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Optimal grouping of arbitrary diagrammatic expansions via analytic pole structure
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We present a general method to optimize the evaluation of Feynman diagrammatic expansions which uses an
automated symbolic assignment of momentum/energy conserving variables to each diagram. With this symbolic
representation, we utilize the pole structure of each diagram to sort the Feynman diagrams into groups that are
likely to contain nearly equal or nearly canceling diagrams, and we show that for some model parameters this
cancellation is exact. This allows for a potentially massive cancellation during the numerical integration of
internal momenta variables, leading to an optimal suppression of the “sign problem” and hence reducing the
computational cost. Although we define these groups using a frequency space representation, the equality or
cancellation of diagrams within the group remains valid in other representations such as imaginary time used in
standard diagrammatic Monte Carlo. As an application of the approach, we apply this method, combined with
algorithmic Matsubara integration (AMI) [A. Taheridehkordi, S. H. Curnoe, and J. P. F. LeBlanc, Phys. Rev.
B 99, 035120 (2019)] and Monte Carlo methods, to the Hubbard model self-energy expansion on a 2D square
lattice, which we evaluate and compare with existing benchmarks.
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I. INTRODUCTION

One of the most challenging problems in condensed matter
physics is correctly evaluating electronic interactions for free
particle or lattice systems with many electrons. This problem
is of course a subset of a more general problem, that of
fermionic particles interacting through bosonic exchange. In
one sense, this problem is addressed by many-body pertur-
bation theory using the formalism of Feynman diagrammat-
ics, which allows one to construct in an intuitive manner
the contributions at each order in perturbation theory [1–3].
In practice, however, it is extraordinarily difficult to handle
more than just the lowest order diagrams due to the factorial
increase in the number of diagrams at each order [4], and
this is further exacerbated by the high dimensional integrals
that must be performed in order to evaluate each Feynman
diagram.

Diagrammatic Monte Carlo (DiagMC) is a powerful
method for numerically evaluating such diagrammatic ex-
pansions [5–9]. However, there is in general a Monte Carlo
sign problem[10,11] with multiple origins. The first, warmly
referred to as the “sign blessing,” is the huge cancellation
that must exist between different Feynman diagrams at each
order in order for the series to converge [12]. The second
sign problem occurs during the integration of each individual
diagram, since the integrand in frequency space does not
have a definite sign. One can devise methods to mitigate the
second problem, but the first, the cancellation between topo-
logically distinct diagrams, is disastrous to standard DiagMC.
Recently, a number of proposals to address this have surfaced,
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such as grouping diagrams that may partially cancel [13], or
reconstructing the expansion in the form of a determinant
[9,14,15]. These methods rely on the Matsubara formalism
in that final results are evaluated for Matsubara (imaginary)
frequencies (iνn) or imaginary times (τ ) and not on the real
frequency axis. This has excellent utility for thermodynamic
properties, where the temporal degree of freedom is inte-
grated, but is problematic for direct frequency dependent
observables such as the density of states, since the analytic
continuation iνn → ν + i0+ cannot be uniquely performed
for numerical data and requires an ill-posed inversion via
methods such as maximum entropy inversion [16,17]. Per-
forming such procedures ultimately dominates the uncertainty
in the result and undermines any attempt at precision numerics
[18]. Worse still is the compression of Matsubara frequen-
cies in the low temperature limit where numerical Monte
Carlo methods become effectively nonergodic, leading to poor
convergence.

The entirety of this problem can be sidestepped by sim-
ply following standard many-body perturbation theory and
evaluating the internal Matsubara sums analytically. The only
roadblock to doing so is the complexity of the analytic
expressions. This roadblock has recently been overcome by
the method of algorithmic Matsubara integration (AMI)[19]
that in principle allows for the symbolic evaluation of the
Matsubara sums for arbitrarily complex Feynman diagrams
with minimal computational expense. The analytic result of
AMI can be evaluated at any temperature and the analytic
continuation is trivialized since it can be imposed symboli-
cally: iνn → ν + i0+. What remains is to sample a factorially
growing space of diagram topologies and perform the spatial
integrals, a problem typically reserved for DiagMC. However,
since AMI is formulated on the frequency axis, standard
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DiagMC will suffer a severe sign problem, and cannot be
directly implemented.

In this manuscript, we take a new approach to the sign
problem. By considering Feynman diagrams in the Matsubara
frequency representation we define a general procedure based
on the analytic structure of each integrand that allows us to
identify sets of topologically distinct Feynman graphs that
exactly cancel or are exactly equal and further to identify other
diagrams that can be trivially evaluated to be zero. In systems
where the cancellation is not exact our method can identify
and pair nearly canceling diagrams, i.e., we systematically
construct optimally sign-blessed groups. By pairing such di-
agrams during the numeric evaluation of momenta integrals
we guarantee a huge cancellation, which suppresses the sign
problem. Our procedure is general in that it can be applied to
any Feynman diagrammatic expansion with any interaction.
As proof of principle we evaluate the numerical results for a
particular perturbative expansion, the Hubbard model [20,21]
on a two-dimensional square lattice. We construct the self-
energy perturbative expansion up to sixth order at and away
from half-filling. We then systematically group diagrams to
provide what we believe to be the optimal set of diagrams
to be evaluated using AMI and Monte Carlo methods and
compare low order results to other numerical methods and
benchmarks.

II. METHODS

In this section, we outline each step required to group and
evaluate diagrammatic expansions. What we propose is in fact
conceptually simple but notationally complicated and for this
reason we take a pedantic approach and describe in detail how
to generate and store diagrams symbolically; automate the
evaluation of Matsubara sums analytically via AMI; system-
atically classify diagrams; and construct the optimal groups of
diagrams for a particular problem.

Central to this method is the pre-generation of diagrams
and assignment of symbolic momentum conserving variables,
the first step in the standard procedure for translating Feynman
graphs to integrals. This is not typically done in DiagMC,
which instead probes energy/momentum configurations via
the propagation of worms [22]. We will see that while the
assignment of momentum conserving variables is not unique,
each diagram has a pole structure that is fundamental and
cannot be hidden by any particular choice of momentum
conserving variables. We therefore base our diagram classi-
fication on these fundamental and physical poles. We apply
the procedure to the self-energy expansion, but the same
procedures can be applied to other multileg or bosonic particle
expansions.

