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A system of confined charged electrons interacting via the long-range Coulomb force can form a Wigner
crystal due to their mutual repulsion. This happens when the potential energy of the system dominates over
its kinetic energy, i.e., at low temperatures for a classical system and at low densities for a quantum one. At
T = 0, the system is governed by quantum mechanics, and hence the spatial density peaks associated with
crystalline charge localization are sharpened for a lower average density. Conversely, in the classical limit of high
temperatures, the crystalline spatial density peaks are suppressed (recovered) at a lower (higher) average density.
In this paper, we study those two limits separately using an exact diagonalization of small one-dimensional (1D)
systems containing few (<10) electrons and propose an approximate method to connect them into a unified
effective phase diagram for Wigner few-electron crystallization. The result is a qualitative quantum-classical
crossover phase diagram of an effective 1D Wigner crystal. We show that although such a 1D system is at
best an effective crystal with no true long-range order (and thus no real phase transition), the spatial density
peaks associated with the quasicrystallization should be experimentally observable in a few-electron 1D system.
We find that the effective crystalline structure slowly disappears with both the crossover average density and
crossover temperature for crystallization decreasing with increasing particle number, consistent with the absence
of any true long-range 1D order. Thus, an effective few-electron 1D Wigner crystal may be construed either
as existing at all densities (manifesting short-range order) or as nonexisting at all densities (not manifesting
any long-range order). Within one unified description, we show through exact theoretical calculations how a
small 1D system interacting through the long-range Coulomb interaction could manifest effective Wigner solid
behavior both in classical and quantum regimes. In fact, one peculiar aspect of the effective finite-size nature of
1D Wigner crystallization we find is that even a short-range interaction would lead to a finite-size 1D crystal,
except that the crystalline order vanishes much faster with increasing system size in the short-range interacting
system compared with the long-range interacting one.
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I. INTRODUCTION

The goals of the current work are to theoretically cal-
culate the spatial density structure of a small collection of
one-dimensional (1D) electrons interacting via the long-range
Coulomb force and to determine how this structure depends
on the electron average density (ρ), the temperature (T ), as
well as on the number of electrons (N) in the system. We
also include a parameter in the Coulomb interaction, which
mimics the short-distance cutoff caused by the transverse
dimension of the physical system (e.g., the diameter of a
carbon nanotube or a semiconducting quantum wire). Using
exact diagonalization and statistical mechanics, we obtain
results for both T = 0 (quantum) and high-T (temperature
much higher than the Fermi temperature) classical situations,
and then propose a smooth interpolation between quantum
and classical regimes, through which we construct an effective
crystallization phase diagram which should be valid at any
temperatures and average densities. An important aspect of
our results is a subtle electron number dependence of 1D
Wigner crystallization, which arises from the Luttinger liquid
nature of 1D systems. The subject of effective 1D Wigner
crystallization is well established, going back to the 1980s.

Although many of the results we present here are known in the
literature in different contexts and using different approxima-
tions, our having all of them together in one place, using exact
theoretical techniques, covering both classical and quantum
regimes as well as spinful and spinless systems and long- and
short-range interactions for comparison, should serve a useful
purpose.

One-dimensional electron systems are special because the
noninteracting Fermi surface is just two discrete points at
±kF . In this case, the bosonization method proves useful
in solving exactly the corresponding interacting problem,
leading to the concept of a Luttinger liquid [1]. A Luttinger
liquid is a paradigm for a non-Fermi liquid as its momentum
distribution function for the interacting 1D system is smooth
and continuous through kF even at T = 0 instead of having
a finite discontinuity which is the hallmark of 2D and 3D
Fermi liquids. At a finite temperature, it is not so easy to
distinguish a Luttinger liquid from a finite-temperature Fermi
liquid as a practical matter since both have smooth momentum
distribution functions through k = kF , although, as a matter of
principle, the two are very different [2,3].

In the original work and most of the subsequent works on
Luttinger liquids, the electron-electron interaction is assumed
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to be short ranged since the singular nature of 1D interacting
systems is essentially independent of the range of their
mutual interaction [4–7]. Including long-range interelectron
Coulomb interactions in the interacting 1D spinful model,
Schulz showed in a seminal work in 1990 that there exists
a 4kF oscillation in the spatial density correlations whose
spatial decay rate is much slower than any power laws [8].
This makes the existence of a length-dependent effective
Wigner crystal possible in 1D because the 4kF period cor-
responds to an effective crystalline structure since 4kF =
2π/a in a spinful 1D electron system where a = 1/ρ is
the average interparticle separation. The 1990 theoretical
work by Schulz could be considered the starting point of
the subject matter of 1D Wigner crystallization which is
the topic of the current work. Such a 1D Wigner crystal is
obviously only a quasicrystal since the oscillation dies out
eventually, but there should be observable consequences of
the slowly decaying 4kF oscillations in finite 1D Coulomb
systems. The interplay between the apparent existence of a
1D Wigner crystal for finite systems and the eventual disap-
pearance at long distances is an important theme of the current
work.

In practice, the 1D Luttinger liquid has been studied exper-
imentally in effective 1D systems such as quantum wires [9],
carbon nanotubes [10], and organic conductors [11]. However,
observing an effective 1D quasi-Wigner crystal is highly
challenging since it must necessarily involve a small system
(because of the absence of any true long-range order) and one
must ensure that the environment containing the 1D electron
system is free of disorder and that the density probing process
is noninvasive on the system. These pristine experimental
conditions for long-range interactions in a 1D system were
recently met in Ref. [12], where a few electrons (<10) were
confined in a clean carbon nanotube and a second nanotube
was used as a noninvasive scanning probe to measure the spa-
tial charge distribution of the electrons with minimal perturba-
tion. The resultant 1D electrons’ spatial charge density at very
low temperatures exhibits features of a quantum quasi-Wigner
crystal, i.e., spatially equidistant density peaks instead of a
uniform liquidlike density distribution. Our work is motivated
by this low-temperature nanotube experiment imaging the 1D
quasi-Wigner crystal formation. Unlike higher-dimensional
(2D or 3D) T = 0 systems, the 1D Wigner crystal formation
does not have a critical density associated with it. Thermal
fluctuations, however, destroy these local density correlations,
and eventually the system should cross over to the corre-
sponding classical Wigner crystal for T > TF . Such a classical
electron Wigner crystal (and the corresponding 2D liquid-
to-solid classical transition with decreasing temperature) was
observed in a system of 2D electrons confined on the surface
of liquid helium a long time ago [13]. Our goal in the current
work is to do both T = 0 and finite T calculations to connect
the 1D effective Wigner crystallization between quantum and
classical regimes. We emphasize that, since there cannot be
any true long-range 1D order, our results apply only to finite
systems where a quasi-long-range order is meaningful.

