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Motivated by recent proposals of experimental realization of fast scramblers, we study a family of solvable
variants of the (q = 4) Sachdev-Ye-Kitaev model in which the rank and eigenvalue distribution of the coupling
matrix Ji j,kl are tuneable. When the rank is proportional to the number of fermions, the low temperature
behavior is sensitive to the eigenvalue distribution. We obtain a complete classification of the possible non-Fermi
liquid quantum phases. These include two previously studied phases whose fermion scaling dimension depends
continuously on the rank; we show that they are maximally chaotic, but necessitate an extensively degenerate
or negative semidefinite coupling matrix. More generic distributions give rise to “almost Fermi liquids” with a
scaling dimension � = 1/2, but which differ from a genuine Fermi liquid in quasiparticle decay rate, quantum
Lyapunov exponent, and/or specific heat.
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I. INTRODUCTION

The Sachdev-Ye-Kitaev [1,2] model, in its simplest form,
describes a large number of Majorana fermions with all-to-all
random interactions:

H =
N∑

i jkl=1

Ji j,klγiγ jγkγl . (1)

At low temperatures, this exactly solvable model describes a
peculiar non-Fermi liquid which has a large symmetry and
a quantum Lyapunov exponent that saturates the universal
bound on chaos [3]. These features made it an attractive
platform to study a wide range of topics, e.g., strongly cor-
related electrons, many-body quantum chaos, and black hole
information scrambling, each generating a flurry of recent
activities [1,2,4–20].

Historically, the SYK model originated from the Sachdev-
Ye (SY) model of quantum random spin magnet [1]:

H = 1√
NM

N∑
a,b=1

UabSa · Sb, (2)

where Sa are some SU (M ) spin operators. The SYK Hamil-
tonian was conceived by Kitaev as a variant of the fermionic
representation of (1) in the double scaling limit M, N → ∞:
Schematically, a spin operator is represented by a fermion
bilinear, and the coupling matrix Uab by Ji j,kl . Although the
SY model beyond the double-scaling limit is not exactly
solvable, it is more amenable to experimental realization. In
particular, coupling cold atom ensembles to optical cavity
modes provides a promising way of generating the all-to-all
interaction between atomic spins [21–31]. In these platforms,
the rank of the matrix Uab is controlled by the number of
coupled cavity modes, which is usually rather small. The
effect of having a low-rank matrix has been studied in detail
in Ref. [31], where it was shown that the resulting quantum
dynamics is integrable even at infinite temperature. These
findings leave one wondering how large a rank is necessary to

access SYK physics. This question is further complicated by
the double scaling limit: In the standard SYK model (1), Ji j,kl

has independent coefficients and is a matrix of superextensive
rank ∝N2, whereas in the SY model (2) with a fixed M,
Uab has an extensive rank ∝N . Therefore, a solvable variant
of the SYK model where Ji j,kl has tuneable rank should be
beneficial to better understanding random quantum magnets
beyond large M.

Such a model has recently been considered by several
authors in different contexts: for example, to showcase the
instability of the SYK fixed point towards a Fermi-liquid
phase [10] and to model Cooper pairing in non-Fermi liquids
[32,33]. In the latter context, the rank equals the number of
phonon modes coupled to the electrons. So far, it has been
understood that the extensive rank (R ∼ N) regime is the
most interesting, whereas R � N leads back to the standard
SYK model and R � N to a noninteracting model [10,34],
see Fig. 1.

What was overlooked, however, is the role of the eigen-
value distribution of the coupling matrix, or equivalently, the
distribution of fermion-boson/spin-boson couplings. In this
paper, we fill in this gap by solving a family of “low-rank
SYK models” where Ji j,kl has a tuneable eigendistribution.
Our main contribution is an essentially complete classification
table (Table I) of four universality classes of distributions,
which give rise to distinct gapless quantum phases. Among
them, previous works [10,32,33] studied two classes (III and
IV in our classification), which we show are indeed SYK-
like fast scramblers with extensive residual entropy. The new
classes (I and II), corresponding to more generic distributions,
exemplify quantum phases that are almost, but not quite,
Fermi liquids.

As an application, we revisit the proposal put forward in
Ref. [35] of realizing the SYK4 model with electrons in the
zeroth Landau level of a graphene flake with irregular bound-
aries. In this system the random four fermion interactions
arise from the coulomb interactions, projected on to the zeroth
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FIG. 1. A qualitative phase diagram (main plot) and a sketch
(inset) of the low-rank SYK model. N Majorana fermions (blue dots)
are coupled by random all-to-all four-body interactions, mediated by
R boson modes; R is also the rank of the coupling matrix (3). The
model is noninteracting when R � N and equivalent to SYK when
R � N . When R ∝ N , the IR fixed point, governing T � T∗, depends
on the eigenvalue distribution of the coupling matrix, see Table I.

Landau level. We argue that the model realized is actually a
low-rank SYK, with extensive rank and of class IV.

The rest of the paper is organized as follows. Section II
defines the model and provides some preliminary discussions,
including the Schwinger-Dyson equations. Section III dis-
cusses the low and high rank limits of the subextensive and
superextensive rank regimes. Section IV marks the start of
our discussion of the extensive rank regime: The four univer-
sality classes are introduced, and the correlation function of
each class is studied. Section V presents both analytical and
numerical results on the low temperature thermodynamics of
the model at extensive ranks. Section VI studies the quantum
chaos of the model at the extensive rank regime. Section VII
discusses the graphene cornflake proposal [35]. We conclude
in Sec. VIII.

II. MODEL & SCHWINGER-DYSON EQUATIONS

The Hamiltonian of the low-rank SYK model has the same
form as (1), but the coupling constants form a rank R matrix:

Ji j,kl = 1

2

R∑
n=1

λnu(n)
i j u(n)

kl R = γ N + o(N ) . (3)

Above, γ = R/N is the rescaled rank and we shall mostly
focus on the extensive rank regime where γ = O(1). {u(n)

i j }
are independent Gaussian random variables with zero mean
and satisfying

u(n)
i j u(m)

kl = 1

N2
δikδ jlδnm . (4)

Finally, we assume the eigenvalues {λn} [36] to have a well-
defined distribution

ρ(λ) := 1

R

R∑
n=1

δ(λ − λn) (5)

in the N → ∞ limit, such that λmax := maxn λn is also the
right edge of ρ’s support.

