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Majorana-based quantum computation seeks to encode information nonlocally in pairs of Majorana zero
modes, thereby isolating qubit states from a local noisy environment. In addition to long coherence times,
the attractiveness of Majorana-based quantum computing relies on achieving topologically protected Clifford
gates from braiding operations. Recent works have conjectured that mean-field BCS calculations may fail to
account for nonuniversal corrections to the Majorana braiding operations. Such errors would be detrimental
to Majorana-based topological quantum computing schemes. In this work, we develop a particle-number-
conserving approach for measurement-based topological quantum computing and investigate the effect of
quantum phase fluctuations. We demonstrate that braiding transformations are indeed topologically protected
in charge-protected Majorana-based quantum computing schemes.

DOLI: 10.1103/PhysRevB.101.125108

I. INTRODUCTION

Topological quantum computation is predicated on the idea
that information stored nonlocally in pairs of non-Abelian
anyons or topological defects is robust to local noise sources
[1,2]. Braiding the anyons or defects implements a nontrivial
operation on the quantum state, while preserving the topo-
logical protection of the encoded information. Topological
protection is generally defined as exponentially suppressed
scaling of error rates in parameter ratios of the system that
can be made large.

At present, the most promising approach towards realizing
topological quantum computing utilizes Majorana zero modes
(MZMs), non-Abelian topological defects of a superconduc-
tor [3—6]. Each MZM is described by a Majorana operator,
V= yj , satisfying anticommutation relations

Vi, v} =28k. (1

Majorana-based qubits encode quantum information in the
fermion parity of pairs of MZMs, corresponding to the opera-
tor iy;yy. Braiding MZMs j and k corresponds to the operator
[7.8]

RUK — 1+ yvi '

V2

Braiding, combined with a two-qubit entangling measure-
ment, is sufficient to implement all Clifford operations. Sup-
plementing braiding and measurement with a non-Clifford
gate (e.g., using magic state distillation, which also bene-
fits from protected Clifford gates) enables universal quan-
tum computation [1,2]. The attractiveness of Majorana-based
quantum computing is equally dependent on achieving long
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coherence times for the idle qubit, and on achieving topologi-
cally protected Clifford operations.

There has been impressive experimental progress in tuning
semiconductor-superconductor nanowires into a topological
superconducting phase hosting MZMs at either end point
[9-20]. The continued experimental improvement of these
systems has led to theoretical interest in designing Majorana-
based qubits out of such heterostructures [21-25]. In particu-
lar, several works in the last few years have proposed charge-
protected Majorana-based qubits [26-28]. These qubits have
a large charging energy to suppress extrinsic quasiparticle
poisoning ( i.e., stochastic electron tunneling into a Majo-
rana island that changes the topological state of the sys-
tem). Additionally, these qubits are operated according to a
measurement-based braiding protocol [26—33] to circumvent
the difficulty of physically moving MZMs in one-dimensional
(1D) wire networks [34,35] and the susceptibility of anyon
braiding to problematic diabatic errors [36].

Charge-protected Majorana-based qubits are operated in
the Coulomb-blockaded regime, for which quantum phase
fluctuations of the superconducting order parameter are im-
portant. The majority of previous studies of Majorana systems
have used mean-field BCS models, which do not take into
account such fluctuations. A natural question to consider is the
extent to which mean-field results apply to a physical system
with particle-number conservation [37—42]. Field-theoretic
bosonization has emerged as a useful tool for comparing mean
field and number-conserving predictions for 1D topologi-
cal superconductors [43-46]. Previous works have demon-
strated that Majorana nanowires have a topologically pro-
tected ground-state degeneracy even in the absence of long-
range superconducting order [44], examined the fractional
Josephson effect in Coulomb-blockaded Majorana-based
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devices [45], calculated the charge distribution associated
with the topological state, and thus the susceptibility of
Majorana-based qubits to noise [46]. These studies have reaf-
firmed the topological protection of an idle charge-protected
Majorana-based qubit.

Majorana-based quantum computation additionally relies
on MZM braiding to implement topologically protected Clif-
ford gates. Recent studies have questioned whether num-
ber conservation introduces nonuniversal corrections to the
Majorana braiding transformations. References [41,42] used
number projected Bogoliubov—de Gennes theory for 2D p +
ip superconductors to argue that Cooper pair coupling to
local observables may affect MZM braiding in 2D p + ip
superconductors. The potential braiding phase errors raised
by Refs. [41,42] would be detrimental to the field of
Majorana-based quantum computing and thus warrant serious
investigation.

In this work, we extend the bosonized formalism of
Refs. [44-46] to study measurement-based braiding for
charge-protected Majorana-based qubits. In particular, we
examine whether the MZM parity measurements proposed
in Ref. [26] are susceptible to nonuniversal corrections from
quantum fluctuations of the superconducting phase, and the
implications for measurement-based braiding. We find the
following:

(1) In the absence of charging energy, the left/right end
of the proximitized wire segment j hosts a charged fermionic
zero mode I";; /z. The neutral product of two such operators
iF]TJFk,K, J, K € {L/R}, is closely related to the MZM parity.

(2) The quantum dot based tunneling measurement pro-
posed in Ref. [26] couples to the MZM parity. Corrections
to this measurement from number conservation occur outside
of the ground-state subspace and are therefore exponentially
suppressed in the charge gap over the temperature. Spatial
quantum phase fluctuations in the superconductor reduce the
measurement visibility, but do not otherwise affect projective
parity measurements.