Although our work has been motivated by a recent ex-
perimental work [12], our goal is purely theoretical. We do
not make any attempt to make quantitative contact with any
experimental results, and indeed such a comparison between

theory and experiment is unfeasible because of the effective
nature of the 1D Wigner crystal—nothing sharp or decisive
happens at any value of the system parameter, so a quanti-
tative comparison is meaningless. Therefore, from now on,
we consider an ideal 1D system with a generic interaction
that resembles the asymptotic form 1/x of the real Coulomb
interaction. We also consider the electron kinetic energy to
be of the standard parabolic form. We are aware that there
is vast literature on the subject, investigating different as-
pects of quasi-1D systems using various simulation methods
and microscopic calculations [14–22]. The smallest possible
Wigner crystals consisting just of two electrons, also called
Wigner molecules, have also been studied in great detail
[23–25]. Our work, on the other hand, attempts to exhibit
many aspects of effective 1D Wigner crystallization within
one unified abstract model, without getting into the details of
the experimental systems which should not be relevant for the
fundamental theoretical picture. The simplicity of our generic
theoretical model now allows us to examine the intertwined
effects of the basic parameters of the 1D interacting model
on the observation of an effective 1D Wigner crystal. In
addition, we also study the thermal melting of the effective 1D
Wigner crystal by smoothly interpolating between quantum
and classical regimes. As a result, we show that there is an
isolated phase of an observable 1D Wigner crystal and this
phase shrinks extremely slowly with an increasing number
of particles, which is consistent with the fact that is there
is no true long-range order in 1D systems. Again, we note
that rigorous simulations have been done to study the effect
of temperature and produce the classical phase diagrams of
Wigner crystal formation [26,27]. However, our simple phase
diagram can be readily adapted and fine tuned for a wide
range of experimental parameters. Our conclusions can then
be translated qualitatively to real physical systems. Also,
the quantum-classical crossover and the slow disappearance
of the apparent 1D Wigner phase are other results of our
work.

In this paper, we investigate the spatial electron density
profile in a 1D Coulomb system of N (=2–8) electrons (with
length scale L and average density ρ ≈ N/L) in the two
limits of zero (quantum) and high (classical) temperatures.
At T = 0, the kinetic energy roughly scales as L−2, and the
Coulomb repulsive potential energy scales as L−1. Conse-
quently, with increasing L or decreasing ρ, Coulomb repulsion
becomes dominant, producing well-resolved spatial density
peaks as the electrons attempt to stay away from each other.
By contrast, in the high-temperature classical limit, the kinetic
energy depends on the temperature and goes as ∼kBT . Thus,
on expanding the system size (or equivalently decreasing
the average density) in this classical regime, the Coulomb
repulsion decreases while the kinetic energy stays constant if
T is fixed. Therefore, the system becomes less crystalline at
lower average densities in the classical regime in contrast to
the quantum situation. Our goal is to connect these two oppo-
site behaviors by using phonon vibration modes to estimate
the ratio between the vibration amplitude and the average
interelectron spacing. Using an effective Lindemann melting
criterion, we are able to produce a qualitative phase diagram
of the effective 1D Wigner crystal by interpolating between
our exact classical and quantum few-electron calculations.
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The rest of this paper is organized as follows. In Sec. II,
we describe our theory for effective finite-temperature 1D
classical Wigner crystals by calculating the exact Boltzmann
distribution function and the theory for the corresponding
T = 0 quantum ground state by using the exact matrix di-
agonalization technique. In Sec. III, we provide a smooth
interpolation between the quantum and classical regimes,
considering the exact phonon modes of the Wigner crystal
and using a generalized Lindemann criterion. We conclude in
Sec. IV with a summary.

II. HIGH-TEMPERATURE AND ZERO-TEMPERATURE
LIMITS

In this paper, we model a system of N Coulomb-interacting
electrons confined in a trapping potential by the Hamiltonian

H = h̄2

m

N∑
i=1

[ −∂2

2∂x2
i

+ 1

L2
0

(
2xi

L0

)p]

+
∑
i< j

h̄2

maB

1√
(xi − x j )2 + d2

, (1)

where p = 4 for consistency with the quartic potential used
in Ref. [12], but in principle p can be any even integer; L0

is the length scale of the trapping potential; m and aB are
the effective electron mass and Bohr radius. We emphasize
that d in our context is a generic parameter which determines
the short-distance cutoff for the electron-electron Coulomb
interaction but can also be loosely interpreted as the transverse
size of the system in experimental contexts. For softer con-
finement, as in semiconductor quantum wires, one may have
to obtain the effective d value by first solving the transverse
quantization problem and then taking the appropriate matrix
element of the 3D Coulomb interaction in this transverse basis
[28,29]. The trapping potential defines a natural length scale
L0 and energy scale E0 = N2h̄2/(mL2

0 ). By scaling x′ = x/L0

and H ′ = N2H/E0, we obtain the dimensionless Hamiltonian

H ′ =
N∑

i=1

[ −∂2

2∂x′2
i

+ (2x′
i )

p

]
+

∑
i< j

Nrs√
(x′

i − x′
j )

2 + η2
. (2)

The system profile is thus tuned by two dimensionless param-
eters

rs = L0

NaB
and η = d

L0
. (3)

Accordingly, the typical Coulomb interaction energy is Ec =
rsE0. In the following sections, we conduct the numerical
simulations for different pairs of rs and η at the classical
high-T limit and the quantum T = 0 limit.

A. Classical high-T limit

The spatial density profile in the classical limit is obtained
from the Boltzmann distribution

ρ(x) ∝
∫

δ(x′
1 − x) exp

(
−U ({x′

i})

kBT

)
dx′N , (4)

where U is the sum of the trapping potential and the interac-
tion energy of the Hamiltonian (2). We evaluate integral (4)

FIG. 1. Spatial density profile for N = 8 interacting spinless
electrons at various temperatures at fixed rs = 15 and η = 0.01 (solid
lines). The peak structure emerges preeminently as temperature de-
creases, implying stronger crystallization at lower temperatures. For
kBT > 0.3Ec, the interaction-induced density variation essentially
vanishes. If the trapping potential is periodically modulated (see
text), the peak pattern in the spatial density profile can appear even
without interaction (dashed line).

with the uniform-sampling Monte Carlo method and obtain
the spatial density profile at various temperatures. We con-
sider N = 8 spinless electrons for our calculation as shown in
Figs. 1 and 2. In addition, we consider a case of noninteracting
electrons subjected to an underlying lattice potential Vl =
4E0 cos(10πx/3L0), where the density modulation is entirely
due to this periodic potential.