The above model is solvable for any ρ(λ) in the large-
N limit, by essentially the same Hubbard-Stratonovich (HS)
decoupling method used in Ref. [10]. Indeed, the Hamiltonian
can be rewritten as follows:

H = −
R∑

n=1

1

2
λnQ2

n where Qn :=
N∑

i, j=1

iu(n)
i j γiγ j (6)

are a set of random fermion bilinears. The HS transformation
then introduces the bosons {φn}R

n=1, for decoupling each of
the Q2

n terms, respectively. This results in the following La-
grangian:

L =
∑

j

γ j γ̇ j +
∑

n

(
λ

1
2
n φnQn + φ2

n

2

)
, (7)

where the fermions are coupled to HS bosons φn with no ki-
netic term: 〈φn(τ )φn(0)〉free = δ(τ ). Averaging out the disor-
der in the replica-diagonal ensemble, we obtain the following
action (see Appendix for further details)

S = S f + Sb , where (8a)

S f = N

2

∑
ω f

[−G(ω f )
(ω f ) − ln(−iω f − 
(ω f ))] (8b)

Sb = 1

2β

∑
n,ωb

(1 − λn[G2](ωb))|φn(ωb)|2 (8c)

where G and 
 are the fermion propagator and self-energy,
ω f /b are fermion/boson Matsubara frequencies, and [G2](ωb)
is G(τ )2 in frequency domain.

TABLE I. A classification of different qualitative behaviors of the eigenvalue distribution ρ(λ) and the resulting low-energy behaviors of
the model at extensive rank. T is the time reversal symmetry. λL is the quantum Lyapunov exponent.

Class I II III IV

|G(τ )| ∼ τ−2� � = 1/2 � = 1/2 �γ ∈ (1/4, 1/2) �γ ∈ (0, 1/4)
Broken T ? T < Tc T = 0 Never Never
S (entropy) cT cT ν, 0 < ν < 1 S0 + cT S0 + cT
λL (chaos) ∼T η+1 ∼T , �2πT 2πT 2πT
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FIG. 2. Diagrammatic representation of the Schwinger-Dyson
equations (14a) and (14c). The fermion (boson) propagator is rep-
resented by a straight (wavy, resp.) line. The dashed line denotes
disorder contraction. A dot indicates a dressed propagator.

In Sb, the boson mode φn(ωb) is governed by a quadratic
potential, which cannot be unstable:

1 − λn[G2](ωb) � 0 . (9)

The mode φn(ωb) becomes condensed when equality is at-
tained above, in the thermodynamic limit. Note that since
0 � [G2](ωb) � [G2](ωb = 0) for all ωb, only the modes with
λn = λmax and ωb = 0 can condense.

To proceed further, we separate the condensed and normal
modes:

Sb = Sb,N + Sb,C . (10)

The normal modes are to be integrated out:

Sb,N = N

2β

∫ ′∑
ωb

ln(1 − λ[G2](ωb))ρ(λ)dλ (11)

where the sum
∑′ excludes the condensed modes. The latter

have macroscopic occupation and can be treated classically:

Sb,C = N (1 − λmax[G2](ωb))�, (12)

where � := 1

Nβ

∑
n:λn=λmax

|φn(ωb = 0)|2. (13)

In summary, we showed that the action S is large N , so the
model can be solved by saddle-point Schwinger-Dyson (SD)
equations:

G(ω f ) = 1

−iω f − 
(ω f )
(14a)

Gλ(ωb) = 1

1 − λ[G2](ωb)
(14b)


(τ ) = 2γ G(τ )
∫

λGλ(τ )ρ(λ)dλ + 2λmax�G(τ ) (14c)

� = 0 or 1 − λmax[G2](0) = 0. (14d)

Above, we denote by Gλ the propagator of normal bosons
with λn = λ. The large-N action and the SD equations can
be summarized by the Feynman diagrams in Fig. 2 and will
be the starting point of all subsequent analyses.

III. NONEXTENSIVE RANKS

In this section, we review the cases where the rank R is
either much smaller or much larger than N . Although their
physics are known from previous works, the analysis will

provide useful insights to the study of the extensive rank
regime.

A. Subextensive ranks

Let us first consider the regime of subextensive ranks,
where the rank R � N , γ → 0. In this regime, the nontrivial
behavior of the model is completely determined by boson
condensation. Indeed, the fermion self energy has only a
condensate contribution, as (14c) reduces to


 = 2λmax�G . (15)

Consequently, the only way to obtain a nontrivial solution
is to let λmax > 0, which we shall assume in the rest of this
subsection.

Then, the trivial solution � = 0, G(τ ) = sign(τ )/2 is valid
as long as T > Tc := λmax/4. At Tc, a boson condensation
transition takes place. Below that, � > 0 and we have

G(ω f ) = 2i

ω f + sign(ω f )
√

8λmax� + ω2
f

. (16)

In turn, the value of � is determined by � > 0 (14d) for any
T < Tc. At low temperatures, G(τ ) has a power-law decay
with a SYK2 (free fermion) exponent:

|G(τ )| ∼ 1

|τ |2�
� = 1

2
. (17)

B. Superextensive ranks

Now let us consider the superextensive rank regime. It is
convenient to redefine how R scales with N as follows:

R = γ Nα, α > 1, γ = O(1). (18)

The random couplings u(n)
i j should also be normalized differ-

ently:

u(n)
i j u(m)

kl = 1

Na
δikδ jlδnm, a = α + 3

2
> 2. (19)

The last relation will turn out necessary and sufficient to
ensure an extensive free energy for α > 1.