A. Constructing diagrams and integrands

The building blocks of a Feynman diagram are fermionic
(solid) and bosonic (wavy) lines (see Fig. 1). If there is a
boson mediated two-body interaction Vσ,σ ′ (q) in the system
one can represent the interaction between two fermionic lines
as shown in Fig. 1, which additionally contains two factors
of the bare vertex. Assuming one knows the free particle
dispersion of each propagator and how they couple (the bare

k, σ Vσ.σ (q)

k + q, σ

k , σ

k − q, σ

FIG. 1. Diagrammatic representation of (left) fermionic line,
(middle) interaction line, and (right) two-body interaction Vσ,σ ′ (q)
between two fermionic lines with spins σ and σ ′. Each line should
be assigned with momentum/energy conserving variables.

vertex) then we have all the information required to convert
the diagram into an integral. If one can first draw all possible
topologically distinct diagrams up to a given interaction order
(or number of loops) then the problem is essentially reduced
to the evaluation of a set of integrals with known integrands.
While stating this is simple, as already mentioned this is ex-
tremely challenging primarily due to the high dimensionality
of the integrals.

In order to systematically produce all terms in an expansion
one requires a set of processes to change the order and topol-
ogy of the diagrams. The two simplest processes increase the
order of a diagram by one: add an interaction line (AIL); and
add a tadpole (AT) (see Fig. 2). Without loss of generality, in
what follows we will consider Vσ,σ ′ (q) to be a Coulomb inter-
action but note that a general bosonic propagator D0(i�m, q)
can be similarly treated. Further, we restrict our discussion
to the diagram space with two external legs, with the intent
of constructing the set of self-energy diagrams (the set of
one-particle irreducible diagrams) but the procedure remains
unchanged for other diagrammatic series. To generate the
series we start with diagrams of order m and by systematically
applying AIL and AT we generate all the possible diagrams
of order m + 1. Double counting of topologically equivalent
graphs is not allowed and one therefore needs to discard
duplicate graphs through explicit graph-isomorphism compar-
ison. For this, the formal graph representation of diagrams
is essential and the isomorphism checks can be aided by a
tree decomposition of the graph. [23] We then store all of
the topologically distinct, nonisomorphic diagrams. We then
iterate the procedure at each order to generate all diagrams in
the expansion up to an arbitrary order. For each diagram Dζm

of order m with topology ζm, we follow the Feynman rules

AT

AIL

FIG. 2. Diagrammatic illustration of (top) AIL and (bottom) AT
procedures in generation of the diagrammatic expansion described in
the text. In AIL one interaction (wavy) line is added to the diagram
while in AT a tadpole (simple fermionic loop with a wavy tail) is
added to the diagram.
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to construct a corresponding mathematical expression. These
rules of course are well known. We emphasize that our goal in
this manuscript is not only to apply those rules, but in fact to
automate the entirety of the process. Therefore we carefully
express here those rules, to orient the reader.

(1) We assign frequency-momenta variables to each line
such that conservation at each vertex is satisfied. We call
a set of such variables for a given diagram a ‘label’ and
store it as an array. This procedure is outlined in Sec. II C 1
and its result is not unique: there are a number of distinct,
but mathematically equivalent representations of the diagram
integrand. The nonuniqueness of labels is an issue that we will
discuss in detail in Sec. II C 1.

(2) We assign a bare Green’s function G j
0 = 1

X j−ε j to each
solid line j with j = 1, 2, . . . , N , where N is the number of
solid lines, X j represents the frequency, and ε j the energy (see
Sec. II B).

(3) Each interaction line connecting two solid lines with
spins σ and σ ′ should be directed and associated with Vσ,σ ′ (q),
where q is determined via conservation rules at each vertex
and is not an independent variable.

(4) Each internal Matsubara frequency and momentum is
integrated.

(5) We note that each fermionic loop has a well-defined
spin, which can be any half-integer number between −s
and +s, where s is the total spin. It means that for a
diagram with Fζm loops one should multiply the integrand
by (2s + 1)Fζm . Thus the result should be multiplied by
(−1)m+Fζm (2s+1)Fζm

(2π )nd βn , where m is the order (number of interaction
lines) of the diagram, Fζm is the number of fermionic loops
in the diagram, d is the dimensionality of the system, n is
the number of independent frequencies, and β is the inverse
temperature [24].

(5) If the jth solid line closes on itself, i.e., a tadpole
occurs, we insert a convergence factor, eX j 0+

.
These rules are applied to each diagram resulting in (up to

convergence factors) the Feynman integral of the form

Dζm = 1

(2π )ndβn

∑
{kn}

∑
{νn}

A(m, s, Fζm )
N∏

j=1

G j
0 (ε j, X j )

×
M∏

m=1

Vσ,σ ′ (qm), (1)

where N and M are the number of fermionic (solid)
and bosonic (wavy) lines in the diagram, respectively, and
A(m, s, Fζm ) = (−1)m+Fζm (2s + 1)Fζm . Finally, an arbitrary di-
agrammatic expansion Q can be written as the sum of each
distinct diagram at each order

Q(xext ) =
∞∑

m=0

∑
ζm

Dζm , (2)

where the sum over ζm is over all unique topologies of order
m. The result only depends on a set of external parameters,
xext, which includes external frequencies, external momenta,
chemical potential, and the temperature of the system.

B. Evaluation of Matsubara frequency summations

Each diagram in the perturbative expansion defined by
Eq. (1) consists of summations over Matsubara frequencies
and over momenta within the first Brillouin zone. We perform
the (unbounded) Matsubara sums using algorithmic Matsub-
ara integration (AMI) introduced in Ref. [19]. The Matsubara
summations of a given Feynman diagram Dζm are contained in
the factor

Iζm = 1

βn

∑
{νn}

N∏
j=1

G j
0 (ε j, X j ) (3)

of Eq. (1). Essentially, AMI is a procedure that evaluates the
Matsubara sums by iteratively applying residue theorem to
Eq. (3). We briefly review AMI here.

1. Symbolic array representation of the bare Green’s functions

The first step in AMI is to represent the bare Green’s
functions G j

0 (ε j, X j ) in a symbolic array form. We use the
self-energy function as an example, which has one external
frequency and one external momentum.

For a given diagram Dζm with n independent (internal)
Matsubara frequencies we define the frequency of each line as
the linear combination X j = ∑n+1


=1 iα j

ν
, where the allowed

values for the coefficients α
j

 are zero, plus one, or minus

one. We store these coefficients as an array of length n, �α j =
(α j

1, . . . , α
j
n ) for the jth solid line of the diagram. Similarly

the free particle energy is ε j = ε(k j ), where k j = ∑n+1

=1 α

j

k
.

In this notation νn+1 and kn+1 are the external frequency and
momenta, respectively.

