynamic quantities
(Simp, μ2

imp, and Q2
imp) exhibit a behavior compatible with an

NRG flow through a low-temperature second-stage effective
SIAM, as will be explicitly shown next.

Indeed, this interesting (and unusual) behavior can be
clearly captured by the energy flow diagram obtained from
NRG, as shown in Fig. 4, which displays the energy spectrum
as function of the NRG iteration step N (for odd values). As
described in Ref. [6], the occurrence of a fixed point in the
iterative NRG procedure can be determined by looking for a
set of many-particle energy levels that repeat themselves in a
sequence of odd (or even) steps in the NRG diagonalization
procedure. Figure 4 shows that the traditional SIAM fixed
points are observed in the range of iterations from N ≈ 5
to N ≈ 35, while the second-stage SIAM fixed points are
traversed again at higher N values (N � 41). For the sake of
clarity, we added a green-shaded vertical stripe to highlight the
(unstable) SC fixed point and a blue-shaded one to highlight
the second (stable) SC fixed point. The parameters used were
�0 = 0.05, �M/�0 = 5 × 10−4, the same as for the inverted
triangle curves in Fig. 3.

Further insight onto the two SC fixed points can be gained
from the analysis of the impurity’s LDOS, given by

ρ(ω) = − 1

π
Im[〈〈dσ ;d†

σ 〉〉ω], (13)

where 〈〈dσ ;d†
σ 〉〉ω is the retarded local Green’s function in

the energy domain, within Zubarev’s notation [49]. We first
analyze the impurity LDOS at low energies (ω < 10−7) in the
main panel of Fig. 5, which shows π�Mρ(ω) as a function
of log10 ω for three values of �M. For �M = 3 × 10−4 �0 and
�M = 5 × 10−4 �0 (red and orange curves, respectively), we
see Kondo peaks that nicely obey the Friedel sum rule. Notice
that, to accomplish this, we are multiplying ρ(ω) by π�M,
the impurity coupling to the metallic lead. This shows that the
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FIG. 5. Impurity LDOS as a function of energy for �0 = 0.05
and three values of �M. The inset shows a zoom-in of the region
where the first Kondo regime occurs. The LDOS ρ(ω), in the main
panel and in the inset, is multiplied by π�M and π�0, respectively,
so as to show that both Kondo regimes obey the Friedel sum rule.

reentrant Kondo state, as expected, involves electrons from the
metallic DOS. However, contrary to what happens for the two
larger values of �M, for �M = 10−4 �0 (blue curve), there is
no Kondo peak at low energies (at least down to ω = 10−16).
This is in agreement with the thermodynamic properties for
the corresponding (blue) curves in Fig. 3, which show no
indication of the occurrence of a reentrant Kondo effect. In
addition, the widths of the two Kondo peaks in the main panel
of Fig. 5, for �M = 3 × 10−4 �0 and �M = 5 × 10−4 �0, are
in accordance with the estimated values for TK using Wilson’s
criterion in Fig. 3(b). Finally, it is interesting to notice that
the small peaks observed slightly above ω = 3 × 10−8 cor-
respond to the upper Hubbard peak, which is located at Ueff

2 ,
where the renormalized Coulomb repulsion Ueff is associated
to the effective reentrant SIAM (see more details below).

We now proceed to an analysis of the LDOS at higher
values of ω. The inset in Fig. 5 shows a zoom of the ω ∈
[10−6, 1] energy window. Note that, in accordance with the
thermodynamic quantities analyzed in Fig. 3, all three curves
collapse onto each other. In addition, as was the case at lower
energies (main panel), if one multiplies ρ(ω) by π�0 (as done
in the inset), the results obey the Friedel sum rule, indicat-
ing that, for the first SC fixed point, the many-body state
is formed between the impurity and the electrons from the
semiconducting DOS. The interpretation here is immediate:
the higher peak corresponds to the first (TK1) Kondo effect,
while the smaller peak above ω = 10−1 corresponds to the
upper Hubbard peak, located at U