Indeed, the fermionic action (8b) is intact, and
in the bosonic one (8c), λn[G2](ωb) is replaced by
λn[G2](ωb)N2−a � 1 at large N since a > 2. So, no
condensation is possible. Moreover, we can expand the
normal boson action:

Sb = Sb,N = 1

2β

∑
n,ωb

ln(1 − λnN2−a[G2](ωb))

= −1

2

∞∑
�=1

∑
ωb,n

1

�
λ�

n[G2](ωb)�N (2−a)� (20)

and keep only the first nontrivial term. That turns out to
be � = 2, because the � = 1 term is a constant E0β =
−βN2−a

∑
n λn/8. Therefore, we have

Sb = −Nβ

2
μ2

∫
τ

1

4
G(τ )4, μ2 = 2γ

∫
ρ(λ)λ2dλ . (21)

This action is identical to that of the standard SYKq=4 model
[10,34]. Thus, at low temperatures, we have the well-known
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conformal solution [4]

|G(τ )| ∼ b

|τ |2�
, b = 1

4
√

8πμ2
, � = 1

4
. (22)

IV. EXTENSIVE RANKS

In the last section, we have shown that the low-rank
SYK models reduce to SYK4 at superextensive ranks, and
SYK2 (or trivial) at subextensive ranks. To look for novel
low-temperature behaviors, we shall focus on the regime of
extensive rank, R = γ N , and resume the normalization of
Sec. II.

A. Crossover temperature

We start by determining the temperature regime where we
expect new physics, as a function of rescaled rank γ = R/N .
When γ is large, we expect the model to reduce to SYK4

in some temperature regime, by consistency with Sec. III B
above. To find the crossover temperature, we apply the results
there, extrapolated to the extensive regime α = 1 and a = 2.
The truncation of the Taylor series in (20) is valid if and
only if |λn|[G2](ωb) � 1 for any n and ωb. This is equivalent,
assuming (22), to

T � T∗ = √
μ2 exp

[
−

√
2πμ2

maxn |λn|
]

(23)

where μ2 is defined in (21). For a fixed distribution ρ(λ), T∗
depends on the rank in a stretched exponential fashion:

T∗ = √
c1γ e−√

c2γ (24)

where c1 and c2 depend on ρ(λ).
In summary, the model is governed by an unstable SYK4

fixed point at intermediate temperatures
√

μ2 � T � T∗.
This transient regime exists only for large γ . For γ � 1, there
is only one crossover at T∗ ∼ maxn |λn|, from the trivial UV
fixed point directly to a novel IR fixed point. The rest of the
section will be devoted to characterizing the latter.

B. Fourfold way

The low-temperature behavior in the extensive-rank regime
depends strongly on the shape of the distribution ρ(λ). To
prepare for a systematic study, we shall describe and motivate
the classification Table I.

For that, let us recall the SD equation (14c). The integral
over boson modes on the RHS can be split into a condensate
part (λ = λmax, ωb = 0, Gλ = ∞) and a normal part (Gλ <

∞), as follows:


(τ ) = 2γ G(τ )F (τ ) + 2G(τ )λmax� (25)

F (ωb) = f ([G2](ωb)), f (y) :=
∫

λρ(λ)

1 − λy
dλ . (26)

Above, F is a weighted sum of the propagator of noncon-
densed bosons. It depends on ρ(λ) via f (y). The classification
of ρ(λ) will be based on the analytical properties of f (y).

First, class IV is defined by λmax � 0. Such distributions
are clearly distinct from the rest in that f (y) is analytical
on the positive real axis [0,+∞). On the other hand, when

λmax > 0, f (y) increases with y and becomes maximal at the
singularity at

y∗ := 1/λmax . (27)

The nature of the singularity is completely determined
by the right edge of ρ(λ) near λmax. There are three
possibilities/classes:

I lim
y→y∗

f (y) < +∞, (28a)

II lim
y→y∗

f (y) = +∞ but f (y) � 1/(y∗ − y), (28b)

III f (y) ∼ c0/(y∗ − y) , y → y∗ , c0 ∈ (0, 1]. (28c)

In terms of the right edge of ρ(λ), these classes are exempli-
fied by the following (see Table I for a cartoon):

I ρ ∼ (λmax − λ)η , η > 0 (vanishing edge)

II ρ ∼ (λmax − λ)η , −1 < η � 0 , (nonvanishing edge)

III ρ = c0δ(λ − λmax) + . . . (delta peak).

Note that, although the above example distributions do not
exhaust all the possibilities (there can be log corrections to
power laws), the classification in terms of f is exhaustive.

Let us provide some further rationale for class I–III. Class
I is distinguished by f (y → y∗) < +∞, which is a necessary
condition for condensation at finite T . Indeed, recall from
(14d) that condensation requires [G2](ωb = 0) = 1/λmax =
y∗, and thus F (ωb) = f (y∗) must be finite. Thus, finite-T
condensation only happens in class I and not in classes II
and III. Amongst the latter two, class III is distinguished by
a macroscopic degeneracy of the softest boson modes. This
prevents condensation at even zero T , making class III rather
resemble class IV. In contrast, class II is closer to class I:
As we shall see later, the softest boson modes do condense at
zero T .

C. Class III & IV: SYKq-like

The low-temperature behavior of these classes has been
partially studied in Refs. [10] and [32,33], respectively. It
was shown that the fermion Green’s function G(τ ) becomes
conformal invariant at low temperatures:

G(τ ) = A sign(τ )|τ |−2�, 1 � |τ | � β , (29)

where � depends continuously on the rescaled rank γ = R/N .
Let us review how to find such a solution in class IV. We

claim that the SD equations have the following conformal
approximations:

−G(ω f )
(ω f ) = 1 (30a)

[G2](ωb)F (ωb) = 1 (30b)


(τ ) = 2γ F (τ )G(τ ). (30c)

Above, (30a) comes from G(ω f )−1 = −iω f − 
(ω f ) (14a)
by dropping iω f at low frequencies, while (30b) assumes
[G2](ωb) → ∞ as |ωb| → 0, which will be verified below,
and which implies

F (ωb) = f ([G2](ωb)) ∼ 1

[G2](ωb)

∫
ρ(λ)dλ = 1

[G2](ωb)

125112-4
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FIG. 3. Fermion scaling dimension � as a function of the re-
scaled rank γ in class III (top) and IV (bottom). The analytic curve
is given by (31) and (36) (with c0 = 1) and compared to numerical
solutions of the SD equations, with ρ(λ) = δ(λ ± 1) for λmax ≶ 0.

by (5). (30c) is implied by (25) and the absence of conden-
sation. Using standard Fourier transform formulae, one finds
that Eqs. (30) are satisfied by (29) if the scaling dimension �

satisfies

γ = (2� − 1)(sec(2π�) − 1)

8� − 2
, � ∈ (0, 1/4), (31)

see Appendix for details and Fig. 3 for a numerical check.
The fact that � < 1/4 ensures the assumption behind (30b)
above. In the limits γ → 0 and γ → +∞, � tends to 0 (the
SYKq→∞ value) and 1/4 (the SYK4 value), respectively.