(3) The quantum dot-based tunneling measurement can be
used in a measurement-based braiding protocol. As quantum
fluctuations in the superconductor do not preclude projective
measurements, the operation implemented by this protocol
simulates a topologically protected braiding transformation.

The remainder of this paper is organized as follows.
In Sec. II, we describe our model of the charge-protected
qubit displayed in Fig. 1. We then derive the zero modes

T2 L

at each end of the proximitized segments and demonstrate
their anticommutation as well as other key properties, see
Sec. III. We identify the MZM parity and demonstrate that
it is insensitive to all local operators, up to exponentially
suppressed terms. In Sec. IV, we then consider the quantum
dot based tunneling measurement depicted in Fig. 1. We show
that such a measurement couples to the MZM parity. Finally,
in Sec. V we argue that the measurement-based braiding
protocol outlined in Ref. [26] is topologically protected. We
conclude by identifying the role number conservation plays
throughout our analysis and discussing the connection to
previous works in Secs. VI and VII. We relegate technical
details of the calculations to the Appendixes.

II. SETUP

We consider the charge-protected Majorana-based qubit
depicted in Fig. 1. The full structure of the qubit will only
be important in Sec. V when we consider measurement-based
braiding (which requires a minimum of six MZMs). We
highlight the relevant physics below.

A spinless semiconducting nanowire (orange) is prox-
imitized by an s-wave superconductor (dark blue) in three
segments. Each segment is connected to a superconducting
backbone, which is assumed to have many channels so that
there is no relative charging energy between different regions.
A tunnel barrier separates the end of each proximitized region
from a quantum dot or lead that can be used for a tunnel-
ing measurement; see Sec. IV. The device in Fig. 1 hosts
six MZMs (red dots), one at each end of the proximitized
nanowires. We label the proximitized wires by j € {1, 2, 3}
and left/right end of the wires by J € {L/R}. Below, we
refer to the MZM at the Jth end of the jth wire as y; .
The qubit forms a floating (nongrounded) superconducting
island with four degenerate (up to exponentially suppressed
corrections that we neglect here) ground states. Two of these
states constitute the computational basis, while the remain-
ing two are ancilla degrees of freedom used to facilitate
measurement-based braiding; see Sec. V. Our analysis of the
device shown in Fig. 1 generalizes straightforwardly to the
nonlinear geometries proposed in Ref. [26].

We study this device using a number-conserving bosonized
formalism, previously used in Refs. [44—47]. We model the
semiconductor with spinless electrons defined by

I,Z/Sm(-x) ~ eikpxeiQ(x)+i¢(x) + e*ikpxeiO(x)fi(ﬁ(x). (3)
T3 R

L2 R T3, L

H supercond. semicond. @ MzM n tunnel barrier O quantum dot

FIG. 1. Basic qubit layout proposed in Ref. [26]. A semiconductor (orange) is proximitized by a superconductor (blue) in three spatial
regions, x;; < x < x;g for j € {1,2, 3} and L/R indicating left/right. At the end of each proximitized segment, there is a bare semiconductor
region of length £, terminated by a tunnel barrier. Each bare semiconductor region hosts a charged fermionic zero mode I'; ;, where the neutral
product il"j.', ;i x corresponds to the MZM parity iy, ;i k. The regions between two proximitized wires hosts a quantum dot. To perform
a measurement, the barriers are lowered to permit tunneling between the quantum dot and the bare semiconducting regions. Reference [26]
discusses how the same physics can be used to measure any pair of MZMs using coherent links (floating topological superconductors in a fixed
fermion parity state). Our analysis generalizes straightforwardly to the nonlinear qubit structures proposed in Ref. [26].
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In the above notation, 6 and ¢ are bosonic operators whose
commutator

[¢(x), 0] = irO(x —y) “

ensures that electron operators at distinct points anticommute.
The charge density is related to ¢ by p(x) = 9,¢(x)/m, while
the operator ¢ adds a charge to the semiconductor at posi-
tion x. In the above, kr is the semiconductor Fermi momentum
and ©(x) is the Heaviside function.

The superconductor carries both charge (p) and spin (o)
fields

Ve () ~ ¢85 OB+, (51460 (D

+ e—ik}”xeﬁ(é‘p(m—m (X)+010s ()5 (JC)])7 5)

and similarly has commutation relations

[92.(x), O (V)] = i 8, 0 Ox — y), (6)

where A, A" € {p, o}. The charge density in the superconduc-
tor is defined by py.(x) = \/zaxqbp(x)/n and the current is

/20,6, /7. Thus the operator /2 adds a charge to the
superconductor at position x. We denote the Fermi momentum
in the superconductor by k;p ). The number operator for the
combined semiconductor and superconductor is

N :Nsm +NSC1 (7)

1 3
Nom = p Z[¢(xj,R +6) — oL — O], ®)

j=1

Ny = g[%%x) — ¢p(x1,0)]- ©))

We model the semiconductor as a Luttinger liquid and
the superconductor as a Luther-Emery liquid [48]. Due
to the spin gap in the superconductor, one can integrate
out spin degrees of freedom in the superconductor and
obtain an effective pair tunneling Hamiltonian across the
semiconductor/superconductor interface [44]. Thus, the ef-
fective low-energy Hamiltonian has only charge degrees of
freedom, and can be written as

x/R-&-Z
Z / dx(K@:07 + K 0:9P),  (10)

X3,

Hsc=”—p " dxlK, 06,7 + K09, (D)

2

X1,L

2mZ/ dx cos(+v/20, — 20). (12)

In the above, v and K are the Fermi velocity and Luttinger
liquid parameter for the semiconductor, while v, and K|, are
for the superconductor. The term Hp describes pair tunneling
between the semiconductor and superconductor. This term is
a relevant perturbation that flows to strong coupling in the
infrared limit and opens up a topological superconducting gap
Ap. [44] As Hy,,, Hg, and Hp all commute with the number
operator N, our model is explicitly number conserving.