2 .
The LDOS results just presented in Fig. 5 provided access

to the numerical value of Ueff (the small peak in the main
panel). Since it, together with �S, �M, and U , characterizes
the thermodynamic properties shown in Fig. 3, we will, in
what follows, correlate (and summarize) the results presented
in Fig. 3 with those presented in Fig. 5. In Fig. 3, one can
clearly see that, as the temperature decreases below the first
Kondo temperature TK1 ≈ 10−3, the system enters the SFO
fixed point (for T ≈ � = 10−5), where the coupling between
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FIG. 6. ln(TK2/TK1) vs 10−4 × �0/�M, for �0 = 0.05. From the
linear behavior of the curve, the data could be fitted to an expression
like TK2 = A0e−A1/�M .

the impurity and the conduction electrons drops from �0 to
�M, in which case we have that T � �M, and T � Ueff ≈
3 × 10−8 (see Fig. 5). As the temperature decreases further,
the system then enters the second LM fixed point for T �
Ueff ≈ 3 × 10−8 (compare Figs. 3 and 5). Finally, when T
goes below the second Kondo temperature [TK2, whose value
depends strongly on �M, see Figs. 3(b) and main panel of 5]
the system reaches the stable SC fixed point.

The existence of this very small Ueff can be inferred
from the PMS analysis of the Anderson model, as dis-
cussed by Jefferson [50] and Haldane [51] for metallic
conduction bands, and, later on, extended to more gen-
eral spectra in Refs. [52,53] [see, for instance, Eq. (27)
of Ref. [53]]. Although these analyses are limited by
their perturbative character, they suggest that the renormal-
ized Coulomb repulsion indeed decreases along the RG
flow.

Since the width of the Kondo peak at half-height is a
good estimate of the Kondo temperature, calculations for
various values of �M, at fixed �0, like the ones done in
Fig. 5, provide the dependence of the Kondo temperature of
the reentrant Kondo screening TK2 on �M. These results are
shown in Fig. 6, where we plot log(TK2/TK1) as a function
of �0/�M (for �0 = 0.05, in units of 10−4). The remarkable
linear behavior of the curve suggests a fitting of the NRG
results to an expression like TK2 = A0e−A1/�M , where both A0

and A1 are positive and A0 ∝ TK1. This expression indicates
that TK2 decreases exponentially with a decreasing �M. The
parameters A0 and A1 contain the intricate information about
the reentrant effective SIAM.

Before closing this section, in Fig. 7 we show how both
Kondo screenings change, in respect to the gap � in the
semiconducting lead. Figures 7(a)–7(c) show the impurity
entropy Simp, magnetic moment μ2

imp, and LDOS ρ(ω), re-
spectively, for four different � values (2.0 × 10−6 � � �
2 × 10−3). The calculations were done for �0 = 0.05 and
�M = 5 × 10−4, which is an order of magnitude above the
largest �M value used in Fig. 3. Notice that, in Fig. 7(b) (as
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FIG. 7. (a) Impurity entropy Simp and (b) magnetic moment μ2
imp,

as a function of T , and (c) log10[ρ(ω)] vs energy, for �0 = 0.05,
�M = 5 × 10−4, and four � values (2.0 × 10−6 � � � 2 × 10−3).
The horizontal gray dashed line in (b) represents μ2

imp = 0.07, and
from its intersection with the μ2

imp curves we obtain TK1 and TK2 for
each � value. In (c), we have chosen to show log10[ρ(ω)] to visualize
all the peaks, as their heights differ by several orders of magnitude.
Note that the horizontal axis scale (not shown) in (a) and (b) is the
same as in (c).

done also in Fig. 3), the characteristic Kondo temperatures
TK1 and TK2, for each value of �, can be extracted from
the intersection of the gray dashed line (corresponding to
μ2

imp = 0.07) with the μ2
imp curves. It is straightforward to note

that, for the smallest value of � analyzed [� = 2.0 × 10−6

(red curve)], Simp and μ2
imp are strongly suppressed in the

temperature interval 10−5 � T � 10−4 and vanish as T →
0 (below T ≈ 10−11), clearly showing the existence of two
Kondo screening regimes, the first with TK1 ≈ 10−3 and the
second with TK2 ≈ 10−10 [as indicated in Fig. 7(b)]. The
impurity LDOS [Fig. 7(c)] for the same value of � = 2.0 ×
10−6 (red curve) exhibits, accordingly, two (not normalized)
Kondo peaks, with respective heights 1