A nice byproduct of the above analysis is that all boson
propagators are equal in the scaling regime:

λGλ(τ ) = F (τ ) ∼ |τ |−2�b (32)

where

�b = 1 − 2� (33)

is the bosonic scaling dimension. Furthermore, the approxi-
mate SD equations (30) enjoy a reparametrization symmetry,
just as those of SYK4. Upon rewriting (30a) and (30b) in
time domain, it is readily checked that any reparametrization
τ → f (τ ) transforms a solution (30) to another one in the
following way:

G(τ, τ ′) → [ f ′(τ ) f ′(τ ′)]�G( f (τ ), f (τ ′))

F (τ, τ ′) → [ f ′(τ ) f ′(τ ′)]�bF ( f (τ ), f (τ ′)) (34)


(τ, τ ′) → [ f ′(τ ) f ′(τ ′)]�b
(τ, τ ′).

Adapting the argument of Ref. [7], one may show that the
reparametrization symmetry is broken explicitly and sponta-
neously, giving rise to a Schwartzian action of soft modes. A
consequence of this broken symmetry [4,5,7] is the maximal
out-of-time order correlator growth (Lyapunov exponent),
which we will show in Sec. VI below.

The situation in class III is formally similar, although
physically different. Indeed, the equations (30a) and (30c) still
hold (the latter does so because of no condensation), while

(30b) becomes

(1 − λmax[G2](ωb))F (ωb) = c0λmax, (35)

according to (28c). By a similar analysis, we find a conformal
solution such that λmax[G2](ωb) = 1 − C|ωb|4�−1, where � is
determined by γ c0 as:

γ c0 = (2� − 1)(sec(2π�) − 1)

8� − 2
, � ∈ (1/4, 1/2), (36)

which we plot and test in Fig. 3. Unlike class IV, as γ

decreases to 0, � → 1/2 increases to the SYK2 value. Con-
cerning the bosons, only the soft modes, with λn = λmax, have
a power-law propagator satisfying (32) and (33).

D. Class I and II: Almost Fermi liquids

The analysis of class I and II involves the shape of the
distribution ρ(λ) to a greater extent. For simplicity, we shall
focus on the following family of power-law edge singularities:
ρ(λ) ∼ (λmax − λ)η, so that

f (y) ∼
{

(y∗ − y)η η < 0
f∗ − C(y∗ − y)η η > 0 .

(37)

We shall assume 0 < η < 1 in class I and −1 < η < 0 in
class II, although our analysis can be easily applied to other
situations, e.g., a uniform distribution ρ(λ) = const, which is
a marginal case of class II with f (y) ∼ − ln(y∗ − y).

In contrast to class III and IV, the fermion scaling dimen-
sion is always

� = 1/2 . (38)

This can be seen by a simple argument: Any class I/II distri-
bution can be approached from class III, by taking a c0 → 0
limit. Then (36) implies � → 1/2. Physically, however, class
I and II are far from being the limit cases of class III. Let’s
discuss them in turn.

For class I, a boson condensation must form at low tem-
perature. To see why it must be so, recall that the fermion
self energy has two potential contributions, condensate and
normal:


(τ ) = 2λmax�G(τ )︸ ︷︷ ︸

C

+ 2γ F (τ )G(τ )︸ ︷︷ ︸

N

(Class I) .

By definition of class I, F (ωb) = f ([G2](ωb)) � y∗ is
bounded as ωb → 0, so F (τ ) � |τ |−1, and 
N (τ ) � |τ |−2.

However, � = 1/2 is equivalent to 
(τ ) ∼ |τ |−1, which
must come from the condensate contribution 
C (τ ) ∼ |τ |−1 ,

which is dominant.
Now, a consequence of the condensation is [G2](ωb =

0) = y∗. Therefore, the subleading 
N is affected by the
singularity of f at y∗ (37):

F (ωb) ∼ |ωb|η , (39)


N (ω f ) ∼ −isign(ω f )|ω f |1+η (40)

when T � |ωb, f | � 1. This nonanalytic subleading term in
self-energy distinguishes class I from a standard Fermi liquid,
which has ω2

f instead. One may view class I as an “almost
Fermi liquid” with an anomalously large quasiparticle decay
rate.

125112-5
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The situation of class II is similar, except for the following
subtlety: condensation is impossible at finite temperature (see
Sec. IV B). Nevertheless, as [G2](0) ↗ y∗ = 1/λmax, F (ωb =
0) = f ([G2](0)) can be arbitrarily large. In particular, it can
be ∝β at low temperatures and play the role of �. Indeed, we
can rewrite (25) as


(τ ) = 2λmax�̂G(τ )︸ ︷︷ ︸

C

+ 2γ F̂ (τ )G(τ )︸ ︷︷ ︸

N

, where (41)

�̂ := γ F

λmax
, F̂ (τ ) := F (τ ) − F , F := F (ωb = 0)

β
.

Above, we redefined 
C (and 
N ) in terms of the effective
condensate �̂. A similar argument as above shows that, at low
temperature, �̂ remains positive. This means that

y∗ − [G2](ωb = 0) ∼ T −1/η�T, T → 0 (42)

(since 0 > η > −1) is negligibly small, so that (39) and (40)
still hold (of course, the meaning of 
N and the value of η

are different). So, like class I, class II realizes an almost Fermi
liquid, with a higher quasiparticle decay rate at low frequency.
The physical consequences of this will be studied below.