When the semiconductor and superconductor are de-
coupled from each other, for instance in the region
XjR <X < Xj41,., the semiconductor and superconductor
fields introduced above are the natural degrees of freedom
to describe the system. In the jth proximitized wire, the
pairing term in Eq. (12) strongly couples the semiconductor
and superconductor. In this case, the convenient fields to use
are

1
0_(x) = EG,)(X) —0(x), 13)
1/ 1
04 (x) = 5(3%(}6) +9(X)>, (14)

and their respective dual fields
¢_(x) = L(V2¢,(x) — p(x)), (15)
¢+ (x) = V2¢,(x) + P(x). (16)

Note that the total charge of a proximitized wire can be written
in terms of ¢

Xj.R

Ni = l dx 9,(v2¢, + ¢) (17)

. f dx o (18)

]

and commutes with 6_. Henceforth, we will derive an effec-
tive low-energy theory for the system. At energies ¢ < Ap,
the field 6_ (x) for each proximitized wire is pinned and takes
values 6_ = 0 or 7. The even and odd superpositions of these
minima,

1
)= 510 =

are eigenstates of the relative fermion parity (—1)" *, where

0); % |6_ = 7)), (19)

. 1 [¥ir
N == f dx d.¢_. (20)
T Jx I

L

When the total charge of the qubit is fixed, say, to be even,
there are four such states: |£);|%)2|+)3, and |£)1|F)2]—)3
where the subscript here refers to a particular proximitized
segment in Fig. 1. References [44,46] argued that these states
are indistinguishable by all local operators, have an exponen-
tially suppressed degeneracy splitting, and are predicted to
have exceptionally long coherence times. Thus, the topologi-
cal information is completely encoded in 6_. We now extend
this analysis to consider qubit measurement, with the aim
of understanding whether topological protection extends to
Clifford gates implemented by measurement-based braiding
of MZMs.

We introduce two new elements: (1) bare semiconducting
regions at the end of each proximitized wire, terminated by a
tunneling barrier of potential Vg

3
Hp = Vg Z{COS[2¢(xj,L — O]+ cos[2¢(x;r + O} (21)
j=1
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and (2) a Hamiltonian Hc describing the charging of the
island,

He = Ec(N — N,)*, (22)

where N is defined by Eq. (7) and N, is a dimensionless gate
voltage. When operated at a Coulomb valley, i.e., N, € Z,
adding or removing an electron from the island costs an en-
ergy Ec. In the limit E¢ is much larger than the temperature T,
single electron processes are exponentially suppressed. This is
the sense in which the qubit is “charge protected.” Henceforth,
we assume that the level spacings for the superconductor §y.
and the semiconductor §, are negligibly small. The latter
applies to a sufficiently long wire, v/Lyie < T, as well as
when there is a strong coupling between the superconductor
and semiconductor which further suppresses &, due to small
8sc [49].

In the remainder of the paper, we study the weak tunneling
limit for the qubit-dot coupling and assume that the barrier
potential Vp is sufficiently large that ¢(x; /) are pinned to
mj,L/RT (Mj1/R € 7). At low energies, the pairing amplitude
Ap pins the difference field 6_ to njm for x;; <x < xjp
(nj € Z). Finally, we assume that the superconductlng field 6,
is spatially homogeneous throughout the superconductor due
to a large number of transverse channels (i.e., K, — 00). This
constraint will be relaxed in Sec. VI.

Given the above assumptions and 7" < min(Vg, Ap), one
can derive the low-energy theory by imposing mixed bound-
ary conditions for the bare semiconducting regions at the ends
of each proximitized segment. We show below that this results
in a fermionic zero mode localized in each of these regions.

III. ZERO MODE SOLUTION

In this section, we show that the bare semiconductor re-
gion at the end of a proximitized wire localizes a fermionic
zero mode. This zero mode arises from the mixed boundary
conditions in the segment—-normal boundary conditions at one
end [Ysm g = Ysm. corresponding to ¢ field being pinned by
the barrier Hamiltonian in Eq. (21)], and Andreev boundary
conditions at the opposite end [Ysm g = 1//§m 1. corresponding
to 6_ being pinned by the pairing term in Eq. (12)] [50].