π�0
and 1

π�M
, for the

first and second Kondo regimes, respectively. However, for the
larger � values shown in Fig. 7, we note that the first Kondo
regime is progressively suppressed. This occurs because, as �

increases, �c also increases, eventually becoming larger than
0.05, the �0 value used in the calculations [see NRG results
(red squares) in Fig. 2]. Figure 7(a) shows the details of how
this behavior evolves. First, it is important to remark that, as
shown in Fig. 3, the end of the first Kondo screening occurs
for T ≈ �. Second, as can be seen in Figs. 7(a) and 7(b), the
temperature at which the transition from the LM to the SC
fixed point starts, for the first Kondo stage, does not depend
on �. Thus, as � increases, the flow from LM to SC is cut
short and the T → 0 physics is that of the first LM fixed point
(i.e., Simp = kB ln 2 and μ2

imp = 1
4 ). In other words, the first

SC fixed point is squeezed out of existence by the increase
in � and the system gets stuck in the first LM fixed point.
The two � = 2.0 × 10−6 Kondo peaks shown in the LDOS
[Fig. 7(c), red curve], in turn, are progressively suppressed as
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FIG. 8. (a) Schematic representation of an NA-AGNR deposited
on a substrate, with a magnetic impurity (yellow) deposited in a
top-site configuration [right above a nanoribbon carbon atom (black),
and strongly coupled to it, with hopping amplitude VC]. Right on
top of the magnetic impurity adatom (as shown in the inset) is
located a weakly coupled metallic STM tip, with a coupling strength
�tip. (b) DOS for a 47-AGNR close to the Fermi level, without the
impurity, as a function of energy ω, for different RSOI strengths λR.
W is the width of the AGNR (assuming a nearest-neighbor distance
aC−C = 1), which depends on the number of dimmers NA across the
nanoribbon. Note that, as NA = 47 = 3 × 16 − 1, the λR = 0.0 DOS
(black curve) is metallic, while a finite λR opens a gap in the spectra.

� increases [see the green, blue, and black curves in Fig. 7(c)],
confirming the destruction of both Kondo screening regimes.
Thus, the first LM fixed point becomes the low-temperature
stable fixed point.

Finally, we have also checked how the impurity thermo-
dynamic properties evolve when we vary �M in the interval
10−6�0 < �M < �0, while �S takes values determined by
�M + �S = �0. The results (not shown), as �M approaches
�0, show the gradual disappearance of all traces of the second
Kondo stage, resulting in the usual impurity thermodynamic
properties, traditional of a Kondo effect in a metallic host,
with TK = TK1.

The results shown so far are quite general and may be
applicable to a variety of gapped systems to which a magnetic
impurity can be coupled. Examples encompass narrow-gap
semiconductors [54], synthesized polymers [55], as well as
modern gap-engineered materials [56]. In the following, we
shall discuss how the reentrant SIAM behavior emerges in an
AGNR in which a Rashba spin-orbit coupling (and thus a gap)
is induced externally [57].

III. REENTRANT KONDO EFFECT IN ARMCHAIR
GRAPHENE NANORIBBON

In this section, we discuss a plausible experimental setup
consisting of a magnetic impurity coupled to an AGNR, sub-
jected to a tunable spin-orbit coupling, in which the phenom-
ena presented in Sec. II B may be experimentally observed.

It has been shown recently by Lenz et al. [57] that, under
the influence of Rashba spin-orbit interaction (RSOI), due to
an external electric field, or induced by a substrate, AGNRs
exhibit a tunable band gap at the Fermi level [58]. In the
following, we will consider a magnetic impurity coupled to
such a gapped AGNR and weakly coupled to an STM tip (see
Fig. 8). By employing a tight-binding model, combined with

NRG calculations, we show that this setup is very convenient
to investigate the reentrant Kondo effect discussed in Sec. II B.