We will also need to express ε j in an array form. For a
given diagram, the jth line (out of N total solid lines) has
an energy ε j , which will be one of r symbolically different
energies e
, where 
 � r. This allows us to represent ε j as an
array �E
 with length N , where the 
th entry takes the value 1
and the rest are zero:

ε j = e
 → �E
 = (δ
,1, δ
,2, . . . , δ
,N ), (4)

where δ
, j is a Kronecker delta. We are now able to represent
each Green’s function, G j

0 , as an array with length N + n: [25]

G j
0 (ε j, X j ) → [ �E
, �α j]. (5)

The array representation (5) is equivalent to a full symbolic
representation of the bare Green’s functions in the frequency-
momenta space.

2. AMI procedure

Eq. (5) enables us to represent the product of the bare
Green’s functions in Eq. (3) as a nested array of size N ×
(N + n):

N∏
j=1

G j
0 (ε j, X j ) → [[ �E
1 , �α1]; [ �E
2 , �α2]; . . . ; [ �E
N , �αN ]]. (6)

To clarify this, we provide in Ref. [26] the array representation
of a particular third order self-energy diagram as an example.

Starting with the array representation (6) and following
the AMI procedure [19], we construct and store the AMI
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result. A typical AMI result contains many terms, which are
represented as nested arrays. Each array contains two entries.
The first entry is the energy (momenta) part E , which is
represented by an array �E which is a linear combination of
�E
 arrays defined by Eq. (4). The symbolic energy in general
is constructed by E = ∑


 E
e
, where the allowed values for
E
, the elements of �E , are zero, plus one, or minus one. The
second entry of the array is the frequency part, which is a
linear combination of the �α j arrays. From the AMI result
the full symbolic result for Matsubara sums [Iζm in Eq. (3)]
is obtained. Thus, for each diagram, we have reduced the
original problem of Eq. (1) to a sum over momenta:

Dζm = 1

(2π )nd

∑
{kn}

Dζm (iνn+1, {kn+1}, β, μ), (7)

where

Dζm = A(m, s, Fζm )Iζm (iνn+1, {kn+1}, β, μ)
M∏

m=1

V (qm). (8)

In summary, AMI enables us to analytically evaluate the
Matsubara sums of all Feynman diagrams.

C. Classifying diagrams via pole structure

Typical diagrammatic methods evaluate the perturbation
expansion on the imaginary time axis, where the diagrams
are positive definite, and this makes the Monte Carlo sign
problem more manageable [12,14,27,28]. Evaluation in real
time (or real frequency) will encounter a sign problem that is
exacerbated by the existence of the canceling diagrams. We
seek to address this issue in this and the following sections
where we introduce a systematic approach that allows us to
identify these canceling diagrams and remove them from the
series. In addition, we find groups of equal diagrams, which
provides us with a further reduction in computational cost.

Our goal is to evaluate Eq. (2) truncated at a cutoff order
mc. However, as we shall see, we do not really need in general
to evaluate all the diagrams in the expansion; it turns out that
some diagrams are individually vanishing. Furthermore, there
exist diagrams that are exactly canceling or equal. To this end,
we provide a filtering process to systematically identify the in-
dividually vanishing, as well as canceling and equal diagrams,
without any explicit evaluation of the frequency and momenta
summations in Eq. (1). This allows us to substantially reduce
the diagrammatic space of the problem leading to a significant
reduction in the computational cost. In addition, since we
eliminate the problematic vanishing and canceling diagrams
we markedly suppress the sign problem.

There exist many expansions where nearly canceling dia-
grams appear, e.g., Hubbard self-energy diagrams away from
half-filling. In order to manage the sign problem in these
cases, we provide a general prescription in Sec. III B to
carefully treat the nearly canceling pairs.

1. Labeling procedure

As mentioned, the label of a Feynman graph is not unique
and we need to carefully consider the role of labeling in this
challenging problem. It is possible to generate the set of all
labels for each diagram in the expansion from which one

would construct the corresponding mathematical expressions
using the Feynman rules. In the case of self-energy diagrams
of order m, the number of independent (internal) Matsubara
frequencies n = m, and the number of internal fermionic lines
is N = 2m − 1. Thus knowing the order of a diagram is
sufficient to provide a complete accounting of possible labels.

In order to generate each label, we first assign the n
independent frequencies to a set of internal fermionic lines.
We then assign dependent frequencies via conservation of
energy at each vertex. If the conservation law at each vertex
is satisfied then a valid label has been found. We generate all
the possible labels by systematically choosing n independent
lines from N possible choices.

Of course the number of energy conserving labels grows
very fast with order, for example, while this number for the
fourth order diagrams is of order 10, it is of order 100 by
sixth order diagrams making this process more difficult with
increasing order. However, although expensive this labeling
only needs to be performed once. Furthermore, having a
symbolic representation of the labels enables us to analytically
extract the poles in the Matsubara frequency space, which as
we shall show, plays a crucial role in identifying equal and
canceling diagrams.

2. Diagram classes

We are interested in identifying diagrams that either ex-
actly equal or exactly cancel without performing the Mat-
subara and momenta sums. To begin, we propose to classify
diagrams according to the pole structure of their integrands.
One may recall that poles of the Green’s functions have a
physical manifestation as quasiparticles. If two diagrams are
to be analytically equivalent (up to a sign), then they must
contain the same set of nonremovable divergences (virtual
quasiparticles) in order to produce the same integral result.
This can only be true if the original integrands have the same
pole structure.

We define the pole configuration of a diagram Dζm to be
a set of integers (n1, n2, . . . , nmax), where ni is the number
of poles with multiplicity i in the Matsubara frequency space
and max is the highest possible multiplicity of poles. Clearly,∑max

i=1 ni = N , the number of internal fermionic lines. It is
important to note that the pole configuration does not depend
on the choice of label of a diagram. In this way, we partition
the set Sm of diagrams of order m into label-independent
subsets Cm

i of diagrams with the same pole configuration. We
refer to these subsets as diagram classes. We illustrate this
schematically in the top part of Fig. 3.

Since it is not possible for diagrams that belong to different
classes to be equivalent (or cancel) we need only look within
classes for equal or canceling diagrams.

3. Diagram subclasses

Now that we have grouped diagrams according to their
pole configuration into classes Cm

i , we search for subclasses
containing equal or canceling diagrams. To this end, we
now consider the distinct choices of a diagram’s label, since
how one chooses to label a given diagram might obscure
its analytic equality or negation to another diagram in its
class. Thus we need a stronger condition in order to establish
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FIG. 3. Schematic illustration of classes and subclasses of the set
Sm of diagrams of order m. Diagrams in a class Cm

i have the same
pole configuration, which are divided into subclasses of diagrams
with similar characters.

subclasses. We postulate then a necessary condition in order
for two diagrams D1 and D2 to be equal or canceling: for any
chosen label of D1 there must exist a representation of D2 for
which the integrands of D1 and D2 are equivalent or canceling.