The noteworthy feature of the results in Fig. 1 is that the
density variation associated with the effective 1D classical
Coulomb crystal is suppressed for kBT � Ec even though for

FIG. 2. Average density-density correlation functions vs the dis-
tance for the same parameters as in Fig. 1. The correlation persists
throughout the finite system for low temperatures, but is essentially
suppressed at high temperatures. Note that for the noninteracting sys-
tem, the correlation function is always negative despite the possible
oscillatory pattern induced by an underlying lattice potential.
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a small range of temperature the variation can be temporarily
enhanced [25,30,31]. Moreover, we show in Fig. 1 that an
underlying periodic potential can potentially produce a similar
density variation pattern even in a noninteracting system. This
pattern, however, is not the anticipated Wigner oscillation
because it is not driven by the Coulomb interaction. Thus, the
spatial density is not always a good indicator of the Wigner
crystal, particularly if there is a background periodic potential
in the system. For more conclusive evidence, we propose the
measurement of the average density-density correlation

C(�x) =
∫

[〈ρ(x)ρ(x + �x)〉 − 〈ρ(x)〉 〈ρ(x + �x)〉]dx.

(5)

For a noninteracting system, the probability of finding
N (distinguishable) electrons at {x1, x2, . . . , xn} is
P({x1, x2, . . . , xn}) = Ps(x1)Ps(x2) · · · Ps(xN ), with Ps being
the single-particle distribution satisfying

∫
Ps(x)dx = 1. Thus

〈ρ(x)ρ(y)〉 = N (N − 1)Ps(x)Ps(y), while 〈ρ(x)〉 〈ρ(y)〉 =
N2Ps(x)Ps(y). As a result, the correlation C(�x) is always
negative for a noninteracting system independent of how
oscillatory its density distribution might be. In Fig. 2, we
show the calculated density-density correlation with respect
to the distance �x. For the Coulomb interacting system
at different temperatures (solid lines), the modulation is
also suppressed by high temperature and disappears at the
same temperature as the modulation in the density profile,
so the density-density correlation does not provide extra
information in this case. However, for the noninteracting
system with a periodic underlying potential, the correlation
does show an oscillatory pattern as its density profile, but
it is always negative unlike the Coulomb-driven Wigner
oscillation. Therefore, the sign of the correlation can be used
to distinguish whether the density modulation is caused by
the interaction or by external potentials. We emphasize that
the Coulomb-driven density-density correlations must vanish
at long distances even for the classical system, as shown by
Peierls a long time ago, because the Debye-Waller factor
always diverges in 1D, indicating the absence of a true 1D
crystal. In a finite system, however, the long-distance thermal
disordering of the crystalline order does not manifest itself at
sufficiently low temperatures as our results show explicitly.

B. Quantum limit for spinless system

In this section and the following ones, we study the quan-
tum ground state at T = 0 by performing exact diagonaliza-
tion for a small electron system. We use the configuration
interaction method, where each configuration is described by
a Slater determinant built from single-particle solutions of
the free Hamiltonian. We use up to 25 single-particle wave
functions and keep up to 20 000 determinants having the
lowest energy. We check for and ensure the convergence in
each case studied here.

A spinless system can be realized by a system that is
strongly polarized or has infinite on-site interaction [14].
Spinless particles tend to be apart from each other even
without Coulomb repulsion by virtue of the Pauli principle.
As shown in Fig. 3, for the noninteracting system (rs = 0), the
calculated quantum spatial charge density profile still shares

FIG. 3. (a) Spatial density profile of a spinless eight-electron sys-
tem at fixed η = 0.01 and increasing rs. Even for the noninteracting
case rs = 0, the N-peak pattern is still visible. (b) Density-density
correlation as a function of distance �x/L0. The correlation function
of the noninteracting case is also oscillating but always negative.

the same number of peaks as the corresponding interacting
cases. The noninteracting spinless (or, more generally, an
infinite zero-range interaction in a spinful system [32]) peaks
arise simply from progressively filling up the bound states
of the trapping potential with one electron per energy level.
However, the long-range Coulomb interaction enhances the
contrast between these peaks and separates them spatially
in order to minimize the Coulomb repulsive potential, thus
making the system’s spatial density profile similar to that
of an effective crystal. Specifically, the contrast defined by
the ratio between the variation amplitude and the average
density takes the values of 4%, 18%, and 53% for rs = 0, 1,
and 5, respectively. Thus, although both noninteracting and
interacting situations manifest N density peaks, there is a
quantitative difference in the strength of these peaks between
the two cases. At larger rs (lower average density), we expect
the Coulomb potential to dominate over the kinetic energy,
leading to a progressively more distinct crystalline-looking
structure.

Previous studies try to distinguish between the noninter-
acting and interacting N-peak pattern by computing the two-
particle density and find that this function is smooth for a
noninteracting system but displays strong modulation for a
Coulombic system [32,33]. We note that this distinction is
purely quantitative because the two-particle density correlator
of a noninteracting system does have a small oscillatory part
due to the Pauli exclusion principle. However, by considering
the correlation function as in Eq. (5), we find a qualita-
tive difference. For a noninteracting system, the many-body
wave function is expressed by a single Slater determinant
�(x1, x2, . . . , xN ) = Det M/

√
N!, where Mi j = ψi(x j ) and ψ

is a single-particle wave function. As a result,

〈ρ(x)ρ(y)〉 − 〈ρ(x)〉 〈ρ(y)〉 = −
∣∣∣∣∣

N∑
i=1

ψi(x)ψi(y)

∣∣∣∣∣
2

� 0.
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FIG. 4. (a), (c) Spatial density profile of a spinless six-electron system at fixed η = 0.01. (b), (d) Density-density correlation corresponding
to (a) and (c).

In Fig. 3(b), we show the computed correlation function corre-
sponding to parameters in Fig. 3(a). For a strongly interacting
system, the strong oscillation extends throughout the system,
while for a noninteracting system, there only exists weak
oscillation at small �x. This noninteracting correlation func-
tion, however, is always negative, thus clearly distinguishing
it from the interacting counterpart.

From the sign of the correlation function, one can
distinguish the noninteracting spinless (or equivalently
infinite zero-range interacting spinful system) from the
Coulomb interacting system. We then ask whether it is
possible to qualitatively differentiate between a finite but
short-range interaction and the long-range Coulomb in-
teraction. To study this problem, we repeat the simula-
tion for a system having a gated Coulomb interaction
Vg(x′) = Nrs(1/

√
x′2 + η2 − 1/

√
x2 + η′2) which is essen-

tially screened when x′ 	 η′ with η′ might be tuned by
adjusting the distance of the 1D system from a metallic plate.
As shown in Fig. 4, there is no qualitative difference between
the gated and original Coulomb interaction in both density
and density-density correlation profiles. More specifically,
decreasing η′ at fixed rs [see Figs. 4(a) and 4(b)] does sup-
press the oscillation in both spatial density and correlation
profiles. However, by increasing the interaction strength of
the screened system [see Figs. 4(c) and 4(d)], the oscillatory
pattern can be recovered, making the system a Wigner crystal
by any metrics. We then conclude that even though the con-
cept of a Wigner crystal is originally for a Coulombic system,
any sufficiently strong repulsive non-zero-range interaction
can form such a crystalline structure in a finite system. The

difference between different types of interactions is merely
quantitative.