To close, let us discuss the spontaneous breaking of time
reversal symmetry T , which is closely related to soft boson
modes. Indeed, while the Hamiltonian is even under T , the
fermion bilinears Qn (6) are odd. Therefore, a condensed bo-
son mode generates a term φnQn, which breaks T . It follows
immediately that T is broken at low temperatures in class I
(and also in the subextensive regime). In class II, although no
condensation takes place at finite temperature, T is broken at
zero temperature. To see this, note that the softest boson mode
with λn = λmax has the following propagator:

Gλmax (ωb = 0) = T 1/η � 1/T ,

according to (42). This means that the following order param-
eter diverges

1

β

∫ β

0
〈φn(τ )φn(0)〉dτ → ∞

as T → 0, which implies the breaking of T symmetry at zero
temperature [10]. Repeating the analysis for class III and IV,
using the results in Sec. IV C, it is not hard to show that T is
unbroken even at zero temperature in both SYKq classes.

V. THERMODYNAMICS

In this section, we study the low temperature thermody-
namics of the four classes of the extensive-rank regime both
analytically and numerically. The free energy of the model is
given by the saddle-point action F = Ssaddle/β, where S is as
defined in (8a). From that, it is not hard to obtain the energy
density:

−βE

N
= 1

2
β� + 1

2
γ

∑
ωb

[G2](ωb)F (ωb). (43)

We shall study the low-temperature thermodynamics in both
subextensive and extensive regimes, by a combination of
analytical and numerical methods.

A. Subextensive ranks

The low-temperature thermodynamics can be calculated
exactly in the subextensive regime. The only contribution to
the energy is the condensate:

ε := E/N = − 1
2�, (44)

which is determined by (14d) and (16), rewritten as:

T
∞∑

k=0

g�(πT + 2πkT ) = 1, (45)

where g�(ω f ) := 8λmax(
ω f +

√
8λmax� + ω2

f

)2
. (46)

For small T , the sum can be estimated with the Euler-
McLaurin formula,

1 =
∫ ∞

πT

dω f

2π
g�(ω f ) + T

2
g�(πT ) − πT 2

6
g′

�(πT ) + · · ·

=
∫ ∞

0

dω f

2π
g�(ω f ) + πT 2

12
g′

�(πT ) + · · · (47)

=
∫ ∞

0

dω f

2π
g�(ω f ) + πT 2

12
g′

�(0) + · · · . (48)

Above, we denoted g′ := ∂ω f g; in the second line, we ap-

proximated the integral
∫ πT

0 g by expanding g at ω f = πT ;
throughout, the omitted terms ∈ O(T 3). Equating the first
term in (48) to 1, and evaluating some integrals, we obtain

� = �0 + cV T 2 + O(T 3) where (49)

�0 := 8

9π2
λmax, cV := π2

8λmax
. (50)

Consequently, by (44), the specific heat

CV = cV T + O(T 2) (51)

is linear in T . Note that only the numerical value of �0 and
cV depend on the exact form of g, while CV ∝ T only depends
on the fact that ∂ω f g and ∂�g both exist, are continuous, and
nonzero whenever � > 0.

B. Class I and II

We now extend the above exact analysis to classes I and II,
by making some approximations. As the method is similar for
both classes, let us explain it just for class I in some detail.

To start, we observe that the SD equations (14a) and (25)
imply that

G(ω f ) = 2i

J + sign(ω f )
√

8λmax� + J2
(52)

where J := ω f − i
N (ω f ) . (53)

To make progress, we make two approximations. First, by
(40), J ≈ ω f is independent of � at low frequencies.

(1) We ignore the � dependence of J , and approximate it
by its leading small ω f behavior. In class I, we have J ∼ ω f

by (40).
(2) We approximate the energy by ε ≈ − 1

2�, ignoring the
∝γ terms in (43).
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T

0.0

0.1
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III
II (η = −1

2)

I (η = 1
2)

FIG. 4. Entropy density S/N as a function of the temperature T
in the four universality classes. The data points are obtained from
numerical solutions of the SD equations and are well fitted by(dashed
curves): S = cT for I, S = cT ν (ν = 0.5(4)) for II, and S = S0 + cT
for III and IV. The black markers are the extrapolated zero-T entropy.
For display, the entropy for class II is multiplied by 1.5. See Ref. [37],
Sec. F for further details.

These approximations render the problem nearly identical to
the subextensive case. Indeed, ε ≈ −�/2 is determined by the
same equation (45) with the same g�. Therefore, we predict
that

CV ∝ T (class I) , (54)

at least for small γ .
We now apply the same approximations to class II, while

switching � for �̂ everywhere. Now, notice that since η < 0
in class II, J ∼ |ω f |1+η by (40). Thus, g�̂ is nonanalytical in
ω f at ω f = 0: The derivative g′

�̂
(ω f ) ∼ |ω f |η is divergent as

ω f → 0, so that (47) now implies

1 −
∫ ∞

0

dω f

2π
g�̂(ω f ) ∼ T 2 g′

�̂
(πT ) ∼ T 2+η . (55)

Consequently, we predict that the specific heat is anomalously
large at low T :

CV ∼ T 1+η (class II) . (56)

C. Numerical results

We now compute the temperature dependence of entropy
in all four classes in the extensive rank regime, by solving the
large-N SD equations numerically. Representative results are
given in Fig. 4.

In classes III and IV, the data is well described by

S/N = S0 + cV T + · · · , (57)

where the zero-temperature entropy is positive S0 > 0. This
nonvanishing zero-temperature entropy implies that the class
III and IV models are reminiscent of the SYKq model.

In stark contrast, we find that neither class I nor II has an
extensive residual entropy, and the entropy obeys a power law

S/N
T →0∝

{
T class I
T ν , 0 < ν < 1 class II ,

(58)

which are consistent with the predictions (54) and (56)
above, since CV = T ∂S/∂T . We computed the exponent more

10−3 10−2 10−1

T

10−2

10−1

S
/N

−1 0η
0

1

ν

FIG. 5. Numerical test of the prediction (56) for class II. Main
plot: Entropy density S/N as a function of temperature T , with
f (y) = y(1 − y)η for η = −0.8, −0.7, . . . , −0.2 (top to bottom),
and γ = 0.2 (except that γ = 0.1 for η = −0.8). The dots are from
numerical solution of the SD equation. The dashed lines are best fits
to a power law S/N = cT ν . Inset: the fit exponent ν (dots, same color
code as main plot), compared to the prediction (56) (solid line).

thoroughly, albeit for relatively small ranks, and found a good
quantitative agreement with (56), see Fig. 5.