This simple postulate leads to the logical conclusion that
the total number of unique labels of D1 and D2 must be
equal, or else the two diagrams cannot be equal or canceling
in general. With this in mind we suggest a label-dependent
identifier for a given integrand, which can be constructed by
counting the number of poles with respect to each internal and
external Matsubara frequency, iνi, xi = ∑N

j=1 |α j
i |. We then

group these numbers into a set (x1, x2, . . . , xn+1), in which
we then order the first n entries from highest to lowest as
x = (xi, x j, xk, . . . , xn+1) where xi � x j � xk . (As above, we
use self-energy diagrams, with one external frequency and n
internal frequencies, as an example). We call this object, x,
the pole-ID for a given integrand. We now define diagram
character to be the complete set of pole-IDs generated by
considering all possible labels of a diagram. Thus, the diagram
character is label-independent. We can therefore safely divide
each class Cm

i into subclasses Cm
i, j of diagrams with the same

diagram character. The bottom part of Fig. 3 shows schemati-
cally the division of each class Cm

i into subclasses Cm
i, j .

As an example, we show in Fig. 4 twelve of the diagrams
that contribute to the self-energy expansion at fourth order.
These are divided into two classes, C4

1 and C4
2 . Class C4

1 is
further divided into three subclasses. One notes that in each
row, we observe a pair of diagrams that are isomorphic when
one neglects the direction of the fermionic lines. We call such
(nonisomorphic) diagrams, “almost isomorphic.” However,
within each subclass there are also diagrams with wildly
different topologies.

Since there can be no equal or canceling diagrams that
do not belong to the same subclass we need only compare
diagrams belonging to the same subclass. Thus the diagram
character acts as a unique barcode or fingerprint that can be
used to quickly group diagrams. When the number of graphs
in a subclass is large, further filtering can be helpful, which
we discuss next.

D. Diagram filter

Up to now we have only postulated that diagrams belong-
ing to the same subclass are likely to be equal or cancelling.

C4
1,1 :

C4
1,2 :

C4
1,3 :

C4
2,1 :

FIG. 4. Four subclasses of fourth order self-energy diagrams.
The diagrams in the top panel belong to class C4

1 with pole config-
uration (7,0) and the diagrams in the bottom panel belong to class
C4

2 with pole configuration (5,1). Collecting pole-IDs for all possible
labels, one finds out that the diagrams in each row have the same
diagram character, i.e., they belong to the same subclass. Thus, one
takes the diagrams in each row as candidates to be either equal or
canceling.

We can identify those diagrams which are equal up to a sign
by applying transformations to their integration variables such
that their integrands remain equivalent. To this end, we intro-
duce a filter, which we call graph invariant transformations
(GIT). GIT identifies vanishing, canceling and equal diagrams
within the subclasses.

1. Graph invariant transformations (GIT)

We begin the GIT procedure by selecting a pair of diagrams
D1 and D2. We then choose one label for each of D1 and
D2 with their integrands stored in the array representations
described in Sec. II B 2, which we call L1 and L2. Next we
apply transformations to one of the labeled integrands and
look for equality/negation. These transformations must be
such that they change the integrand but not the integral over
internal parameters.

We identify three important transformation types. The set
of transformations T1 swaps two of the independent Matsub-
ara frequencies,

T1 : (iνp, kp) ↔ (iνp′ , kp′ ). (9)

We note that T1 is equivalent to a relabeling of the diagram
that guarantees a new momentum conserving label. The sec-
ond transformation T2 flips the sign of one of the internal
fermionic frequencies and corresponding momentum,

T2 : (iνp, kp) → (−iνp,−kp). (10)

Finally, for many problems, there is another transformation T3

under which the dispersion of (at least) one of the solid lines
changes sign:

T3 : ε j → −ε j . (11)

We apply the group of all possible transformations (in-
cluding combinations of T1, T2 and T3) to the integrand of
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FIG. 5. Two topologically distinct third order self-energy dia-
grams which are almost isomorphic. Application of GIT reveals that
they are precisely canceling at half-filling.

the diagram, with each result stored as array representations.
Diagram D1 equals or cancels diagram D2 if there is a
transformation T such that T : L1 = ηL2 with η = ±1. In
practice, our procedure compares T : L1 with L2 after each
transformation and stops when such a transformation is found.

GIT also enables us to identify the vanishing diagrams. To
do so we start by selecting a diagram D with its integrand
represented by the array L. Then we apply GIT to look for a
transformation T such that T : L = −L. If such a transforma-
tion is found the diagram D is trivially vanishing.

2. Application of GIT

In order to identify canceling and equal diagrams, one
needs to apply GIT to pairs of diagrams within each sub-
class. However, some considerations can substantially reduce
the number of pairs to be investigated. For systems with
particle-hole symmetry one can show that almost isomorphic
diagrams are always either canceling or equal. Therefore one
should first apply GIT to almost isomorphic diagrams. As
an example, we show in Fig. 5 a pair of almost isomorphic
third order diagrams which are found to be canceling by
application of GIT. However, application of GIT also finds
pairs of diagrams which are not almost isomorphic which
nevertheless are found to be equal or canceling. For example,
the fourth order diagrams shown in Fig. 4 are all equal to each
other within each subclass.

In practice, to apply the GIT procedure we first select each
diagram’s label such that the number of times the external fre-
quency appears in the label is maximized. We then investigate
these two diagrams using the GIT procedure. This allows us to
identify most (but not all) of the equal and canceling diagrams.
We then cycle through all possible labels until we find a match
(equal or cancelling) or exhaust all possible labels, in which
case the diagrams are not equal or canceling. In addition,
because the comparison is label dependent it follows that if
the pole-IDs of two labeled graphs are not equivalent then the
GIT can not show the equality or negation of the graphs for
these specific labels. Thus, it is sufficient to only apply GIT to
pairs of labeled diagrams with equivalent pole-IDs.