C. Quantum limit for spinful system

For a spinful system, the system prefers either double
occupancy to minimize the kinetic energy or single occu-
pancy to minimize the interaction energy. The 1D solid-liquid
crossover is usually defined when the 4kF oscillation becomes
visible compared to the usual Friedel 2kF one as the inter-
action gets stronger. As the average density increases with
the electrons coming closer and a substantial wave-function
overlap, the kinetic energy term becomes important and dou-
bly filled single-site states may become energetically favor-
able, inducing a solid-liquid crossover. In Figs. 5(a)–5(c),
we demonstrate such a crossover at fixed η induced by de-
creasing rs in Eq. (2). For the spinless system with single-site
occupancy, the total number of peaks remains the same and
equals the number of electrons. By contrast, the spinful sys-
tem, starting from the same N-peak structure with single-site
occupancy for large rs with a negligible exchange effect, even-
tually manifests only three (N/2) spatial density peaks reflect-
ing double-site occupancy for small rs as the exchange energy
becomes significant. The same physics also applies at fixed
coupling parameter rs but with increasing the cutoff η, as can
be seen in Figs. 5(d)–5(f) (see Figs. 10 and 11 in Appendix B
for more simulation results). To better understand the quan-
titative aspects of the shift in the spatial density oscillatory
patterns of the spinful system, we plot the Fourier transform
of Figs. 5(a)–5(c) in Fig. 6. In the spinless case, the peak at
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FIG. 5. (a) Spatial density profile for 1D spinful (blue dashed) and spinless (red line) (N = 6) systems in a Wigner crystal phase. The two
parameters of the system, i.e., rs and η, are also shown. Note that the two systems in the Wigner crystal phase [(a) and (d)] have a very similar
spatial density distribution. The upper panel: rs-induced phase transition at fixed η from (a) rs = 3.0 to (b) rs = 1.0 and (c) rs = 0.2. The lower
panel: η-induced phase transition at fixed rs from (d) η = 0.02 to (e) η = 0.08 and (f) η = 0.2. The transition manifests as the smear out of
spatial density peaks in the spinless system, whereas in the spinful system, the number of peaks is reduced to N/2.

4kF is always enhanced where kF = π/2a is the 1D Fermi
momentum in terms of the average spacing a. Conversely,
this 4kF peak is noticeably suppressed in the spinful liquid
phase (albeit being always present in the Coulomb Luttinger
liquid). In fact, as emphasized already, the slowly decaying
4kF oscillation is unique to the 1D long-range interacting
system and has a much slower spatial decay rate compared
with the 2kF oscillation [8]. However, for a finite system, the
competition between these two oscillations is also determined
by the system size and the details of the mutual interaction
(i.e., the value of η), leading to the nonuniversal existence of
an effective finite-size 1D Wigner crystal, although there is no
such solid phase in the infinite 1D system.

Figures 5 and 6 suggest that the ratio rs/η might be
important in the single-double occupancy crossover. As rs/η

decreases, the cost for two electrons to stay close decreases,
thus amplifying the wave-function overlap and the exchange
energy. As a result, the spatial density’s oscillatory pattern is
changed in the spinful system with a reduction in the number
of peaks arising from the double occupancy of sites. Our
result is consistent with that of Ref. [14] using the Hubbard

model, in which the ratio of the on-site interaction over the
tunneling strength is equivalent to our rs/η—by our definition,
rs/η = L2

0/(NaBd ) = h̄2/(maBd )(E0/N )−1.

D. Exchange energy

In the effective crystal phase, the localized spatial density
peaks are far apart from each other, resulting in a negligible
exchange energy. Conversely, in the liquid phase, the overlap
increases and the exchange energy becomes significant. In the
liquid phase, therefore, spinless and spinful electrons exhibit
a qualitative difference. In this section, by studying a simple
case of two particles, we draw a link between the exchange
energy and the solid-to-liquid phase transition. Starting with
the Hamiltonian (2) for N = 2 particles, we can factorize the
wave function into the center-of-mass and relative-motion part
�(x′

1, x′
2) = φ(x′

1 + x′
2)ψ (x′

1 − x′
2). We note that only for a

quadratic binding potential (p = 2) that these two degrees of
freedom can be decoupled, otherwise such as p = 4 in this
paper, there are coupling terms appearing from factorizing the
binding potential into center-of-mass and relative coordinates.

FIG. 6. Fourier transform (a) spinless and (b) spinful systems corresponding to Figs. 5(a)–5(c). The peak 4kF always exists in the spinless
case but is significantly suppressed in the spinful case when the system is deep into the liquid phase.
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FIG. 7. The spatial density and the relative exchange energy J/E0 in various processes: (a) Increasing rs at fixed η = 0.9, (b) increasing η

at fixed rs = 8.0, and (c) increasing rs/η at fixed rsη = 1.0. The liquid-solid crossover all happens at around rs/η ≈ 10. The exchange energy
drops to a small value at the same point as the spatial density profile changes between one-peak and two-peak patterns, signaling a liquid-solid
crossover.

At this point, we ignore these coupling terms and investigate
the part of the Hamiltonian containing only � = (x′

1 − x′
2),

H ′
� = −1

4

∂2

∂�2
+ 2�p + 2rs√

�2 + η2
. (6)

For two spinless fermions, ψ (�) = −ψ (−�), while for two
spinful fermions, the wave function can be symmetric or
antisymmetric depending on the total spin. However, we
know that the ground state of a 1D single particle has zero
nodes and hence the ground-state wave function ψ (�) must
be symmetric for the spinful system (total spin S = 0). In
general, it can be shown that the ground state of a system
with an even number of particles is always antiferromagnetic;
on the other hand, a system with an odd number of particles
has the ground state with S = 1/2—the smallest possible total
spin [34].

The energy difference between the first excited state (an-
tisymmetric) of (6) and the ground state (symmetric) corre-
sponds to the exchange energy between two spinful particles.
The potential part of (6) is a double-well potential, thus the en-
ergy difference (or the exchange energy) depends on the tun-
neling through the potential barrier. It is noted that V (�) > 0
and V (0) = 2rs/η. Thus, if rs/η 
 1, the barrier is essentially
low, leading to large tunneling and large exchange energy. In
the other limit, when rs/η 	 1, the barrier is both high and
wide, making the exchange energy exponentially small. This
shows that the exchange energy, and subsequently the number
of density peaks, depends strongly on the ratio rs/η or the
short-range behavior of the interaction. This completes the re-
sult of Ref. [24], which stated that the long-range part of the
interaction does not determine the number of density peaks.