It is important to notice that, as already mentioned above,
an AGNR may be metallic (when the number of dimers NA

across its width W is such that NA = 3M + 1, where M is
an integer), or semiconducting (for other values of NA). The
use of an intrinsic semiconducting AGNR for the purpose of
testing the reentrant Kondo effect would be problematic for
two reasons: first, the typical gap values � that one obtains
are in general large and, second, they are hard to tune. The
proposal of using RSOI to produce a small and tunable gap �

in a metallic AGNR, as illustrated in Fig. 8(b), sidesteps both
problems at once.

Our proposed setup is schematically shown in Fig. 8(a).
The system, comprised of a single magnetic impurity coupled
to an AGNR, is modeled by the standard SIAM-like Hamilto-
nian [5], given by

H =HAGNR + Himp + Htip + HAGNR-imp + Himp-tip, (14)

where the first term describes the AGNR, which is modeled
by a tight-binding Hamiltonian in real space, given by

HAGNR =
∑

iσ

(ε0 − μ)c†iσ ciσ +
∑

〈i, j〉,σσ ′
[ti jδσσ ′

+ iλRẑ · (s × δi j )]c
†
iσ c jσ ′ , (15)

where c†iσ (ciσ ) creates (annihilates) an electron with energy ε0

and spin σ on the ith site of the AGNR, and μ is the chemical
potential, which can be externally tuned by a back gate.
The second term is the nearest-neighbor π -band tight-binding
Hamiltonian, where ti j = t0 is the hopping between nearest-
neighbor sites [59], with t0 ≈ 2.7 eV [60]. The third term
models the induced RSOI, with parameter λR proportional
to the electric field applied perpendicular to the x-y plane of
the nanoribbon [61,62], s = (sx, sy, sz ) represents a vector of
Pauli spin matrices, and δi j are the vectors connecting nearest-
neighbor sites. The second term of Eq. (14) describes the
single-level Anderson impurity [given by Eq. (1), in Sec. II],
while the third term describes the STM tip, which is modeled
by the Hamiltonian HM in Eq. (2). The fourth term in Eq. (14),
which couples the impurity to the AGNR, is given by

HAGNR-imp =
∑
j,σ

Vjσ (c†jσ dσ + H.c.), (16)

where the most general situation is that in which the index
j runs over a number of sites in the AGNR that are closest
to the impurity. In Fig. 8(a), we depict the situation where
the impurity couples to just one site. Finally, the last term in
Eq. (14), which couples the impurity to the STM tip, reads as

Himp-tip =
∑
kσ

(Vkc†kσ
dσ + H.c.). (17)

In Eq. (16), if we consider the situation depicted in Fig. 8,
where the impurity couples to a single carbon atom in the
ribbon, then, assuming that the RSOI has no effect over this
coupling (thus, the coupling is spin independent), we can
set Vjσ ≡ VC . Furthermore, assuming a constant density of
states at the metallic tip ρtip, we may write the tip-impurity
hybridization function as �tip = πV 2

tipρtip, where Vtip is the
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hopping parameter between the impurity and the STM tip.
Thus, �tip ≡ �M, as defined in Sec. II. Therefore, from now
on, to facilitate the comparison with the results in Sec. II, we
will denote the QI-STM coupling by �M (instead of �tip) to
present all the forthcoming results.

To perform the NRG calculations to tackle the Kondo effect
in this system, we need to calculate the hybridization function
�0(ω) [6,7]. To do that, we have implemented a recursive
Green’s function approach [63,64] for the noninteracting
case, i.e., U = 0. Having the local Green’s function at hand
[40], we can obtain the self-energy matrix for the impurity,
[�AGNR+tip]σσ ′ (ω) = Im[G−1

C+tip(ω)]σσ ′ , where GC+tip is the
AGNR + tip [65] noninteracting, local (at the impurity site),
Green’s function matrix. We assume the magnetic impurity
placed at a top-site configuration [66], as depicted in Fig. 8, in
which case the system is still bipartite and the particle-hole
symmetry of the whole system is preserved [67]. This is
important, as it allows for a direct comparison of the results
in this section with those in Sec. II. Finally, note that, as
the RSOI does not break time-reversal symmetry, we have
that the �AGNR+tip matrix is diagonal, thus, [�AGNR+tip]↑↑ =
[�AGNR+tip]↓↓ ≡ �0 [65].