We emphasize that our approach is fundamentally different
from what is proposed in Ref. [13]. In this work, we identify
canceling/equal diagrams by systematically applying graph
invariant transformations to symbolic representations of the
diagrams while in Ref. [13], diagrams are presumed to cancel
via crossing symmetry. Although some cancellations due to
crossing symmetry can occur for special cases, the general
application of that approach is almost guaranteed to pair dia-
grams with different pole structures—which precludes the di-
agrams from canceling in general. As we shall see in Sec. III B

identifying the labels and corresponding transformations that
map diagrams to their canceling partners enables one to
obtain the optimal cancellation during momenta integration.
We therefore believe that by applying GIT we construct the
optimally sign-blessed groups for any Feynman diagrammatic
expansion composed of the bare Green’s functions.

E. Evaluation of momenta summations

The final step in evaluating the diagrams in a perturbative
expansion is to perform the momenta integrations. Since these
are high-dimensional integrals one typically uses Monte Carlo
integration. This will be efficient if the number of diagrams in
the expansion is not too large. In this approach we sample
internal momenta points uniformly from [−π, π ]d following
standard Monte Carlo procedure [29]. We generate y samples
in the internal momenta space each denoted by {pn}i and
approximate each diagram Dζm by

Dζm � D(y)
ζm

= (2π )nd

y

y∑
i=1

Dζm (iνn+1, {pn}i, kn+1, β, μ),

(12)

from which the series expansion of Q is calculated:

Q �
∞∑

m=0

∑
{ζm}

D(y)
ζm

(iνn+1, kn+1, β, μ). (13)

For problems with a large diagrammatic space the direct
evaluation of all the diagrams may be impractical and in
that case one combines AMI with Metropolis-Hasting Monte
Carlo (MHMC)[30] as in standard DiagMC [6] to numerically
evaluate the momenta sums as well as to probe different
topologies in the expansion (2). This approach is similar to
standard DiagMC but with three significant differences. First,
we work in the Matsubara frequency space, similar to recent
works on the diagrammatic dual Fermion method [31,32]
rather than imaginary time space. Second, we generate all the
diagrams and their corresponding mathematical expressions
before the MC simulation instead of producing the diagrams
during the simulation. This, as we shall see, trivializes the de-
tailed balance equations of a MHMC simulation. Third, since
we analytically compute and store the Matsubara sums before
MC simulation we eliminate the need for probing internal
Matsubara frequencies (or, equivalently, internal imaginary
times).

To stochastically sample the diagrams we introduce a set of
ergodic update procedures to probe diagram orders, diagram
topologies, and internal momenta, fixing all other external
variables. For each step of the Monte Carlo simulation one
of the updates is randomly chosen and the proposed config-
uration is accepted or rejected according to the Metropolis-
Hastings scheme. We note that each diagram is identified by
two properties: order (m) and topology (ζm). We assume that
at order m we have γm different topologies in the expansion
(2). Now we introduce the following updates.

(1) Change momenta. The current momenta {kn}c of the
current diagram of order m are changed to proposed momenta
{kn}p where the {kn}p are derived from the uniform distribu-
tion function W (m).
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(2) Change topology. By this update a diagram topology is
changed within a specific order, i.e., if the current diagram is
of order m with topology ζ c

m another diagram of order m with
topology ζ

p
m from the stored diagrams is proposed.

(3) Change order. The current diagram of order mc and with
topology ζ c

mc
is changed to a diagram of order mp and with

topology ζ
p

mp .
Note that the proposed mth order topology is chosen

uniformly from γm possible topologies with probability 1
γm

.
Finally, the acceptance probability of these updates in the
Metropolis-Hastings scheme is expressed as

A = Min

⎡
⎣1,

γmp

γmc

|Dre/im
ζ

p
mp

(iνn+1, {kn+1}p, β, μ)|W (mc)

|Dre/im
ζ c

mc
(iνn+1, {kn+1}c, β, μ)|W (mp)

⎤
⎦,

(14)

where |Dre/im
ζm

| is the absolute value of the real/imaginary part
of Dζm and W (m) = 1/(2π )md .

It is typical in MHMC to seek an update criterion that
minimizes computational expense. Unfortunately, here one
has no option but to evaluate the entire AMI integrand Dζm ,
which becomes expensive at high orders making it difficult to
generate sufficient statistics.

III. EXAMPLE: SELF-ENERGY FOR THE 2D SQUARE
LATTICE HUBBARD MODEL

As an application of our method, we calculate the self-
energy for the Hubbard model on a two-dimensional square
lattice up to sixth order in perturbation theory. We consider
the nearest neighbor tight binding dispersion given by ε(k) =
−2t ( cos kx + cos ky) − μ, where t is the hopping amplitude
and μ is the chemical potential. In this model, the poten-
tial is the momentum-independent local Hubbard interaction,
Vσ,σ ′ (q) = Uδσ,−σ ′ . The self-energy is

�(kn+1, νn+1) =
mc∑

m=1

⎧⎨
⎩

∑
{ζm}

(−1)m+Fζm U m

(2π )2mβm

∑
{km}

∑
{νm}

×
2m−1∏

j=1

G j
0 (ε j, X j )

⎫⎬
⎭ + O(U mc+1), (15)

evaluated to a cutoff order, mc. Here we remind the reader that
a self-energy diagram of order m has 2m − 1 internal fermion
lines and m independent frequencies and momenta.

Since the Hubbard interaction only occurs between
fermionic lines with opposite spins, we construct and store
only those connected one-particle irreducible diagrams that
satisfy this criterion. The total number of diagrams at each
order N (m)

init is given in the first row of Table I. We then find
all the possible labels (as explained in Sec. II C 1) for each
stored diagram, which enables us to construct the classes and
subclasses of the self-energy diagrams.

A. Diagrammatic Space Reduction for the Hubbard Self-Energy

We first note that the contribution of diagrams with tad-
pole insertions (one-legged diagrams) can be neglected be-
cause they are equivalent to shifting the chemical potential

TABLE I. Diagrammatic space reduction by shifting the chemi-
cal potential for the Hubbard self-energy expansion up to sixth order.
N (m)

init : total number of mth order Hubbard self-energy diagrams in
the original expansion. N (m): total number of mth order Hubbard
self-energy diagrams neglecting all one-legged diagrams by applying
a chemical potential shift.

m 1 2 3 4 5 6

N (m)
init 1 2 8 44 296 2312

N (m) 0 1 2 12 70 515

μ → μ − n̄U/2, where n̄ is the number of electrons per site.
[33,34] In doing so we in fact redefine the chemical potential
and self-energy function such that μ = 0 corresponds to half-
filling. [35] As shown in Table I this standard procedure
substantially reduces the number of diagrams from N (m)

init
to N (m). We then find all possible labels (as explained in
Sec. II C 1) for each diagram in order to classify the diagrams
into subclasses; then we apply the GIT procedure within each
subclass to identify vanishing, equal, and canceling diagrams
at half-filling.