VI. OUT-OF-TIME ORDER CORRELATOR

We now study the growth of the out-of-time order correla-
tor (OTOC):

Tr[yγ1(t1)yγ1(0)yγ2(t2)yγ2(0)], y = e−βH/4

Tr(e−βH )
. (59)

Following closely the approach of Refs. [2,4,8], we focus on
the O(1/N ) and exponentially growing part of the OTOC,
given by the sum of a series of ladder diagrams generated by
two types of ladder rungs. The ladder kernel is K = Kb + Kf ,
where (see Fig. 6):

Kb(t1,...,4) = 2

N

∑
n

GR(t13)GR(t24)Gλn,lr (t34) (60a)

Kf (t1,...,4) = 4

N

∑
n

∫
dt5dt6 GR(t15)GR(t26)

× λ2Gλn,R(t35)Gλn,R(t46)Glr (t34)Glr (t56).

(60b)

FIG. 6. (a),(b) Examples of ladder diagrams contributing to the
out-of-time order correlator (59). Disorder lines are omitted for
display. (c) The kernels generating the ladders, with disorder lines.
All propagators are dressed.
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Above, ti j := ti − t j , the subscript “R” indicates a retarded
propagator, and “lr” a Wightman correlator [4]; both can
be obtained from the Euclidean-time correlator. We then
compute the quantum Lyapunov exponent λL by finding an
eigenfunction∫

dt1dt2K (t1,...,4)F (t1, t2) = kF (t3, t4) (61)

of the form F (t1, t2) = fF (t12)e
λL
2 (t1+t2 ) and with eigenvalue

k = 1 [2,4,8].

A. Class III & IV: Maximal chaos

We now carry out the calculation described above in the
conformal limit of class III and IV. This can be done ana-
lytically, thanks to the results of Sec. IV C above (see also
Appendix).

Let us first discuss class IV, where both fermionic and
bosonic propagators are conformal:

G(τ ) = A signτ |τ |−2�, 1 � |τ | � β (62)

λGλ(τ ) = F (τ ) = (1 − 4�)

2πA2 tan 2π�
|τ |2−4�. (63)

The constant A will drop out in the final results. The retarded
and Wightman correlators are obtained by analytical continu-
ations to real time [4]:

GR(t ) = 2A cos(π�)θ (t )

[
π

β sinh πt
β

]2�

(64)

Glr (t ) = A

[
π

β cosh πt
β

]2�

, (65)

and similarly for the bosons. Therefore, the summed terms in
(60) are independent of n, so the sum 1

N

∑
n can be simply

replaced with R/N = γ :

Kb(t1,...,4) = 2γ GR(t13)GR(t24)Flr (t34)

Kf (t1,...,4) = 4γ

∫
dt5dt6GR(t15)GR(t26)

FR(t53)FR(t64)Glr (t34)Glr (t56). (66)

The RHS of the above equations involve only known confor-
mal propagators and will be analyzed exactly.

Before doing so, we argue that (66) holds for class III as
well, provided we replace γ → c0γ [note that � is also a
function of c0γ instead of γ , see (36)]. This is because the
sum over bosons in (60) is dominated by the softest ones, with
λn = λmax. There are c0γ N of those, and their propagator still
satisfies (63).

We now look for eigenfunctions of K = Kf + Kb with the
following ansatz [2,4]:

F (t1, t2) = e−h π
β

(t1+t2 )

[
π

cosh π
β

t12

]2�−h

, (67)

where the Lyapunov exponent is related to h by λL = −2hπT .
By a straightforward but tedious calculation (going back and
forth between the time and frequency domains), we can show

0 1 2
λL/(2πT )

0

1

2

3

k

Δ = 0.1
Δ = 0.3
Δ = 0.49
Δ = 0.499

FIG. 7. The eigenvalue k of the ladder kernel corresponding to
(67).

that F is indeed an eigenfunction of both Kb and Kf , with the
following eigenvalues:

kb(h) = (1 − 2�) sin(2π�)�(1 − 2�)2�(2� − h)

π�(−h − 2� + 2)
,

k f (h) = 2(8�2 − 6� + 1) sin(2π�) sin(4π�)

π2�(−h − 2� + 2)�(4� − h)

×�(1 − 2�)2�(4� − 1)2

×�(−h − 4� + 2)�(2� − h). (68)

The eigenvalue of the total kernel k(h) := k f (h) + kb(h) has
a remarkable property: For any � ∈ (0, 1/2), k(h) = 1 if and
only if h = −1, see Fig. 7. As a consequence, the low rank
SYK model in the extensive regime with class III or IV
distributions is maximally chaotic:

λL = 2πT class III, IV, T � max
n

|λn|. (69)

B. Class I & II: Nonmaximal chaos

We now briefly discuss the cases of class I and II. The
key difference of these classes is that determining λL requires
going beyond the fermion scaling dimension �. Indeed, the
kernel eigenvalues (68) satisfy

lim
�→1/2

kb(h) = 1, lim
�→1/2

k f (h) = 0, (70)

for any h. So k(h) = kb(h) + k f (h) also tends to 1 in that limit
(this can be seen in Fig. 7), and λL cannot be determined by the
above method. This situation also occurs in the Fermi-liquid
phase of Ref. [8] and with the SYKq model in the q → 2 limit.
In all these cases, λL depends on the subleading terms in the
propagators.

A detailed analysis along this line, which we will present
in an upcoming work, leads to the following results. In class
I, the T dependence of λL is reminiscent of the ω dependence
of the quasiparticle decay rate (40):

λL ∼ T 1+η, 0 < η < 1. (71)

Therefore, class I is more chaotic than a Fermi liquid where
λL ∝ T 2 [8,38]. Naively extrapolating (71) to class II, we
would have a violation of the bound on chaos λL � 2πT . Yet,
a more careful analysis indicates that λL ∝ T , but the bound
is not always saturated by the prefactor.
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VII. AN APPLICATION

Recently, Ref. [35] proposed an interesting realization of
the SYK model in a graphene flake with irregular boundaries,
using quantum Hall ferromagnetism. A strong magnetic flux
� is induced onto the graphene flake, creating �/�0 degen-
erate lowest Landau levels (LL0) in the presence of chiral
symmetry. Here, �0 is a flux quanta hc/e. Since the graphene
boundary is irregular, the LL0 wave functions are pseudoran-
dom. Hence, projecting the Coulomb interaction onto the LL0

then produces a disordered four-fermion interaction, which
the authors of Ref. [35] claimed to be of SYK4 nature.