For concreteness, we consider a metallic AGNR, of width
W = √

3(NA − 1)/2, where NA is the number of dimmers
along the transverse direction [see Fig. 8(a) for details]. More-
over, we have chosen the carbon-carbon hopping amplitude
t ≈ 1/3.1, so that the half-bandwidth is D = 1, thus consistent
with Sec. II, where the half-bandwidth was taken as the energy
unit. Figure 8(b) shows the DOS ρAGNR(ω) for a 47-AGNR,
close to the Fermi level, for a pristine nanoribbon, i.e., without
any impurity coupled to its surface, for different values of
RSOI. We clearly see that in the absence of RSOI (λR = 0)
our AGNR exhibits a gapless DOS as shown by the black line
in Fig. 8(b). However, a finite λR induces a gap � around
the Fermi level as shown by the red (λR = 1.6 × 10−3),
green (λR = 2.4 × 10−3), and blue (λR = 3.2 × 10−3) curves
in Fig. 8(b), for progressively larger values of λR. Thus, the
AGNR with finite RSOI simulates the semiconducting band
coupled to the impurity, while the STM tip plays the role of
the metallic band defined in Sec. II, introducing a small but
finite broadening of the impurity level �M inside the gap. It is
worthwhile to remark that (i) the RSOI-induced gap � has a
particular dependence for narrow AGNRs as a function of λR,
especially for large values of λR [57]. However, � decreases
as the width of a metallic AGNR increases, such that, in the
limit where border effects over the electronic structure vanish,
the spin degeneracy will be lifted, but with no band gap, as
expected for bulk graphene [61,68]; (ii) � exhibits a small
oscillation as a function of λR [57]. In our calculations, we
restrict λR to a range within which � increases monotonically
with λR (for a fixed width), and, importantly, in agreement
with experimental RSOI values in graphene [69–71].

In what follows, we set �M = 1.0 × 10−6 (thus, fixing Vtip),
VC = 0.258, and NA = 47 (corresponding to W ≈ 5.65 nm).
Differently from the case of a zigzag graphene nanoribbon,
where the hybridization function is strongly dependent on
what site (across the ribbon) one chooses to couple the
impurity to [40] (i.e., close or away from the nanoribbon’s
edge), for an AGNR we have noticed a small quantitative
difference, as the ρAGNR(ω) along the width has a small
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FIG. 9. Hybridization function �0(ω) for vanishing λR (black
curve) and in the interval 0.004 � λR � 0.008. The range of values
of λR was chosen in order to produce � values monotonically
increasing with λR. The inset shows �0(0) as a function of λR.
Parameter values are VC = 0.258 and �M = 1.0 × 10−6.

variation. Therefore, we considered the impurity position
fixed at a given top-site location [66] for all the following
calculations. The resulting hybridization function �0(ω), for
various values of λR, is shown in Fig. 9. To make the region
near the Fermi level (located slightly to the left of the left
axis) more visible, we plot the energy axis in logarithm scale,
restricted to ω > 0 [by virtue of particle-hole symmetry, we
have that �0(−ω) = �0(ω)]. As expected, for λR = 0.0 the
AGNR is metallic, therefore, �0(ω) has a constant value (≈
0.01) around the Fermi level. In this case, our system behaves
quite similarly to a QI coupled to a metallic DOS with a flat
band. However, for finite λR we clearly see the formation of a
small gap �, which increases with λR. In the inset of Fig. 9
we show how �0(0) evolves with λR. We note that �0(0)
has a small residual and finite value inside the RSOI induced
gap, originating from the localized impurity state contribution,
which decreases as λR (or �) increases, eventually saturating
at �0(0) ≈ �M = 1.0 × 10−6. This behavior results from a
mixing of spin channels in the conduction band mediated
by the RSOI, reducing the spin-preserving transmission at
the Fermi level, as when RSOI is switched on the spin-flip
mechanism is allowed in the AGNR. This band-gap-induced
RSOI will show its fingerprints in the impurity thermody-
namic properties, determining the reentrant SIAM behavior.