The transformations T1 and T2 are given by (9) and (10),
respectively, and the transformation T3 is a (π, π ) shift of
internal momentum,

T3 : kp → kp + (π, π ), (16)

which flips the sign of ε j at half-filling if it depends on kp.
Since the potential U is a constant and the momenta sums
are performed over the first Brillouin zone the expansion
(15) is invariant under any arbitrary combination of these
transformations.

In the third order there are only two diagrams, shown in
Fig. 5. These two diagrams belong to the same subclass and
the GIT procedure finds that they cancel. In Ref. [26], we
explicitly present the transformations which relate these two
diagrams. The twelve fourth order diagrams are divided into
two classes, which subdivide into a total of four subclasses
containing three diagrams each (see Fig. 4). The GIT pro-
cedure reveals that the diagrams within each subclass are
precisely equal in agreement with what has been reported
previously [36–38]. There are 70 fifth-order diagrams divided
into 11 subclasses; GIT reveals that all of the diagrams within
each subclass exactly cancel. At sixth order, we have 515 di-
agrams divided into four classes and 48 subclasses. Applying
GIT, we identify 144 canceling diagrams at half-filling; the
remaining 371 diagrams are collected into 47 sets of equal
diagrams. The details of the diagrammatic space reduction for
sixth order diagrams are illustrated in Fig. 6. It is important to
note that all precise cancellations found by the GIT procedure
occur at half-filling only.

The diagrammatic space reduction for the Hubbard self-
energy expansion up to sixth order is summarized in Table II.
There are no odd-order diagrams in the reduced space, since
each diagram has a precisely canceling partner; i.e., at half-
filling odd order diagrams do not contribute to the self-energy
[39]. To calculate the self-energy at half-filling, one needs
to evaluate one diagram from each group, multiplied by the
number of diagrams in each group. Altogether this represents
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515 sixth order

diagrams

Class C6
1

390 diagrams

Class C6
2 Class C6

3 Class C6
4

110 diagrams 12 diagrams 3 diagrams

32
subclasses

13
subclasses

2
subclasses

1
subclass

33 groups
of equals

11 groups
of equals

2 groups
of equals

1 group
of equals

GIT GIT GIT GIT

FIG. 6. Schematic illustration of constructing groups of sixth or-
der equal self-energy diagrams at half-filling. There are 515 diagrams
after the chemical potential shift at sixth order. We first divide the di-
agrams into classes according to their pole configurations. Note that
C6

1 , C6
2 , C6

3 , and C6
4 are classes of diagrams with pole configurations

(11,0,0), (9,1,0), (7,2,0), and (8,0,1), respectively. We then construct
the subclasses for each class considering their diagram characters.
Finally, the application of GIT within each subclass enables us to
discard all the canceling diagrams and find groups of equal diagrams
at half-filling.

a huge reduction: at sixth order we began with 515 diagrams
(not including one-legged diagrams); the GIT procedure re-
duces this number to only 47 nonequivalent diagrams.

B. Sampling nearly cancelling diagrams away from half-filling

In practice all diagrams within each subclass should be
stored in order to evaluate a given quantity away from half-
filling. Diagrams which cancel at half-filling will nearly can-
cel away from half-filling, and the identification of those
nearly canceling pairs can increase the efficiency of Monte
Carlo integration.

The most straightforward way to evaluate diagrams away
from half-filling is to sample the diagrams in each subclass as
a whole instead of sampling diagrams one by one. However, to
use the full power of the GIT in Monte Carlo integration away
from half-filling one should group each nearly canceling pair
as a single integrand during the stochastic sampling. If a pair
of diagrams D1 and D2 are exactly canceling at half-filling,
we essentially have a transformation T found by GIT and

TABLE II. Diagrammatic space reduction of the Hubbard self-
energy up to sixth order at half-filling. In the second row, n(m)

tot is
the number of subclasses at each order m, and (N (m) ) is the total
number of diagrams (not including one-legged diagrams) at each
order m (see Table I). In the last row, N (m)

r is the number of groups
of equal diagrams at each order m, and (n(m)

d ) is the total number of
noncancelling diagrams at each order m.

m 1 2 3 4 5 6

n(m)
tot (N (m) ) 0(0) 1(1) 1(1) 4(12) 11(70) 48(515)

N (m)
r (n(m)

d ) 0(0) 1(1) 0(0) 4(12) 0(0) 47(371)

2 3 4 5 6
Order, m

-1.5
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-0.5

0

0.5

Im
 [

a m
U

m
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2U

2 |
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U/t=2
U/t=3
U/t=4
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U/t
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0.4

err
(4)

err
(5)

FIG. 7. The contribution at each order to Im�k(iν0) for U/t =
1 → 4 normalized by the m = 2 contribution. Data are for parame-
ters βt = 5 and μ/t = −1.5 at k = (π/8, π ). The AMI results were
obtained with ≈106 samples per diagram.

the necessary array representations L1 and L2, such that T :
L1 → −L2 for every set of internal variables. One should then
evaluate the pair of diagrams by considering (T : L1) + L2 as
a whole in the Monte Carlo sampling away from half filling.
This optimizes the cancellation between the two diagrams.
Thus, instead of sampling the nearly canceling diagrams
one by one, we sample them as a pair. This substantially
improves the average sign and the uncertainty due to the huge
cancellation.

C. Numerical results

In this section, we provide proof of concept results to illus-
trate the applicability of the method to the difficult problem
of the Hubbard interaction. To do this we will first consider
the order-by-order contributions for a point away from half-
filling, on both the Matsubara and real frequency axes, in
order to discuss the role of error induced by truncating the
series. Subsequently we will compare our AMI calculations
at half-filling to results from dynamical cluster approximation
(DCA)[21,28,40,41] as well as compare the results from AMI
on the real-frequency axis to those obtained via numerical
analytic continuation of DCA data. Finally we will compare
our results on the Matsubara axis throughout the Brillouin
zone to numerically exact results.