Now, we argue that the realized Hamiltonian is more likely
a low rank SYK, in the extensive-rank regime and of class
IV. For this, let |ϕ j〉 be the LL0 wave functions and c j be the
associated fermionic annihilation operator. Then the projected
Coulomb interaction is

H =
∑
i jkl

∑
r,r′

V (r − r′) 〈r|ϕi〉 〈ϕ j |r〉 c†
i c j 〈r|ϕk〉 〈ϕl |r〉 c†

kcl .

Above, r and r′ runs over all the lattice sites, and V (r − r′) is
the Coulomb potential, which we can diagonalize as

V (r − r′) = −
∑

n

λnUrnUr′n , (72)

where Urn = (n|r) ∈ R forms a real orthogonal matrix, and λn

are the eigenvalues. Therefore,

H = −
∑

n

λnQ2
n,

where Qn =
∑

i j

ui jc
†
i c j, ui j =

∑
r

〈n|r〉 〈r|ϕi〉 〈ϕ j |r〉 .

(73)

Note that Qn is a Hermitian fermion bilinear. At this point, if
we approximate Qn by a set of independent random fermion
bilinears, we will have the complex version of the low rank
SYK model, with an extensive rank. Finally, the repulsive
nature of Coulomb interactions implies that λn � 0 for all n,
resulting in a class IV distribution.

In summary, our argument reveals an additional structure in
the seemingly random four-body interaction. It will be inter-
esting to study whether there exists further relevant structures.
If there are none and the realized model is indeed a class
IV, extensive-rank SYK, the goal of Ref. [35] will be still
fulfilled. Indeed, as we showed above, class IV is a maximal
chaotic scrambler almost indistinguishable from SYKq for
some q > 4.

VIII. DISCUSSION

We have introduced and solved the low-rank SYK models,
unifying and completing previous results [10,32–34]. The
four classes of quantum phases that the model possesses,
summarized in Table I, fall into two categories. The fast
scramblers of class III and IV are equivalent to SYKq in
all aspects we have studied, although the reparametrization
symmetry in class III is worth further elaborating. On the other
hand, the almost Fermi liquids of class I and II may not have
reparametrization symmetry. However, they are stable under

weak quadratic perturbations (since such a term is already
generated dynamically).

The fermion-boson coupling form (7) of our model gener-
alizes the electron-phonon coupling model of Refs [32,33] in
the normal state (Ref. [37], Sec. H). These authors considered
a class III distribution of couplings ρ(λ) = δ(λ − λmax). We
showed that a nondegenerate distribution will belong to class
I or II (class IV is impossible in this setting since λn is
always positive), which is almost a Fermi liquid. It will be
interesting to understand the instability of such a phase into
the superconducting state.

Finally, our model in the extensive regime restores the
physical rank of the coupling matrix in SU (M ) random quan-
tum magnets away from the large M limit. Our results thus
suggest that the critical low-energy state of the magnet at finite
M is almost a Fermi liquid, probably of class I, which contains
the semicircle law. Yet, by engineering a coupling matrix with
a class II–IV spectrum, one can still realize faster scramblers
in atom-cavity settings.
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APPENDIX

1. Large N Action and Schwinger-Dyson Equations

In this section we derive the action of the low rank SYK
model. We first focus on the “replica diagonal ensemble”
given by the disorder averaged partition function Z1 at inverse
temperature β. Before we start, however, we will relax (3) and
(4) in order to also discuss the subextensive and superexten-
sive rank regimes. We modify (3) and (4) to

R = γ Nα + subleading corrections,

u(n)
i j u(m)

kl = 1

Na
δikδ jlδnm. (A1)

α ∈ [0, 2], and γ is an order unity constant. Note that the
parameter a controls the normalization of the Hamiltonian.
Requiring extensive energy fluctuation at infinite T , we can
find a relation between a and α:

Tr[H2] − Tr[H]2 ∼ N4−2a+α . (A2)

The fluctuation scales extensively with N provided

a = (α + 3)/2 . (A3)

In particular, we have a = 3/2 for a finite rank interaction
α = 0; for a near full rank interaction α = 2, a = 5/2. For the
extensive scaling in the main text, we have α = 1, a = 2. In
general, however, normalization of the Hamiltonian at infinite
T may be different from that at finite T . As we will come
to later, for subextensive ranks a = 2 in order to have an
extensive free energy at finite temperatures. Having a rough
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idea of the normalization, let us get back to the large N action.

Z =
∫

[Dγ ] e− ∫
τ

dτL, L =
∑

j

γ j γ̇ j + H. (A4)

As mentioned in the main text, after a Hubbard-Stratonovich
(HS) decoupling, the Lagrangian is given as the following:

L =
∑

j

γ j γ̇ j +
∑

n

(
λ

1
2
n φnQn + φ2

n

2

)
. (A5)

Then, averaging over disorder results in the bilocal effective
action

S =
∫

τ

⎛⎝∑
j

γ j γ̇ j +
∑

n

1

2
φ2

n

⎞⎠
− 1

2

∫
τ,τ ′

∑
ni j

N−aλn(φniγiγ j )(τ )(φniγiγ j )(τ
′). (A6)

We now introduce as usual the Green function G(τ, τ ′) =
1
N

∑
j γ j (τ )γ j (τ ′) and impose the relation by adding the la-

grange multiplier

N
(τ, τ ′)

⎛⎝G(τ, τ ′) −
∑

j

γ j (τ )γ j (τ
′)

⎞⎠
to the action, where 
 is the self-energy. Integrating out the
fermions results in large-N actions in the main text.