The fields in the bare semiconductor region to the Jth
side of the jth proximitized segment admit normal-mode
expansions

i 2% + 112
¢]’J(y):¢?’1+lﬁz COS([ + ]2()

Bl Ut TR A S
kI O = i)

(23)

(2 + 1
00 =69, + [Zsmf/_]”)(b*wk) (24)

The bosonic operators b; have canonical commutation rela-
tions [by, b,i,] = 0.1, while the zero modes satisfy

[¢]Jv ek,K] =

where / = L = —1 and J = R = +1. For simplicity, we have
used the shifted coordinates y = x — x;;, which range be-
tween [—£, 0] for / = L and [0, £] for / = R. One can show

in®G — k+J/2), (25)

that the expansions in Egs. (23) and (24) satisfy the commu-
tator of Eq. (4); see Appendix A for details.
Equations (23) and (24) diagonalize Hpyy:

v Je
Hiee = J 5 f dy(K(,0,,)* + K '(3,0,,)*} (26)
0

TV — 1 : 1
- k+ —) (ku + —>. (27)
1 g( 2 )k 2

The quasiparticle excitations in this segment have an energy
gap of mv/€. The bosonic zero modes

0,(x;.7)

7 nj,
ensure that ¢; ;(y) and 6; ;(y) satisfy the boundary conditions
imposed Hp and Hp. Note that 7n; is exactly the difference
field 6_ for wire j defined in Eq. (13), which encodes the
topological state of the jth wire.

The bare semiconductor regions localize a zero mode of
the full many-body spectrum of Hy,e I'j 7, which when pro-
jected into the ground state subspace with no excited bosons
((b',ibk) = 0), I'; s takes the simple form

@0, =mm;y, 00, = (28)

r;, =%, (29)

Equation (29) satisfies fermionic anticommutation relations,
{T'js, Trx} = 288, k- The derivation and ground-state pro-
jection of T"; ; closely follows that in Ref. [51], which con-
sidered a similar problem of a quantum Hall edge subject to
mixed boundary conditions. Their result was further extended
to the number-conserving case by Ref. [47]. For this reason,
we relegate further details to Appendix A.

In addition to being a zero mode of Hygee, I'j; also com-
mutes with Hgy, + Hy + Hp. However, I';; has a nontriv-
ial commutator with the number operator N. Working from
Eq. (29),

[N, Tl = %w(xj,k) — (x;0). 07,0iT;; = —T;,. (30)
In the above, we used the relation [A, f(B)] = [A, B]f'(B)
when A and B both commute with their commutator. It follows
that I'; ; acquires nontrivial time dependence from Hc:

dl"j,j(t)

gy = He Ty @) €1y}

= iEc[(N = N, T4 (1)] (32)
= —iEc(2N — 2N, + DI ;(1). (33)
In imaginary time, the evolution of I'; ;(7) is
T (1) = e Fe @Vt (), (34)
Similar logic shows
F;’J(‘L’) — eEC(2N72Ng71)rl—~;,J(0). (35)

When the qubit is tuned to a Coulomb valley, e.g., N, =0
and (N) = 0, we have

(T}, (x)Tik(12))c

where the averaging is taken over charging Hamiltonian; see
Appendix B.

— ¢ Eclu—mnl (F;J(O)Fk,K(O))’ (36)
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To evaluate the equal time correlator, we first note that
the zero mode operators satisfy fermionic anticommutation
relations

{F;p Crx} = 268107 k- 37

The neutral product iF;JFk,K is Hermitian for (j, J) # (k, K)
and can be written as

iF}JFk,K — T M) p=im (et k) (38)
There is no 6, dependence in Eq. (38) because we have taken
the limit K, — oo. We will return to this point at the end of
Sec. VL.

We note several important features of Eq. (38), all of which
are discussed in more detail in Appendix A. (1) The operators
n; /k, Mk j/K are integer valued, thus the eigenvalues of
zF Tk k are 1. (2) zF ;Tx.x acts on the topologically pro-
tected parity elgenstates |j:) of Eq. (19) exactly as expected
for bilinears of the Majorana operators y reviewed in the
introduction. (3) i I‘JI ;Tk.xk commutes with all local operators.
Points (1)—-(3) imply that in the limit K, — oo, iF; ; Tk x can
be identified with the MZM parity. To emphasize this point,
throughout the remainder of the paper we will write

it} Tik = iVj¥ik (39)

where iy;;yjrlE); = £|£);. The correlation function

Eq. (36) thus reduces to
(L.T],(x)Tkk (1)) = e M 2ly; k. (40)

Equations (38)—(40) establish a correspondence between
MZM parity operators in number-conserving and mean-field
approaches (see also Sec. VI). While fermion operators couple
to both ¢ and 6_ degrees of freedom, the parity operator
zF ;Ukx 1s neutral and commutes with all local operators.
Thus degenerate ground states of the system (encoded in
terms of MZM parity operators) cannot be distinguished by
any local operator.

IV. TUNNELING MEASUREMENT

‘We now review the tunneling measurement of MZM parity.
The basic idea is depicted in Fig. 1. Two bare semiconductor
regions are separated by tunnel barriers from an intermediate
quantum dot, e.g., between x; g and x3 ;. The measurement
protocol involves lowering tunneling barriers and increasing
the amplitude for virtual tunneling of an electron between
the quantum dot and Majorana island (we assume that the
charging energy is large so that there is still a charge gap in the
system suppressing real single-electron tunneling processes).
The relevant charge fluctuation processes involve an electron
tunneling in and out of the Majorana island either through the
same MZM, or in through one and out through the other. As a
result, one finds a MZM parity-dependent energy shift of the
combined qubit-quantum dot system, which can be used to
infer the parity of the participating MZM pair. For simplicity,
we focus on a parity measurement of two adjacent MZMs; the
measurement can be generalized to other MZM pairs with the
use of coherent links (floating topological superconducting
islands in a fixed parity state) or by modifying the geometry
of the qubit, as discussed at length in Ref. [26].