Before studying how the induced gap affects the Kondo
screening in the system, let us first analyze the Kondo effect
in the absence of RSOI, and then see how it is modified by a
finite RSOI. In Fig. 10, we show, in panel (a) the impurity
entropy contribution Simp, and in panel (b) the magnetic
moment μ2

imp, both of them as a function of temperature
(10−8 < T < 1), for λR = 0.0 and 0.025 � U � 0.175. As
expected, the characteristic behavior of the SIAM is observed
as the temperature is lowered, namely, the crossovers from
an FO fixed point to an LM fixed point, and then from LM
to SC. Note that, for small values of U , such as U = 0.025
(black curve), the LM fixed point is not visible, as in this case
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FIG. 10. (a) Impurity entropy Simp and (b) magnetic moment
μ2

imp, for a metallic (λR = 0.0) 47-AGNR, as a function of temper-
ature, for 0.025 � U � 0.175, VC = 0.258, and �M = 1.0 × 10−6.

the Kondo temperature becomes comparable to � and U , and
the system is close to an intermediate valence situation. The
intriguing small dip in the impurity magnetic moment, as well
as in the entropy (presenting a small variation with U ), for
temperatures in the range 10−2–100, points to the presence
of van Hove singularities [72], coming from the quasi-one-
dimensional (quasi-1D) band structure of the AGNR.

To see how the gap opening introduces the reentrant SIAM
behavior, discussed in Sec. II, in Fig. 11 we repeat the cal-
culations shown in Fig. 10, with the same set of parameters,
except that λR is now finite, producing a gap � = 0.9 × 10−5.
For values of U = 0.025, up to U = 0.075, we clearly see,
both from the impurity entropy Simp [Fig. 11(a)] and from
the impurity magnetic moment μ2

imp [Fig. 11(b)], the emer-
gence of the reentrant SIAM behavior for temperatures below
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FIG. 11. (a) Impurity entropy Simp and (b) magnetic moment μ2
imp

for a 47-AGNR as a function of temperature, for fixed RSOI induced
gap � = 0.9 × 10−5, �M = 1.0 × 10−6, and different values of U .
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FIG. 12. (a) Impurity entropy Simp and (b) magnetic moment μ2
imp

for a 47-AGNR as a function of temperature, for different values of
RSOI induced gap (0.0 � � � 3.3 × 10−5). The parameter values
for both panels are �M = 1.0 × 10−6 and U = 0.05.

� ≈ 10−5 (compare with the results in Fig. 10 for the same
temperature range). As U increases, the Kondo temperature
TK1 of the first Kondo screening decreases, so that the unsta-
ble LM fixed point becomes more pronounced (i.e., extends
over a larger interval of temperature). As a consequence, the
observed decrease of TK1, as U increases, squeezes the first
SC fixed point within a temperature range � � T � TK1, and,
eventually, the first Kondo screening ceases to occur when
TK1 becomes comparable to �. This is manifested in the
progressive enhancement of Simp and μ2

imp in this temperature
region (because the first LM fixed point extends further down
in temperature). It is interesting to observe that the reentrant
Kondo temperature TK2 decreases much more rapidly than
TK1 with increasing U , as observed in the fast increase of
plateau extension of the reentrant LM fixed point. The de-
crease of TK1 with increasing U can be understood in terms
of the Haldane expression for the Kondo temperature in the
conventional SIAM [51]. From our calculations we find that
the effective Coulomb repulsion Ueff increases by increasing
U (not shown). Thus, even though the Haldane expression
cannot be readily applied to obtain TK2, it provides us with
a good insight on why TK2 decreases rapidly by increasing U .