In Fig. 7, we show the spatial density profile along with the
exchange energy defined as J = ES=1 − ES=0. The data are
obtained numerically from the exact diagonalization during
the system transition between the effective solid and liquid
phase by varying rs at fixed η, varying η at fixed rs, and
varying rs/η at fixed rsη. We emphasize that in all three
different schemes, the melting happens around rs/η ≈ 10,
confirming that this ratio is an important factor determining
the oscillatory pattern of the Coulombic system. When the two

separate peaks start to emerge, signaling the liquid-to-solid
crossover, the exchange energy decreases sharply by around
two orders of magnitude. This shows that in the liquid phase,
the singlet state is much more energetically favorable than
the triplet state, which is obvious from the previous Wigner
molecule argument. Deep in the solid phase, the exchange
energy is exponentially small due to large value of rs/η.

In conclusion, for spinful systems, the increase of the
magnitude of the exchange energy reflects the preference of
doubly occupied sites (singlet state) over singly occupied sites
(triplet state), leading to the spinful solid-liquid phase tran-
sition. Thus, any liquid-to-solid transition must necessarily
accompany a huge decrease in the magnitude of the exchange
energy, and the exchange energy in the effective solid phase
is exponentially small, being essentially zero for all practical
purposes [12]. Since the exchange energy in the effective solid
phase is likely to be much smaller than the experimental tem-
perature, spin coherence is completely lost in the solid phase,
with the thermal spin fluctuations being large. Thus, the ef-
fective 1D Wigner crystal is a spin incoherent system at finite
temperatures (since the temperature is likely to be much larger
than the exponentially small exchange energy in the solid
phase). At any temperature above the exchange energy scale,
the system is well represented by spinless electrons in the
solid phase since the electrons stay far apart from each other.

III. INTERPOLATION BETWEEN THE
ZERO-TEMPERATURE QUANTUM GROUND STATE

AND THE CLASSICAL HIGH-TEMPERATURE
THERMODYNAMIC STATE

We have established, consistent with many earlier works,
by exact numerical calculations that both finite-temperature
classical and zero-temperature quantum 1D electron systems
manifest a distinct effective 1D crystalline solid phase at high
and low average electron densities, respectively. Although
there is no strict long-range order in a 1D system in the
thermodynamic limit (destroyed by quantum and thermal
fluctuations, respectively, in the quantum and the classical
system), our results clearly demonstrate the existence of an
effective finite-size Wigner crystal stabilized by a Coulomb
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interaction. Obviously, quantum and classical regimes must
be smoothly connected in a physical system even though the
effective crystal phase is preferred at low (high) average den-
sities in the quantum (classical) case. In the current section,
we show how to establish the connection between quantum
and classical regimes, and smoothly interpolate between them
in order to obtain an effective temperature-density Wigner
crystal crossover phase diagram for a 1D interacting electron
system.

We first introduce a simple model to connect the quantum
ground state and the classical thermodynamic state. We note
that for a 2D electron system, Hwang et al. theoretically
obtained a quantum-classical crossover solid-liquid density-
temperature phase diagram by appropriately matching the
quantum Wigner crystal parameters to the corresponding clas-
sical limit [35]. The technique includes estimating the ratio of
the average potential energy to the average kinetic energy (as a
function of average density and temperature) and constraining
the ratio to a predetermined constant in order to set the
liquid-solid phase boundary. In this paper, we evaluate the
solid-to-liquid phase crossover in a similar manner by fixing
the ratio between the vibration amplitude and the interelectron
distance, similar to the vibration of nucleus in a common
lattice [36]. This is not an absolute criterion of course (and
indeed there cannot be any absolute criterion since strictly
speaking there is no true 1D long-range order), but physically
a vibration amplitude smaller (larger) than the interelectron
separation signifies a finite-size crystal (liquid). Our crite-
rion is thus a generalization of the well-known Lindemann
criterion for calculating the solid-liquid phase boundary of
ordinary materials.

We use the same binding potential with the general expo-
nent p as in Eq. (1). However, the repulsive electron-electron
interaction is taken to be purely Coulombic 1/|xi − x j |
because we expand the oscillation around the classical

equilibrium configuration of the Wigner crystal, where the
electrons are essentially far apart from each other. The col-
lective oscillation of the electrons is obtained through the
phonon excitation spectrum. For this purpose, we first calcu-
late the eigenmodes of the system, then address the thermal
occupation of each mode using the Bose-Einstein distribution.
Thus, we are explicitly considering the “phonon spectra” of
the effective 1D Wigner crystal by incorporating the external
confinement (defining the finite system) and the interelectron
Coulomb interaction. When the phonon vibration amplitude
(including the zero-point motion at T = 0) is large, the crystal
is considered to have “melted” into the liquid phase.

We assume the set of particle positions to be {xi} and x1 <

x2 < · · · < xN without any loss of generality. Because the
binding potential is symmetric, we can set a constraint x1 =
−xN , and define the system size to be L = xN − x1 = 2x1 as
well as a new normalized coordinate ui = xi/L. In the new
coordinates, u1 = −uN = 0.5 and |ui| < 0.5 ∀ 1 < i < N .
Then the total potential energy is given by

U = h̄2

ma2
B

⎡
⎣aB

L

∑
i< j

1

ui − u j
+ a2

B

L2
0

(
2L

L0

)p ∑
i

up
i

⎤
⎦. (7)

With a fixed set of {ui}, U is minimized as

ma2
BU

(p + 1)h̄2 �
(

2aB

L0

)1+γ
(∑

i

up
i

)γ
⎛
⎝∑

i< j

1

u j − ui

⎞
⎠

pγ

, (8)

with γ = 1/(p + 1). The right-hand side of the inequality (8)
can be further minimized, giving a set of equilibrium positions
{u∗

i } independent of the size of the binding potential L0. With
this equilibrium set, the system size L is given by

aB

pL

∑
i< j

1

u∗
j − u∗

i

= a2
B

L2
0

(
2L

L0

)p ∑
i

u∗p
i ⇒ L = a−γ

B L1+γ

0

⎛
⎝ 1

2p p

∑
i< j

1

u∗
j − u∗

i

∑
i

u∗p
i

⎞
⎠

γ

. (9)

The squared eigenmode frequencies are obtained by diagonalizing the matrix A defined by

Am,n = ∂2U

∂x∗
m∂x∗

n

∝ −2aB

L3|u∗
m − u∗

n|3
∝ L−3,

Am,m = ∂2U

∂x∗2
m

∝ a2
B

L2
0

(
2

L0

)p

(p − 1)Lp−2 pu∗p−2
m + aB

L3

∑
j �=m

2

|u∗
m − u∗

j |3
∝ L−3. (10)