Following the above outlined idea, we now derive the
measurement-induced energy shift using our particle-number-
conserving formalism. The dot-Majorana island tunneling
Hamiltonian can be written as

H, = et 0 (xj 7 +J0) + ti g ¥ (i x + K€) + Hee.,
41)

where c¢; is the annihilation operator for the quantum dot
and ¢;; is the tunneling amplitude for an electron to tun-
nel into the semiconductor at v (x;; + J£). The semicon-
ductor electrons at the boundaries can be expanded as
Y(xjs+JE) = FLJ/\/Z"‘ ..., so that for sufficiently low
temperatures (where the energy scale is set by the level
spacing of the bare semiconductor region) H; becomes

H, =t;;ciT;; + texei Tk + He. (42)

Note that unlike the previous works [26,52,53], Eq. (42)
uses the number-conserving expression for the fermionic zero
mode I’y g, rather than writing H; in terms of Majorana
operators Y k.

Odd orders in H, necessarily change the charge of the
island and thus are exponentially suppressed by a large
charge gap Ec > T (for N, = 0). Using imaginary-time path-
integral formalism, one can derive the second-order tunneling
action to find

1 [# . .
St(z) = 5'/ dtldfz(tjﬂ]C;(f])Fj’j(fl) +tk,KC;(Tl)Fk,K(7:1)
0

+H.e)(t),5¢h (2T 5 (72) + ti kel (T2)Ti k (72)
+H.c.). 43)

Averaging over the charging energy, we have

(s?),. = /dtl/ doo{(tjs (TeT ()T (22))e

+ |tk |* (TrFk,K(tl)Fk’K(Q))C

gt (TeD s (TOT] g (12))e

+ 151k (T Te g (0T (22)) 0 )el (Tr)ea(r2)

+ (1 < )} (44)

1 B
=—5 / dudu{e M2 (2 + ok P
0

+ZIm[l;ﬂk,K]iJ/j,JVk,K)CZ}(Tl )ea(r2) + (11 < 1)),

(45)

where in the last equality we have used Eq. (36). In the limit
T <« Ec,wecantake B = 1/T — o0 so that

5 ltj s> + ek | + 2Imle} ik 1iv)a vk
Ec

(5:7)c =

B
x/ dt i ()eq(t) + O(EZ?); (46)

0

see Appendix C for details. The effective tunneling Hamilto-
nian is thus

ltis 1> + ek + 2Im[z} teklivjo Ve
C

Her = — Ee yCa- (47)
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Higher orders in perturbation theory modify the parity-
dependent energy splitting, but do not change the structure of
Eq. (47). Thus, our number-conserving formalism has recov-
ered the essential result from Ref. [26] that tunneling results
in a parity-dependent energy shift of the joint state of the
quantum dot and the qubit. The MZM parity can then be read
out by probing the quantum dot ground state, e.g., through
spectroscopy, charge sensing, or differential capacitance [26].

It is worth noting that noisy measurement or insufficient
integration time could result in a partial projection of the
MZM parity state. Errors in the braiding phase implemented
with a measurement-based protocol, reviewed below, will
be bounded from below by measurement errors. Therefore,
topological protection is only achievable provided measure-
ment errors are sufficiently suppressed. Measurement errors
warrant further consideration, but are independent of number-
conserving effects and are thus beyond the scope of the current
analysis.

V. IMPLICATIONS FOR BRAIDING

The motivating question for this paper is whether num-
ber conservation in a topological superconductor introduces
nonuniversal corrections to the MZM braiding phase. We
argue this is not the case in the context of measurement-based
braiding.

Measurement-based braiding replaces physically moving
MZMs with a sequence of projective parity measurements
[29,30]. This protocol utilizes the ancilla Hilbert space pro-
vided by encoding a qubit in six, rather than four, MZMs.
Mathematically, a measurement projects the MZM pair iy;yx
into a definite parity state. The even and odd parity projectors
are given by

1 £iyjv
—

Recall that braiding MZMs j and k corresponds to the oper-
ator RV given in Eq. (2). Let us encode the qubit state in
MZMs h, i, j, and k, while a and b correspond to the ancilla
MZM pair. Then, RV¥ can be related to a sequence of even
parity projections:

ny" = (48)

(ab) yy(aj) y(ak) yp(ab) (jk) 1y (ab)
n@n@neone o RO (49)

The above follows straightforwardly from Eq. (1). Note that
each projector changes which four MZMs encode the qubit
state, but does not collapse the encoded information.

While it is not in general possible to guarantee the outcome
of a measurement (e.g., whether IT; or TI_ is applied),
this complication can be circumvented by employing “forced
measurement” [29]. If the wrong measurement outcome is
obtained, simply repeat the previous parity measurement in
the sequence, then reattempt the desired measurement. This
repeat-until-success protocol does not change the relative
phase implemented by the sequence, and on average requires
two repeated measurements. Reference [31] considered how
forced measurement may be circumvented by appropriately
modifying the software tracking the measurement outcomes,
while Ref. [36] investigated the tradeoff between forced
measurement and adiabatically tuning MZM couplings.

Reference [32] further investigated how to minimize the num-
ber of necessary MZM measurements for Clifford gates.