A central issue in truncated diagrammatic expansions for
Hubbard interactions is that for large enough value of U/t
the truncated series is not convergent [42]. To avoid this there
are methods to improve convergence that in essence re-weight
each diagram order without changing the sum of the entire
series [14,43,44]. Here, we would like to avoid any rescaling
or resummation and instead we operate within the range of
explicit convergence of the series. In order to do so, in each
case we estimate our truncation errors (see Ref. [26] for a
derivation) by considering the behavior of coefficients at each
order. We can then use this information to evaluate the series
for values of U/t such that the truncation error is small.
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As a first example, shown in Fig. 7, we consider a case
without particle-hole symmetry (i.e., away from half-filling),
which means that all diagrams at each order (including odd
orders) must be included. Ignoring one-legged diagrams, this
requires the evaluation of N (m) diagrams at each order m (the
last row of Table I) where at each order the diagrams are
grouped into n(m)

tot subclasses (see Table II). The coefficients
am in the self-energy expansion � = ∑

m amU m are evaluated
for parameters βt = 5 and μ/t = −1.5 at k = (π/8, π ) for
U/t = 1 to 4. We normalize each plot by the absolute value of
the second order term. For U/t � 2, we see that the fourth-,
fifth-, and sixth-order contributions are negligible; however
for U/t = 4, these contributions are comparable to each other
in magnitude. These findings are consistent with the trun-
cation error, plotted in the inset to Fig. 7. The fractional
truncation error err (m) is the error estimate for truncating the
series at order m, shown for m = 4, 5. We see that up to
U/t = 2 the truncation error is negligible (err (5) < 1%) while
at U/t = 4 the error is ≈15% and becomes divergent slightly
above U/t = 4. The fourth-order truncation error err (4) has
only minor differences compared to err (5). This suggests that
at this temperature (βt = 5) and values of U/t as large as
4, a diagrammatic series might be reasonably approximated
by neglecting terms higher than fifth order. Actually, it is
surprising that, for a wide range of U/t values, fourth- or
fifth-order results should produce truncation errors <10%.
Such behavior has been observed at strong coupling from
�DDMC [9,14], where the results of the diverging series at
higher order oscillate around the result such that the sum of
all higher order terms is only a small contribution for weakly
coupled cases, though this ceases to be the case for large
values of U/t .

One should also note that to get reliable error bars for
higher order contributions, grouping the diagrams into sub-
classes is essential. By measuring each group separately we
effectively reduce the variance of each measurement. This is
optimized when the diagrams in a group are equal and the
variance represents sampling from the analytic expression for
a single diagram.

We show another example away from half-filling in Fig. 8
but now evaluated on the real frequency axis at U/t = 3 for
βt = 5 and μ/t = −1.5. Since this parameter choice is within
the convergence criteria mentioned in Fig. 7 we expect small
truncation errors, and our results up to 4th order illustrate the
utility and rather high accuracy attainable with the method.
For completeness we show the real and imaginary parts of
the self-energy and each contribution from mth order (Om)
as well as the sum up to fourth order. At each order, the
result is evaluated by forming subclasses and evaluating all
diagrams of a subclass together. Of interest is the partial
cancellation between third- and fourth-order contributions for
much of the frequency range. As a result, by comparing the O2
result to the entire sum we find a wide range of frequencies
(ν = −1 to 2.5) where both the real and imaginary parts of
the second-order diagram are nearly equivalent to the sum
up to fourth order. Also shown in the lower panel are the
real and imaginary parts of the Green’s function resulting
from the self-energy sum in the upper panels. One notes
a typical form of the Green’s function and can identify at
which frequency ReG changes sign, which corresponds to
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FIG. 8. (Top) Real and imaginary parts of the self-energy at
second, third and fourth order as well as the result up to fourth order
vs real frequency ν, (bottom) Green’s function up to fourth order
vs real frequency ν. Data are for parameters U/t = 3, μ/t = −1.5,
and βt = 5 at k = (π/8, π ). We set �/t = 0.05 in the symbolic
analytic continuation iνn → ν + i�. The AMI results were obtained
with ≈4 × 107 samples per diagram.

the energy ε(k) − Re�k. The Green’s function is essentially
independent of � far away from this boundary. Thus only
self-energies near this boundary, here from ν ≈ 0.5 to 2, need
to be evaluated to correctly represent the Green’s function.

Essential in obtaining these results is managing the diver-
gences of the AMI integrands that arise for evaluation on
the real frequency axis. While analytically these divergences
always have canceling terms, each individual term might
cause numerical overflow that must be managed. To do so,
we use two regulators: an intrinsic scattering rate � for the
analytically continued frequency iνn → ν + i� that provides
a width to the imaginary parts of the Green’s functions; and a
thermal regulator η which enters the bosonic distribution func-
tions in the E → 0 limit. The constraint on these regulators
for numerical correctness is that they be much smaller than
the dominant energy scale, � 	 ν and η 	 kBT . Operating
outside this constraint will typically result in overly smoothed
results, or reduced numerical values. Our calculations are
performed with �/t = 0.05 and η = 10−5, though somewhat
larger values can be used to improve statistical uncertainty
without visible change to the result. In addition to these reg-
ulators, for some diagrams there may exist terms in the AMI
integrand that have no external frequency in the denominator
and only a linear combination of energies. This results in a
large number of spurious poles inside the integration space
of size mD for D dimensions that are not regulated by � nor
by η. One needs only to avoid the direct evaluation of the
integrand at these poles to obtain correct results. To do so it is
essential that the momentum integrals not be performed on a
regular L × L grid. Doing so virtually guarantees evaluation
of the integrand directly on a pole. Instead, sampling the
space via MC methods by choosing random points in the
integration space makes it unlikely to encounter these spurious
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FIG. 9. (Left) Imaginary part of the self-energy on the Matsubara
axis at kAN = (π, 0) for μ = 0, U/t = 3, and βt = 8.33. Results
from DMFT are shown as well as DCA data for 16 and 64-site
clusters. (Right) Spectral function A(kAN , ν ) on the real frequency
axis. The DCA results were obtained via maximum entropy inversion
[16]. The AMI results assume �/t = 0.05. The AMI results were
obtained with ≈ 106 samples per diagram.

poles. In addition, this extends the calculation to be effectively
continuous in momentum space and provides results directly
in the thermodynamic limit.

In a recent work, Vučičević and Ferrero [45] have de-
vised an alternate method of diagram evaluation starting from
Eq. (1) but they first replace the product of bare Green’s
functions with a summation by employing a generalization of
a partial fractions decomposition. In that work, they allude
to a number of obstacles that we do not seem to encounter.
We suspect that the process of breaking the integrand into
partial fractions produces many canceling terms resulting in
an unnecessary inclusion of many removable divergences.
Avoiding this procedure as well as avoiding the use of a
regular L × L grid, as we have done, has allowed us to use
very small regulator in analytic continuation process (�/t ≈
0.05 to 10−4) without particular difficulty. For the chosen pa-
rameter regimes we investigate the dependence of the results
on � and observe that the result has only weak dependence on
� � 0.05t , i.e., � = 0.05t is effectively in the limit of � → 0.