Now, we proceed to a study of how the reentrant SIAM
behavior is modified by changing the AGNR gap for a fixed
U value. Figures 12(a) and 12(b) show, respectively, Simp

and μ2
imp as a function of T , for U = 0.05 and 0 � � �

3.3 × 10−5. After interpreting the results in Fig. 11, as just
done above, where we fixed � and increased U , the results
in Fig. 12 can be understood quite straightforwardly. Indeed,
by increasing �, the extension of the first LM fixed point
is squeezed from below, as TK1 ≈ 10−3 is now fixed (notice
the collapse of all curves, in both panels, for T � 10−4),
and the extent of the first SC fixed point is determined by
�. In addition, the extension of the reentrant FO fixed-point
plateau decreases for increasing �, indicating a decrease in
the charge fluctuations in the reentrant SIAM for increasing
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�. This suggests that the effective Coulomb repulsion Ueff

associated to the reentrant SIAM increases with �, resulting
in smaller TK2 values, which is clearly seen by the reentrant
Kondo screening taking place at lower temperatures for larger
�. Moreover, for � > TK1 (not shown), no Kondo screening
takes place as � exceeds TK (which is analogous to say that
�c > �0) destroying the first Kondo stage, as discussed in
Sec. II.

An important question, mainly for experimentalists, re-
mains to be answered, namely, what are the estimated values
for TK1 and TK2 for the AGNR + QI + STM system? Let
us first present the highest TK2 value [blue open squares
in Fig. 12(b)], where the Kondo temperature was obtained
using Wilson’s criterion, as done in Figs. 3(b) and 7(b).
We assume realistic values for the model parameters, i.e.,
nearest-neighbor hopping t ≈ 2.7 eV, which results in D ≈
8.37 eV, thus 2� = 1.0 × 10−5D ≈ 0.08 meV, U = 0.05D ≈
418 meV, and �M = 1.0 × 10−6D ≈ 8.37 μeV. The NRG
estimated values for TK1 and TK2 are approximately 106.72 K
(9.2 meV) and 0.5 mK (0.043 μeV), respectively. Such a
low value of TK2 (obtained for this set of parameters) would
represent an obstacle to the experimental detection of the
reentrant Kondo physics in the AGNR + QI + STM system.
However, notice that we have a certain degree of flexibility in
varying some of the parameters, like the AGNR width W , the
RSOI λR (where both of them affect the � value), the coupling
�M of the STM-tip to the QI, as well as its Coulomb repulsion
U . In addition, based on the understanding we gathered on
the physics of the reentrant Kondo, we have some intuition
on how to increase TK2. Indeed, the semiconducting gap �

is located between TK1 and TK2, separated by a few orders of
magnitude, i.e., TK2 � � � TK1, although there seems to be
no restriction on how much TK2 may approach �, other than
resulting in an unrealistically large TK1, as both are strongly
connected (see Fig. 6). From the results in the previous sec-
tions we know that TK2 should increase as Ueff decreases and
�M increases, with the former decreasing as U decreases. Fol-
lowing this recipe, but still using realistic parameter values,
we manage to obtain TK1 = 55.7 K (4.8 meV) [73] and TK2 =
10.2 mK (0.9 μeV), by assuming W ≈ 11.56 nm and λR =
33.5 meV (resulting in 2� = 0.14 meV), �M = 502 μeV,
and U = 214 meV. This TK2 value, we will argue below, is
already much closer to being experimentally accessible.

To finish this section, without trying to exhaust the litera-
ture in the subject, we will place our results in the context of
theoretical [43,74–77] and experimental [78–80] results that
are related to the occurrence of consecutive Kondo effects (as
one lowers temperature), dubbed in the literature, in general,
as two-stage Kondo effects. There are two distinct flavors of it:
(i) in QDs containing an even number of electrons, a singlet-
triplet Kondo effect has been observed both in vertical QDs
[81] as well as in lateral QDs [78], and, more recently, in car-
bon nanotube QDs [82]. Consecutive Kondo effects (dubbed
as “two-stage Kondo effect”) have been observed on both
sides of the singlet-triplet transition in semiconducting QDs
[78]. The effects have distinct mechanisms on each side of the
transition, and both effects require the formation of an S = 1
state, with the presence of two screening channels on the
triplet side and a single one on the singlet side. For example,
in the singlet side, van der Wiel et al. [78] report values TK1 ≈