The previous section demonstrated that number conserva-
tion only affects the tunneling measurement of MZM parity
at energies on the order of O(E¢), and thus at low tem-
peratures T < E¢ results in exponentially suppressed cor-
rections O(e~£¢/T). Therefore, the underlying arguments of
measurement-based braiding are unaltered by the number-
conserving analysis of this paper. Essentially, measurement-
based braiding relies on the ability to project a pair of MZMs
to the desired parity eigenstate. Errors in this protocol arise
from residual hybridization of MZMs. Generally, MZM hy-
bridization is exponentially suppressed in the energy gap over
the temperature, and in the distance separating the MZMs
over the correlation length of the topological superconductor.
When this is the case, the resulting braiding phase errors
in a measurement-only protocol are similarly small and the
protocol is topologically protected.

VI. COMPARISON TO PREVIOUS RESULTS

We now discuss and compare our results with the previous
works on this subject [26,47,52-56]. The mean-field equiva-
lent of our bosonized analysis is to suppress superconducting
phase fluctuations by replacing the field ﬁep with a scalar
quantity . In this case, the pairing Hamiltonian becomes

Ap [Fix
HYF = Xj: > /x ) dx cos(20 — ®), (50)

and no longer commutes with the number operator N. Equa-
tion (29) is modified to

F?A}: - ei(¢/2)e—iﬂ(nj+mjj)’ (51)

where n;, m;; are both integer-valued operators. When
o =0, F%F is Hermitian and commutes with all bulk opera-
tors, therefore it can be identified with the Majorana operator
;. as established in Refs. [44,51,55].

For Coulomb-blockaded Majorana islands, previous works
[26,52,53] have used a phenomenological form of the Majo-
rana tunneling Hamiltonian,

H =ichye™®? + He., (52)

where & is the fluctuating superconducting phase that satisfies
the commutation relation [®, N] = 2i with N being the total
charge of the island. By comparing with Eqs. (28) and (42),
one may notice that e/®/? is similar to the dependence on
€%/¥2 in T'. However, 6, is dual to N rather than N = N +
Ngm, 1.e., this operator adds a charge to the superconductor
in contrast to a total charge between the superconductor
and semiconductor. Thus, Majorana tunneling processes in
general act on both topological and nontopological degrees of
freedom. However, as we show, above parities FjT ;Uk,x couple
only to topological degrees of freedom [up to exponentially
small corrections O(e~Ec/T)].

The differences between I';; and F?’IJF connect naturally
to the concerns raised by Refs. [41,42]. In their case, the
number-conserving version of the Majorana operator included
a Cooper pair in its definition, and thus seems reminiscent of

the dependence on e/ *is)/ Y2inT ;,7- However, their concern
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that the Cooper pair would introduce nonuniversal corrections
to the braiding phase does not occur in our scenario. Indeed,
by neglecting spatial fluctuations in 6, (and taking the limit
K, — 00), one can show that the 8, dependence drops out of
the neutral product F;’ ;Tk.x. Temporal fluctuations in 6, do
not modify the tunneling measurement, as the charging energy
effectively sets the times equal in S,(z), so that the measurement
only couples to the MZM parity. Thus, for temperatures 7 <
E¢, the tunneling-based parity measurement is not affected by
imposing number conservation.

One might worry that our conclusions would change if
we keep K, finite so that there are spatial fluctuations in 6,,.
In Appendix D, we argue that for K, finite, the correlation
function in Eq. (36) becomes

(T.T} (T4 (12)

_ efEc\nﬂz\67(1/4><|9p(xu)—9p<xk,K)|2>yj,Jyk,K’ (53)

which in turn modifies the effective tunneling Hamiltonian to
be

2 2
tigl”+ ek
g ekl

Hefr = d
Ec d

> 2Ime} ik 1ivja vk §

L o= U, (51 =0, (e 2 cheq.
C

(54)

The factor e~(1/HWr()=0,F) < | saturates the bound
when K, — 0o, and otherwise reduces the measurement
visibility (decays algebraically) when K, remains finite (the
exact K, dependence is sensitive to which measurement is
being performed); see Eq. (D12). Thus, our results indicate
that spatial quantum phase fluctuations in the superconductor
reduce the measurement visibility, in addition to affecting the
degeneracy splitting of the qubit states as reported earlier in
Ref. [44]. This reduction in the measurement visibility may be
particularly important for two-qubit measurements, for which
the gap separating the ground state and first excited state in
a fixed parity sector is reduced from O(E¢) for a single-
qubit measurement to O(t2/E¢) [26]. For the measurements
proposed in Ref. [26], reduced visibility requires a longer
integration time to achieve the same measurement accuracy,
and can become problematic if the integration time becomes
comparable to the qubit coherence times.

VII. CONCLUSIONS

In this paper, we employed a number-conserving bosonized
formalism to study 1D topological superconductors formed
from semiconductor-superconductor heterostructures. We
demonstrated the presence of fermionic zero modes localized
to the ends of a proximitized nanowire, and related these
zero modes to the MZM parity operator. We carefully con-
sidered the effect of tunnel coupling between the proxim-
itized nanowire and an adjacent quantum dot, and showed
that the combined system exhibits a parity-dependent energy
shift independent of the topological state of the rest of the
qubit, up to exponentially suppressed corrections from higher
energy processes. Finally, we showed that number-conserving
corrections do not affect projective parity measurements and,

as a result, measurement-based braiding operations are topo-
logically protected.