As a consequence, we have

ωi = ω0i(ρaB)3/2, (11)

where ω0i is the ith mode frequency at ρaB = 1 or L = NaB. The average occupation in each mode is given by the Bose-Einstein
distribution n(ωi ) = [exp(βωi ) − 1]−1. The average vibration amplitude of each electron around its equilibrium position is

q2 = 1

N

∑
i

Ei

mω2
i

= h̄

mN

∑
i

1

(ρaB)3/2ω0i

(
1

exp(βωi ) − 1
+ 1

2

)
. (12)

Adopting the Lindemann melting criterion, the system is assumed to melt when q is comparable to the lattice period with the
Lindemann factor c. Specifically,

q2 = c2(L/N )2 = c2/ρ2, (13)
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where c is a predetermined constant. The specific value of the dimensionless number c is irrelevant for our purpose and in much of
our following discussions (although the value of c does determine the critical density/temperature for a solid-to-liquid crossover
for any given particle number). Obviously, for a crystal to be well defined one expects c 
 1 since a vibration amplitude
comparable to the lattice spacing implies a typical liquid rather than a solid. The theory, however, cannot constrain the value of
c, which would depend on the experimental details and may not be unique. In experiments, the choice of c would determine the
precise quantitative phase diagram. We emphasize, however, that the qualitative phase diagram in dimensionless parameters will
be the same as what we obtain.

A. Classical limit

The system behaves classically when the spacing between the energy levels is much less than the thermal energy or βω 
 1.
Expanding Eq. (12) in a Taylor series of βω and plugging it into Eq. (13), we have

q2 = h̄

Nm

∑
i

kBT

(ρaB)3ω2
0i

= c2

ρ2
⇒ � = ρaB

T/TB
= 1

Nc2

(
h̄

ma2
B

)2
(∑

i

1

ω2
0i

)
, (14)

where TB = h̄2/(ma2
BkB). The condition derived in Eq. (14), therefore, defines the classical liquid-solid phase boundary for the

effective 1D Wigner crystal with the basic crossover line being a straight line in the density-temperature phase diagram. It is
noted that in the classical limit � = (ρaB)/(T/TB) ≈ 〈V 〉 / 〈K〉, where 〈V 〉 is the average Coulomb potential and 〈K〉 ∼ T is the
average kinetic energy. This classical limit should apply for T 	 TF , where TF ∼ ρ2 is the Fermi temperature of the 1D system.

B. Quantum limit at zero temperature

As T → 0, βω → ∞, then

q2 = h̄

2Nm(ρcaB)3/2

∑
i

1

ω0i
= c2

ρ2
c

⇒ ρcaB = 4N2c4

(
h̄

maB

∑
i

1

ω0i

)−2

. (15)

Here, ρc defines the critical average density for solid (ρ < ρc)
and liquid (ρ > ρc) quantum Wigner crystallization condition
at T = 0. From Eq. (15), it is clear that the product ρq
decreases with increasing ρ. Thus, the vibration amplitude
of the quantum crystal becomes larger compared with the
lattice spacing as the average density increases, leading to
the preferential melting at higher average densities. This is
consistent with our earlier conclusion in the quantum case.

In Fig. 8, we show our calculated effective phase diagram
in a small system of N = 4 electrons by directly numerically
solving Eq. (12) as a function of average density (defined
by the binding potential) and temperature. We present the
calculation with the choices of c = 0.6, 0.8, and 1 for this
figure—different values of c give precisely the same quali-
tative phase diagram. The shaded region has q < c/ρ and can
be considered the effective 1D Wigner crystal. At high aver-
age densities, the system melts due to quantum fluctuations
whereas at high temperatures the system melts due to thermal
fluctuations. We also plot the classical limit as calculated from
Eq. (14) as dashed lines. The full solution approaches the
classical limit when the temperature is larger than the Fermi
temperature given by TF = π2ρ2/8. At very low average
densities, as expected, classical and quantum solutions agree.
Note that in Fig. 8, the pure classical Wigner crystal regime
is rather small (the low-density regime between the blue and
red lines). The fragility of a classical 1D Wigner crystal
phase arises from the fact that the existence of a classical
crystal requires a very low average density corresponding
to very low Fermi temperature—thus the classical crystal is
constrained by the Fermi temperature on the one hand (indi-
cating a classical-to-quantum crossover) and the low melting

temperature on the other hand (indicating the solid-to-liquid
crossover). This fragility of the classical Wigner crystal was
also found to be the case in a completely different calculation
[26] employing the static structure factor as the diagnostic to
distinguish between the classical and the quantum regime, in

FIG. 8. Phase diagram of a 1D system for N = 4 electrons. The
dashed and solid lines of the same color represent the classical limit
given by Eq. (14) and the semiclassical Wigner crystal boundary
given by Eqs. (12) and (13) and at a particular choice of the parameter
c. The red dashed-dotted line is the Fermi temperature. When the
temperature is much larger than the Fermi temperature, the phase
transition lines approach the corresponding classical limits as they
should.
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contrast to our use of the Lindemann criterion. In contrast to
Ref. [26], however, which finds two disjointed classical solid
phases, we find only a small sliver of a classical effective
Wigner phase between the quantum Wigner crystal and the
classical liquid.

It should be noted that through Eq. (10), ω0i depends
on the exponent of the binding potential through the term
(p − 1)pu∗p−2. For |u∗| < 0.5, this term decreases with higher
exponent p, leading to lower ω0i, thus smaller ρc and larger �.
The exponent p controls the steepness of the external binding
potential (which defines the 1D confinement), i.e., lower p
means a steeper potential. Intuitively, when the potential is
steeper, the particles are drawn more strongly towards the
center, and as a result, closer to each other, making the Wigner
crystal harder to form since the effective average density
in the bulk of the 1D system becomes larger even for the
same nominal system size and electron number. The details
of the quantum confinement defining the 1D system thus
also play a direct role in the effective Wigner crystallization
phenomenon.

C. Long-range order for larger systems

So far we have discussed the formation of an effective 1D
Wigner crystal in a finite system by using various criteria
for the spatial charge density distribution and correlation as
well as the vibration amplitude for the localized phonon
eigenmodes of the finite system. The question now arises
on how the physics of the finite-system effective Wigner
crystallization is modified as the system size increases. We
previously argue that for a finite system, both long-range
and short-range (e.g., screened Coulomb as through gating)
interactions can induce a Wigner crystal order. On the other
hand, we know that in the N → ∞ limit, the Wigner phase
obviously disappears regardless of the interaction type in 1D
systems. The order is destroyed by quantum fluctuations for
T = 0 and by thermal fluctuations for nonzero T . However,
the form of interaction may be critical to the rate of Wigner
order disappearance as the system becomes infinite. To es-
tablish this point, we plot the Wigner crystal phase boundary
characterized by � and ρc in Fig. 9 at an increasing number
of electrons N for two types of interactions: (i) the long-
range Coulomb interaction and (ii) the short-range nearest
interaction Vsr(xi, x j ) = 1/|x j − xi| for | j − i| = 1 and Vsr =
0 otherwise, with i, j the spatial order indices.