3.5 K (300 μeV) and TK2 � 1 K (86 μeV). (ii) In double-QD
(DQD) systems, where one of the QDs (QD1) is embedded
between the source and drain leads and the other QD (QD2)
is side coupled to QD1, through a tunneling junction. In that
case, for the right couplings between QD1 and the Fermi sea,
and between both QDs, QD1 is Kondo screened first, at a
higher temperature TK1, by the Fermi sea electrons. At a much
lower temperature TK2, QD2 will be Kondo screened by the
quasiparticles forming the Fermi-liquid ground state resulting
from the first Kondo state. The spectral density that couples
to QD2 is essentially the Kondo peak of QD1. This second
flavor, although having a two-stage mechanism that is very
diverse from the reentrant Kondo presented here, is more akin
to our case since TK1 is, in general, orders of magnitude higher
than TK2. Therefore, the observation of its second stage has
posed a stiff challenge to experimentalists. In that respect, it
is interesting to note that Žitko [76], using NRG to simulate
transport properties of a DQD system, has claimed that Sasaki
et al. [80], doing measurements at low temperatures (in the
range of few tens of mK), have actually observed fingerprints
of the second (TK2) Kondo stage. This illustrates the fact that,
in our opinion, the proper use of gap engineering techniques
in similar systems to our AGNR + QI + STM may result in
the observation of the second Kondo stage described here.

IV. SUMMARY AND CONCLUSIONS

In summary, in this paper, using Anderson’s PMS and
NRG approaches, we have analyzed a system involving a
QI strongly (�S) coupled to a semiconductor (defined by
a gap 2�) and weakly (�M) coupled to a metal (Fig. 1).
Our analysis has unveiled the existence of a sequence of
two Kondo “stages”: the first one, occurring at higher tem-
peratures, is characterized by an unstable SC fixed point,
defined by a Kondo temperature TK1 > � and associated to
a Kondo screening that dissipates when T → �, from above.
As already studied in detail in the literature (see Introduction),
this unstable first-stage Kondo may not happen at all in case
�0 = �S + �M < �c, as discussed at the beginning of Sec. II
(see Fig. 2). In case it does happen, it will be followed, for
T � �, by a second-stage Kondo, characterized by a Kondo
temperature TK2 � TK1, that presents a replica of the usual
SIAM-fixed-points sequence (FO → LM → SC), but for
which, in contrast to the first-stage Kondo, the SC fixed point
is now stable. We dub this “emergent” SIAM as reentrant
effective SIAM, with an effective Hubbard Ueff � U , which
is clearly displayed as a peak in the impurity LDOS, alongside
a second Kondo peak (see Fig. 5). The properties of both
stages are thoroughly analyzed through the impurity’s ther-
modynamic properties and LDOS, using NRG. The intuitive
picture that emerges, after the analysis of the NRG results, is
a simple one: the high-temperature first Kondo state develops
through impurity screening by thermally excited semicon-
ducting electrons, while the second stage involves screening
by metallic electrons, once the semiconducting electrons are
out of reach to thermal excitations (T < �) and only the
metallic (low) spectral weight inside the gap is available for
impurity screening. In addition, in Sec. III, we propose a
realistic system where the reentrant Kondo stage may possibly
be experimentally observed: a magnetic impurity strongly
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coupled to an AGNR and weakly coupled to an STM tip. The
proposal is based on the use of an electric-field-induced RSOI
to tune a gap 2� in an otherwise metallic AGNR, and, through
a full NRG analysis of this system, using realistic parameters,
we show that both stages may be considered as experimentally
accessible, as a recent theory work [76] has suggested that the
second-stage Kondo, expected in DQD systems, has actually
been observed [80] through charge transport measurements at
low temperatures in a semiconducting DQD system. We hope
that our findings may spur theory groups to apply other tech-
niques to the analysis of this model, as well as study its charge
transport properties, which is the preferred experimental tool
for spectroscopic analysis of these mesoscopic systems. We
also expect to motivate the proposal of additional systems

that could be similarly modeled, involving not only carbon
materials (as we have proposed), but also containing related
materials that are amenable to appropriate gap engineering.
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