Our findings contrast the conjecture by Refs. [41,42] that
number conservation could introduce nonuniversal correc-
tions to the MZM braiding phase in a topological super-
conductor. The critical step in our argument is that while
the form of the fermionic zero mode I';;/z localized to
the left/right end of proximitized wire j is modified in our
number-conserving formalism as compared to a mean-field
analysis, the relevant quantity il";’ ;T k. can still be identified
with the mean-field MZM parity. Thus we affirm the potential
of Majorana-based qubits to achieve topologically protected
Clifford gates through braiding.

Previous studies have investigated the effect of quantum
fluctuations in the superconductor on the MZM hybridization
energy [44]. Here, we have extended this analysis to the
tunneling-based MZM parity measurement and have shown
that spatial fluctuations can reduce the measurement visibility,
in addition to the previously identified effects.

Understanding how different noise sources affect MZM
parity measurements is an interesting open question. The
bosonized particle-number formalism utilized here provides
a well-developed framework for investigating these effects.
Perturbation theory, for instance in gate voltage fluctuations
coupling to density, can be straightforwardly applied to un-
derstand how this noise further reduces measurement visibil-
ity. Additionally, the analysis could be extended to translate
reduced visibility into fidelity estimates for measurement-
based braiding by specifying the readout method (e.g., charge
sensing or differential capacitance). As experimental progress
in tuning semiconductor-superconductor nanowires into the
topological phase continues to improve [6], such questions
become of increasing practical importance.
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APPENDIX A: ZERO-MODE SOLUTIONS

The general normal-mode expansions for a Luttinger liquid
are [57]

it K [Clp] emiPalpl/?
p) =¢" —— =) S+ by,
P70 p

(A1)
in €|p e_ipx_“‘pl/z .

O(x) =0+ Y5 ——— b —b_y). (A2)
VK =V 2 pl

where a is the short-distance cutoff. For the bare semicon-
ductor segment residing at the Jth side of the j proximitized
wire, we write the fields as ¢;; and 6;;, and impose bound-
ary conditions 6;;(0) = 9]91 and ¢;;(J¢) = q)?J. This sets

125108-7



KNAPP, VAYRYNEN, AND LUTCHYN

PHYSICAL REVIEW B 101, 125108 (2020)

b,=—b_,and p =m(k + %)/Z in the above expansions, resulting in Egs. (23) and (24). Their commutator is given by

[0 (), 0,51 = [¢9,.67,]

—i4 Z
= [¢7,.67,] - i2 Z

k=0

= [99.60,] — i3 lsen(x + ) — sen(x — ).

where Eq. (A5) follows from the identity

i sin (2k+1x) =«

T = ngn(x). (A6)
k=0
WhenJ =L, x,y < 0and
7T
—i[sgn(x +y) —sgn(x — y)]

which implies [¢j IR L] =0.WhenJ =R, x,y > 0and
.1
—zz[sgn(x +y) —sgn(x — y)]

g
= _iE[l —sgn(x —y)] = —in®(y —x). (A8)
Therefore, for the right segment, [¢;{ . 92 #] = i, in order to
satisfy Eq. (4). Note that the bosonic operators by for different
bare semiconductor segments commute, thus Eq. (4) implies

that the zero modes more generally satisfy

[¢?J’ 0] = in®G —k+J/2). (A9)

1. Derivation of I'; ;

In this section, we derive a charge-1 fermionic zero mode
of Hpare- Our derivation closely follows that of Refs. [50,51].

From the normal-mode expansions in Egs. (23) and (24)
we split the fields ¢;; and 6;; into zero mode and higher
harmonic pieces:

G =0, + > ¢* ), (A10)
k=0
oo
0;.0(x) =67, + 0" x). (A11)
k=0
It is convenient to introduce fields ¢, /; defined by
(o]
O (x) =09, F 40, + Y [KO* () F¢* ()] (A12)
k=0
[0}
=00 F Y ¢huo), (A13)
k=0
which satisfy
[Hyare (pr/l(x)] = :Fivax(pr/l(x)' (Al14)

> cos (12K + 11%) sin (12k + 113) (A3)
2k +1
n(x+y) : rr(x y)
sin ([2k + 11552) — sin ([2k + 115572) (Ad)
2k +1
(AS5)

(

The Heisenberg equation therefore implies that ¢,; are chiral:

0 0r/1 = i[Hpare, 0r/1] = £V0:0,1. (A1S5)

When K = 1 the right-/left-moving electrons can be written
in terms of ¢, as

O)Fo(x) _ ipr I(X)
~ ¢ llm /!
I//r/l(x) ] e

(A16)

(When K # 1, e mixes v, and v;.)

We can construct a zero mode of the full many-body spec-
trum by considering superpositions of et In particular,
Eq. (A14) implies

It
|:Hbare,/ dxelw’/’(x):| = Fiv(e¥ VIO — @y (A17)
0

= Fiv(e?s — eFP),  (AI8)

where in the last line we have used the boundary conditions
¢*(J£) = 0 and #*(0) = 0. Similarly,

Je
[Hbm, / dxei“”/’(x)i| = Fiv(e U — FPl).  (A19)
0
Therefore, we have that the superposition
J [t . o
L= —/ dx{e + e 201
+ eizej? =209, el + eizej? ; efigol} (A20)
is a zero mode of Hyype:
[Hba.rea 1-‘j,J] =0. (A21)

When K =1, the dependence on 92 ; and ¢2 ; can be

written as 2}/ = ¥, (0)¢;(0) (Andreev boundary conditions)
and e = 1//;r (JO)Y,(JE) (normal boundary conditions).
In this case I'j ; can be expressed in terms of left- and right-
moving electrons as

J [ ;
lim 0y =5 /0 dx (Y, () + (U OV O (x)

+ [ 0) Y (0¥, (T, (T, (x)
+ ¥, (0)y1 (0] ¥, (x)).