Moving forward, we restrict our calculations to the half-
filled model where we make use of the full power of the GIT
methodology described in Sec. II D. We present results trun-
cated again at 4th order and use the sixth order contribution
to estimate the truncation error. According to the last row of
Table II, we need to evaluate only N (m)

r diagrams for each
order m. This amounts to only evaluating five diagrams in
total, which can be accomplished extremely quickly. We also
provide comparison to established numerical methods DCA
and DDMC [32,40].

We show in the left-hand frame of Fig. 9 the imaginary part
of the self-energy versus Matsubara frequency iνn obtained by
the direct evaluation of the diagrams up to fourth order using
AMI at the antinodal point kAN = (π, 0) for U/t = 3 and
βt = 8.33. The results are in perfect agreement with DCA af-
ter only a few frequencies, (iνn > iν5). This is expected since
larger values of iνn strongly suppress high order contributions,
reducing the truncation error sharply. Comparison to DCA at

Γ X M Γ

-0.6

-0.4

-0.2

0

0.2

Σ(
k,

iν
0)

DDMC
AMI - Re[O2+O4]
AMI - Im[O2+O4]
Re[O2]
Im[O2]
Re[O4]
Im[O4]

U/t=4, βt=2

FIG. 10. Real and imaginary parts of the self-energy at iν0

through high-symmetry cuts in the kx − ky plane for μ = 0, U/t = 4,
and βt = 2. The upper/lower blue squares are the real/imaginary
DDMC results from Ref. [32]. The AMI results were obtained with
≈ 107 samples per diagram.

low frequency shows that the fourth order truncated series
is surprisingly competitive with 16 → 64-site DCA [46]. In
general we expect our truncation error to grow for decreasing
iνn or decreasing temperature, and here the error bars only
reflect statistical uncertainty and do not represent truncation
errors.

The power of AMI becomes apparent in the right-hand
frame of Fig. 9 where we plot the real frequency spectral func-
tion at the antinodal point. Recall that for AMI the analytic
continuation involves only a symbolic replacement of iνn →
ν + i� for some sufficiently small value of �. The resulting
AMI spectral density is shown in red circles. For comparison
we perform the numerical analytic continuation[16] for the
DCA Green’s functions at the antinodal point. Surprisingly we
see that the DCA result after numerical analytic continuation
has the same broadening as determined by AMI directly on
the real-frequency axis. One notes a slight asymmetry in
the AMI result evaluated at μ = 0. This is due to a small
nonzero value of Re�(kF , 0). This truncated expansion is not
particle-conserving and therefore this represents a density that
is very close to, but not equal to, half-filling. Moreover, the
AMI result as ν → 0 may be underestimated due to the energy
and thermal regulators. One would need to maintain � 	
ν and further that � 	 Im�(ν → 0) in order to guarantee
correctness. These considerations have not been addressed in
this simple example.

As a further benchmark, we compare to DDMC results at
half-filling [32]. In Figure 10 we show the real and imaginary
parts of the self-energy at the first Matsubara frequency for
high-symmetry cuts through the Brillouin zone. For discus-
sion purposes we plot both the individual 2nd and 4th order
AMI results as well as their sums. We see that the 2nd order
contribution to the imaginary part of the self-energy (orange
circles) is much larger than the 4th order contributions (purple
crosses). This is not the case for the real part of the self-
energy where the 2nd and 4th order contributions are nearly
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equal, suggesting that the convergent behavior of the real and
imaginary parts of the coefficients need not be the same. In
both cases the sum of these results are surprisingly similar
to the DDMC results and both the real and imaginary parts
have the correct qualitative momentum dependence. Visually
it appears that the real-part is a better approximation. If we
scrutinize the results at the � point where the real part has
values (−0.179 ± 0.002) and (−0.188 ± 0.004) for AMI and
DDMC respectively we find a ≈ 5% discrepancy. Repeating
this for the imaginary part with values (−0.511 ± 0.002)
and (−0.537 ± 0.004) we find again a ≈ 5% discrepancy,
therefore the visual distinction is only a matter of scale, and
we find that the relative truncation error is in practice much
less than our numerical estimate. In each case, it must be true
that the sum of terms of order m � 6 results only in these
small differences. The results are not generally expected to
be this accurate for all parameter choices and indeed at lower
temperatures we find that the deviation increases. This behav-
ior has also been observed in order-by-order expansions from
a diagrammatic treatment of the dual Fermion method [31,32].

IV. CONCLUSION

We have presented a general framework to evaluate Feyn-
man diagrammatic expansions that can be applied to virtually
any expansion with any interaction. Specifically, our method
is applicable to any diagrammatic expansion composed of
the bare Green’s functions with any frequency-independent
two-body interaction.

As proof of concept we presented the application of this
method to the self-energy expansion of the Hubbard model
on a 2D square lattice with nearest neighbor tight-binding
dispersion at and away from half-filling. The resulting dia-
gram groups are provided in Ref. [26] up to sixth order and
these groups are also valid for 1D or 3D systems as well for
the imaginary time representation. As evidence of utility we
provided a comparison of the low order expansion to other
numerical methods and found excellent results when within
the convergent range of the series.

While the procedure is a major advancement in evaluating
diagrammatics on the real frequency axis, it does not address

the factorially growing diagram space, which remains time
consuming to evaluate. Further, it does not address the funda-
mental sign problem inherent in the analytic AMI results and
in many cases the average sign remains small after AMI and
is not always improved by grouping diagrams. Finally, while
AMI allows for the evaluation of any Feynman diagram at any
temperature, it seems that at low temperature the contributions
of higher order terms are larger.

Important features of our method can be summarized as
follows. The Matsubara sums are performed analytically us-
ing AMI [19]. This allows for the symbolic analytic continu-
ation iνn → ν + i0+ without any ill-defined numerical proce-
dure. The full symbolic result of AMI in principle enables us
to exactly (up to machine precision) evaluate Matsubara sums
of each diagram in the expansion at any temperature, even at
the T = 0 limit, which is not accessible in DiagMC methods.
We also determine the pole structure of the diagrams, which
enables us to divide diagrams into groups which contain
nearly canceling pairs. We therefore sample pairs of nearly
canceling diagrams as a whole in Monte Carlo integration
instead of sampling the diagrams one by one, which leads
to a substantial suppression to the sign problem. Further, in
the special case when there is particle-hole symmetry the
cancellations are exact, while other diagrams within each
group are exactly equal. Moreover, despite the factorially
growing cost, the AMI result and diagram groups can be easily
stored, i.e., one needs to solve the problem up to the momenta
integrations only once.
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