2. Details on the Scaling Analysis of Class III & IV

In this section we derive (31) and (36). The main tool is the
following Fourier transform formulas:

∫
eiτω|τ |−asign(τ )dτ = −2i cos

(πa

2

)
�(1 − a)sign(ω)|ω|a−1,∫

eiτω|τ |−adτ = 2 sin
(πa

2

)
�(1 − a)|ω|a−1

It is important to notice that, when we apply the above
formulas to some g(τ ) that is described by a power law only
for large τ , g(ω) will be given by the RHS plus a constant
that depends on the UV details. Let us look for the conformal
solution

G(τ ) ∼ Asign(τ )τ−2�

that is compatible with the SD equations with appropriate
approximations that make everything a power law. In all cases,
we make the standard approximation G(ω) = −1/
(ω). Note
that it is crucial to keep the prefactors (the power laws alone
do not constrain �). For (31), we also approximate f (y) to be
y−1. Straightforward computations yield

G(ω) ∼ 2iA�(1 − 2�) cos(π�)ω2�−1

[G2](ω) ∼ 2A2�(1 − 4�) sin(2π�)ω4�−1


(ω) ∼ −2iγ cot(2π�) cos(π�)

Aπ

�(2 − 4�)�(2� − 1)

�(1 − 4�)
ω1−2�

at low frequency or long time. Imposing G(ω)
(ω) = −1
gives (31); the condition � < 1/4 ensures [G2](ω) → 0 as
ω → 0, justifying the approximation of f (y) by y−1. The
case of (36) is similar. f (y) is approximated by c0(y∗ − y)−1

where y∗ = 1/λmax is the nearest positive singularity of f .
To apply this approximation, we look for solutions such that
� = 0 (no condensate) and that [G2](ω) → y∗ as ω → 0
(this constant value depends on the UV details of G); then
y∗ − [G2](ω) is a power law that only depends on the IR limit
of G. With this in mind, the actual computation is almost the
same as for (31) above. The condition � > 1/4 ensures that
[G2](ω) − [G2](0) ∼ |ω|4�−1 is vanishing. We provide some
details on Fig. 3 in the main text. For each data point, we
numerically solve the SD equations for β ∈ [102, 103] and
extract � as follows: For each β, we compute the minimum
of the log-derivative �β = − minτ [d (ln G)/d (ln τ )] and then
extrapolate to β → ∞ using the ansatz �β = � + a/β +
b/βc. The errors are comparable to the marker size.

3. A Related Boson-Fermion Model

In this section, we consider a variant of the low-rank
SYK model, which allows us to make connection with

Refs. [32,33]. As aforementioned, the four-fermion interac-
tions of low-rank SYK model can be equivalently mediated
by interactions with “boson modes” that do not have a kinetic
term see (7). We now consider the effect of modifying the
action by making the free boson action more “realistic:”

1

2

∫
dτφn(τ )2 → 1

2

∫
dτφn(τ )

[
m2 − ∂2

τ

]
φn(τ ) , (A7)

where m > 0. We shall focus on the extensive rank regime.
Following Appendix, one can show that only the bosonic

action (8c) is altered:

Sb = 1

2

∑
n,ωb

(
ω2

b + m2 − λn[G2](ωb)
)|φn(ωb)|2. (A8)

Integrating out the noncondensed bosons and adding the con-
densate contribution leads to

Sb = N

2
γ

∫
ρ(λ)

∑
ωb

ln
(
m2 + ω2

b − λ[G2](ωb)
)
dλ

+ Nβ

2
�(m2 − [G2](0)λmax), (A9)

125112-10



LOW-RANK SACHDEV-YE-KITAEV MODELS PHYSICAL REVIEW B 101, 125112 (2020)

where the condensate fraction � is still defined by (13)
as only the zero-frequency modes can condense; � > 0 if
λmax[G2](0) = m2. Among the Schwinger-Dyson equations,
only the one involving the summed boson propagator F is
changed:

F (ωb) =
∫

ρ(λ)λ

m2 + ω2
b − λ[G2](ωb)

dλ. (A10)

Although the relation between F (ωb) and [G2](ωb) can no
longer be encoded in a function f (y), the quantum critical
behavior found in the main text, summarized in Table I,
will remain essentially intact. This is because in any case,
the low-frequency singularity of [G2](ωb) has a power law
∼|ωb|4�−1 � ω2

b (as � < 1/2), so we can drop the term
ω2

b in (A10) without affecting the low-frequency behavior.
Then it is not hard to check that in classes IV and III,
the critical exponent � is still governed by (31) and (36),
respectively, whereas � = 1/2 in classes I and II: The whole
low-rank perturbative theory carries through. On the other
hand, the superextensive rank case needs more care. Restor-
ing the N2−a factors in (A10) and expanding around λ = 0
gives (Although N is originally the system size, it is more
appropriate here to view it as a finite large parameter with
which we take the high-rank limit from the extensive rank

regime.)

F (ωb) = F1(ωb) + F2(ωb) + . . .

= μ1N2−a

m2 + ω2
b

+ μ2N2(2−a)(
m2 + ω2

b

)2 [G2](ωb) + . . . (A11)

where a > 2 and μ� = ∫
ρ(λ)λ�dλ. The self energy has a

similar expansion:


(τ ) =
∞∑

�=1


�(τ ) =
∞∑

�=1

2γ Nα−1F�(τ )G(τ ) (A12)

where α > 1. Again, we want to determine the relation be-
tween α and a to ensure the correct thermodynamics when
N → ∞. Unlike in Sec. III B, the term � = 1 can no longer
be ignored, and the � = 2 term is not exactly q = 4 SYK
anymore. However, those do not affect the low temperature
limit [32,33]. Indeed, the extra factor 1/(m2 + ω2

b ) in F2 does
not change the low-frequency behavior of [G2](ωb). For the
� = 1 term, (A12) and (A11) imply


1(τ ) � γ F1(τ ) = N1−a+αγμ1
e−|τ |m

2m
decays exponentially. Therefore, if we adopt the scaling α =
2a − 3, then the � = 1 term will become subdominant when
τm � (α−1)

2 ln N . Meanwhile, at intermediate temperature,
the model is dominated by the � = 1 term; this is reminiscent
of the (unstable) “impurity” fixed point in Ref. [33].
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