For small systems, the Wigner crystal phase changes non-
trivially with an increasing number of electrons. The crystal
phase first expands (i.e., decreasing � and increasing ρc) from
N = 2 to N = 6, then shrinks at larger values of N . Our
numerical simulations indicate that the optimal size N∗ where
the crystal region is maximum decreases as the exponent p of
the binding potential increases. Specifically, N∗ = 8 for p = 2
and N∗ = 2 for p � 8. These details do not depend on the
choice of c, but ρc and Tc (for a specific ρ < ρc) do depend on
the choice of c.

For large N , the Wigner phase reduces monotonically with
N (decreasing ρc and increasing �). To study the behavior in
the limit N → ∞, we assume that the specific form of the
trapping potential only affects the first few modes and the
eigenvector of the nth mode of Eq. (10) can have the form

FIG. 9. Dimensionless � and aBρc as functions of the electron
number N for long-range and short-range interacting systems. The
Wigner phase shrinks when � increases and ρcaB decreases. We
choose c = 1 in this figure.

ui = sin[πn(i − 1)/(N − 1)], similar to an infinite square-
well potential. Substituting this trial solution into Eq. (10), we
can estimate

ω2
0n =

(
2h̄

ma2
B

)2 ∞∑
i=1

1 − cos[iπn/(N − 1)]

i3

≈ 2

(
h̄

ma2
B

)2(
πn

N

)2

ln

(
N

πn

)
. (16)

We can approximate the effect of the system size by evaluating
� and ρcaB [in Eq. (14)] in the large-N limit,

� = 1

Nc2

(
h̄

ma2
B

)2 ∑ 1

ω2
0i

∼ N

ln N
,

ρcaB = 4N2c4

(
h̄

maB

∑
i

1

ω0i

)−2

∼ 1

ln N
. (17)

Proceeding similarly to the long-range case, we find for the
nearest interacting case that ω2

0n ∝ (πn/N )2 and thus

�sr ∼ N, ρc,sraB ∼ 1

ln2 N
. (18)

Equations (17) and (18), together with Fig. 9, demonstrate the
fact that there can be no quantum Wigner crystal as the system
size and the number of particles both go to infinity (keeping
the density constant). Thus, an effective 1D Wigner crystal is
readily observable in small systems, but does not exist in very
large systems. However, the disappearance of the long-range
order in the thermodynamic limit of a Coulombic system is
much slower than a system with a short-range interaction
as predicted by the Luttinger liquid theory [8]. In addition,
since � and ρc of the long-range Coulomb system vary with
ln N , effective long-range spatial order persists to rather large
system sizes in the 1D Coulomb interacting system (ρcaB ≈
6.0 for N ∼ 50) enabling the clear observation of an effective
1D Wigner crystal crossover phase up to rather large system
sizes even at finite temperatures. This remarkable effect is
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due to the slowly decaying law e−C
√

ln x of 4kF oscillation in
a Coulomb Luttinger liquid. This slow decay of crystalline
order for the Coulomb system makes the 1D Wigner crystal
phase apparently similar to 2D and 3D Wigner crystals, but
the fact remains that in 1D we only have an effective Wigner
crystal existing only in finite systems, a distinction not often
emphasized in the literature.

IV. CONCLUSION

We have theoretically studied by exact numerical tech-
niques for small 1D Coulomb interacting systems the spatial
density distribution, the density correlation, and the eigen-
mode vibration properties at zero and finite temperatures in
both quantum and classical limits. For the zero-temperature
case, we show that the effective quantum crystal characteris-
tics associated with distinct spatial density peaks are strongly
enhanced when the average electron density decreases. Fur-
thermore, the crystal-like density correlations associated with
the slowly decaying 4kF oscillations are present at all aver-
age densities with the oscillation amplitude decreasing with
increasing average density. For high temperatures, by using
the exact classical partition function, we show that the spa-
tial density profile exhibits the same N-crest signature as in
the quantum case, except now the crest amplitudes decrease
with increasing temperature or decreasing average density, in
contrast to the zero-temperature quantum limit. We also show
that in both cases the density correlation is a better indication
of the Wigner crystal than the spatial density modulation.

One important result of this paper is that we can connect
the two limits for the effective 1D Wigner crystallization (and
interpolate smoothly between the quantum and the classi-
cal regime) using a model of excited phonons to calculate
the vibration amplitudes of the localized electron motion,
and consequently using the Lindemann melting criterion to
define the solid-liquid transition. We obtain the resultant
1D effective finite-size Wigner crystal phase diagram in the
density-temperature space, finding that there exists an isolated
density-temperature region where the system exists in an
effective 1D Wigner crystal phase for small system sizes. We
find that the quantitative aspects of the effective Wigner crys-
tallization depend crucially on the details of the confinement
potential creating the 1D system as well as on the precise
Lindemann criterion (i.e., what fraction of the lattice constant
the phonon amplitude can equal before melting into the liquid
phase), but the qualitative phase diagram is universal.

We also show how this crystal region in the phase diagram
shrinks very slowly as the number of particles increases.
Notably, even though as we show short-range interactions
can induce the effective Wigner crystallization, this Wigner
phase disappears much faster than that induced by the true
long-range Coulomb interaction with increasing system size.
This result may help guide future experiments in searching
for 1D Wigner crystals in 1D systems with a finite number of
electrons. Our obtained effective phase diagram should also
be directly relevant to experiments. In particular, our predicted
thermal melting of the 1D Wigner crystal should be directly
observable in the experimental setup of Ref. [12], where
raising the temperature at a fixed average density (i.e., fixed
electron numbers in the nanotube of a fixed length) should

lead to a strong suppression of the spatial density peaks, in
accordance with our qualitative phase diagram with lower
average density manifesting a lower melting temperature. We
emphasize that although the quantitative details (e.g., the
precise melting temperature) of the effective 1D Wigner crys-
tal depend on many parameters not amenable to theoretical
analyses (e.g., the value of c), the qualitative form of our cal-
culated classical-quantum phase diagram should remain valid.

We conclude by emphasizing the important theoretical
results obtained in our work: (1) The effective finite-size 1D
Wigner density modulation exists at all densities for spinless
(or polarized) systems, but this structure, however, is sup-
pressed by the degeneracy at a low on-site interaction; (2) the
long-distance decay of the crystalline order is extremely slow,
enabling a clear experimental observation of the effective
1D solid phase up to many electrons; (3) the liquid-to-solid
crossover is characterized by a strong suppression of the
exchange energy, which vanishes in the solid phase, for all
practical purposes making the 1D Wigner crystal spin inco-
herent; (4) as N increases, the classical melting temperature
and the “critical” density of the 1D Coulombic Wigner crystal
reduce much slower than a short-range interacting system as
constrained by the Coulomb Luttinger liquid theory, so this
qualitative finding should remain valid independent of our
approximations; and (5) the actual definition of the effective
1D Wigner crystal depends on the experimental resolution
determining the density variations, but in general, extending
the interaction range by isolating from external gates should
enhance the density variations in the system even at a fixed
rs (or average density), as shown in Fig. 4. Although some of
these conclusions [in particular, items (1)–(3)] are known, our
results put precise quantitative perspectives on these qualita-
tive conclusions, making the somewhat vague concept of 1D
Wigner crystallization on a more concrete footing.

In this paper, we consider a strictly 1D system with only
one active 1D channel in the system. In reality, if this condi-
tion is relaxed, there is a possibility of chain mode excitation
associated with transverse motion [37,38]. We obtain in the
Appendix A a more detailed condition for which the trans-
verse modes are suppressed and the system can be considered
as strictly 1D. In case most of this condition is violated, a more
careful treatment is needed but we believe that our conclusions
still hold qualitatively.
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APPENDIX A: TRANSVERSE MODE EXCITATION

In this Appendix, we justify our use of the 1/x interaction
despite considering a 1D system. Moreover, we show that
in the context of our paper, it is not necessary to include
an excited transverse mode. The field can be decomposed as
�(�r) = ψl (x)ψ (x, �ρ ), where ψl is the longitudinal field, ψ

is the transverse field, x is the longitudinal coordinate, and
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�ρ is the transverse coordinate including the radius ρ and the
angle θ . To obtain an analytic expression, we use a quadratic
transverse background potential,

V (�ρ) = h̄2

2md2

(
ρ

d

)2

, (A1)

where d is roughly the transverse size of the tube. Then
ψ (�ρ ) can be expanded by eigenstates of the transverse

potential ψ (x, �ρ ) = ∑
m,n ψn,m(�ρ)c(x)n,m. We have the usual

commutation relation {c†α (x), cβ (x′)} = δα,βδ(x − x′), where
we denote α = (n, m) for conciseness. We show here two
lowest transverse eigenstates,

ψ(0,0)(�ρ) = 1√
πd

e− ρ2

2d2 , ψ(1,±1)(�ρ) = 1√
πd

ρ

d
e− ρ2

2d2 e±iθ .

(A2)

The Coulomb density-density interaction is given by

Hint = h̄2

2maB

∫
d�r1d�r2

nl (x1)nl (x2)√
(x1 − x2)2 + (�ρ1 − �ρ2)2

∑
α1,α2,α3,α4

ψ∗
α2

( �ρ2)ψ∗
α1

( �ρ1)ψα3 ( �ρ1)ψα4 ( �ρ2)c†α2
(x2)c†α1

(x1)cα3 (x1)cα4 (x2), (A3)

where nl is the longitudinal density. We now expand the interaction in terms of transverse mode indices. To evaluate the integral,
we use the Fourier representation of the Coulomb potential

1

|�r| = 2
∫

dkeikx
∫

dq2

(2π )2

ei �q·�ρ

k2 + q2
. (A4)

For α1 = α2 = α3 = α4 = 0 and z = x1 − x2,

Hint,0 = h̄2

2maB

∫
dx1dx2nl (x1)nl (x2)

∫
dk2eikz

∫
dq2

(2π )2

e−q2d2/2

q2 + k2

= h̄2

2maB

∫
dx1dx2nl (x1)nl (x2)

∫
dkeikz −ek2d2/2 Ei(−k2d2/2)

2π

= h̄2

2maB

∫
dx1dx2nl (x1)nl (x2)

√
π

2d2
e

z2

2d2 erfc

[ |z|√
2d

]
, (A5)

where we have omitted the creation/annihilation operators for brevity. Note that if we assume no excitation in the transverse
mode 〈c†0 (x2)c†0 (x1)c0(x1)c0(x2)〉 = 1 and the term

√
π

2d2
e

z2

2d2 erfc

[ |z|√
2d

]
=

{√
π
2

1
d for z → 0,

1/|z| for z → ∞.
(A6)

So the interaction term 1/
√

(x1 − x2)2 + d2 is a reasonable approximation if we assume no transverse mode excitation. The
lowest-order term that can excite the transverse mode is ∝c†(1,1)(x2)c†(1,−1)(x1)c0(x1)c0(x2) [the term ∝c†(1,1)(x2)c†0 (x1)c0(x1)c0(x2)

FIG. 10. Simulation results for four-particle spinful (blue dashed) and spinless (red line) systems. The right column shows the Wigner
crystal phase occurring at a high rs and a low η, the middle column shows the liquid phase induced by decreasing rs, and the right column
shows the liquid phase at a higher η.
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FIG. 11. Simulation results for two-particle spinful (blue dashed) and spinless (red line) systems in (a) a Wigner crystal phase, (b) a liquid
phase induced by decreasing rs, and (c) a liquid phase induced by increasing η. The Fourier transform is not presented due to the lack of
periodicity.

vanishes due to rotational symmetry]. The amplitude of this term is

Hint,1 = h̄2

2maB

∫
dx1dx2nl (x1)nl (x2)

∫
dk2eikz

∫
dq2

(2π )2

q2d2e−q2d2/4

4(q2 + k2)

= h̄2

2maBd

∫
dx1dx2nl (x1)nl (x2)

{−2|z|
d

+ ez2/d2√
π

[
1 + 2z2

d2
erfc

( |z|
d

)]}
, (A7)

where z = x1 − x2. Suppose the density distribution has the form of equally spaced peaks with distance a. Then the transverse
excitation term strength is

Hint,1 ≈ h̄2

2maBd

{−2a

d
+ ea2/d2√

π

[
1 + 2a2

d2
erfc

(
a

d

)]}
. (A8)

The transverse mode gap is given by �E = h̄ω = h̄2/(md2). Then the ratio between the coupling strength and the gap is

Hint,1

�E
= d

2aB

{−2a

d
+ ea2/d2√

π

[
1 + 2a2

d2
erfc

(
a

d

)]}
. (A9)

This ratio vanishes when either d 
 a0 (rsη 
 1/N) or d 
 a (η 
 1/N).

APPENDIX B: ADDITIONAL SIMULATION RESULTS

We present the simulations for smaller spinful systems, namely, systems of four and two particles. The observations discussed
earlier apply also in these smaller systems. For N = 2 and 4, by decreasing rs or increasing η, one can induce a crossover from
the Wigner crystal phase to the liquid phase. Phenomenologically, this phase transition is marked by the spreading of spatial
density peaks for spinless electrons and the merging of the density peaks for spinful electrons (see Figs. 10 and 11).
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