Equation (A22) makes it especially apparent that I'; ; is both
charge-1 and fermionic. This also holds in the case K # 1,
which becomes more obvious after taking the ground-state
projection.

(A22)
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To project I';; to the ground-state subspace, we first
rewrite Eq. (A20) using Eq. (A13):

L= el"f’/—wﬁb/ Jdx —le iYi9 4 oi2i% 4 He. b (A23)
' 12
0

The integrand only depends on the operators by, bl—all
zero-mode dependence has been pulled in front. Therefore,
after projecting to the ground-state subspace, the integrand
contributes an unimportant constant [S1] and we arrive at the
expression used throughout the main text,

T, ==, (A24)

2. Fermionic anticommutation
Fermionic anticommutation of the zero modes I';; fol-

lows straightforwardly from Eq. (25), I“j ,Tjs=1, and
AP = eBeteldBl when [A, [A, B]] = [B, [A, B]] = 0:

F;lrk,[( = e_i(g/[')-l+i¢?ll eielgk_i¢2,K (A25)

= hxiBik o0 +id) ) p=10] .00 k] =190, 00k) (A26)

_ Fk‘KF;Jein@(k—j+K/2)—in(-)(j—k+]/2) (A27)
= _Fk,KF;‘:‘](l — 815 k) + 5_,’,k3J,KFk,kF_;J-
(A28)

It follows from here that {F;J, Cix} =268;16;x. To see
the anticommutation before ground-state projection, use

o i
Eq. (A23) and note that the operators e~ anticommute.

3. Action on relative fermion parity eigenstates

Next, we show that irt i ;Tk.x acts on the relative fermion
parity eigenstates of Eq. (19) exactly as expected for
Majorana bilinears. For the same wire, when K, — oo,
00 — 9() — 00
LL — YjR —

lr F —i60" +l¢jLelej0 l¢?’_R (A29)
= (@R (/D] L)1 187067 (A3())
_ gi<¢§1ﬁ¢‘,{k>. (A31)
The fermion parity eigenstates for wire k are
0
o = 2 _gp, (A32)
vzt
1
|£) = —= (16X = 0) + |0* = 7). (A33)
k 72
Using
¢%0.110%) = 0% + 7O — k +J/2)) (A34)

and 6% + 271 = 6%, we have

{0 —oY 1 . .
zr LTrlE); = P %R)ﬁuei =0)£10’ =) (A35)

1 . .
= — (18 =Y+ 168’ =0 A36

ﬁ(l L=m)+ |02 =0)) (A36)
= &|+);. (A37)

The neutral product of fermionic zero modes for differ-
ent wires similarly act as Majorana bilinears. Consider first
J=K=Mand j <k:

l'Fj-,MFk,M 101 O0 =) i) 0 =B 1) 10716 (A38)
— 1O iD= (A39)

Note that
1l PIESHESH (A40)

1
= iF‘;,LFk,LE(IO)jIO)k + 7)) £10) ;17 £ 7);10)e)
(A41)

=i i((’ﬁ*%)l 10 0): + . +10):10
ie 7 2100k +10) 17 )ic & |7) jlow)ic £ 10)510)e)

(A42)
= %(_|7T>j|0>k — [0}k £ |7w) jl7w )i £ 10) ;10)4) (A43)
= ilF); |1 F ). (Ad4)

Therefore, we have
1
ir;LFk,L = ﬁ(|+>j|+)k Til=)jl=h)  (A45)
1
= E(”_)jl_)k £ [+) 1) (A46)
1
= :I:EU‘HjH‘)k E =) 1=)- (A47)

The argument for iF]T.Y #L k. follows similarly, except 0k, rather

than 91 , advances by 7.
For opposite ends of different wires (j < k) we have

iTT Tyg = — @D @0l el#u8) (A48)
J, £l

= o000 gi(# 00, (A49)
iT  TurlE) 10 = i1} Tir3(10)100 + I) 1)
+10) 17 )i & 17) 10)k) (AS0)

= @=L () |7 )i + 10);10)

£17);10)x % 10) 17 i) (AS1)
= FIF)j1Fk- (A52)
It follows that
1
irj,er,REquH)k £ =)= (A53)
1
= (e E =) 1200, (A54)

Thus, we have shown that all choices of iF]T, ;Tkx act on the
relative fermion parity eigenstates exactly as expected for the
MZM parity (for K, — 00).

4. Commutation with local operators

Topologically encoded information should be unobserv-
able to any local operator. We now demonstrate that I';,
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commutes with all fermionic bilinears. For simplicity, we
focus on the ground-state projected expression, Eq. (29).

First, commutation with gradients and superconducting
fields follows trivially. Thus, we want to show commuta-
tion with any term of the form e/l#M+b¢lpilcdC)+dP]
where a, b, c, and d are £1. This reduces to demonstrating
[T, e*™] = [T, ?®@] = 0. These follow from

[ eiej{_,’ ei2¢(x)]

APPENDIX B: CORRELATION FUNCTION DERIVATION

We now derive Eq. (36). First, note that from the time-
dependent expressions Egs. (34) and (35) we have two ex-
pressions for I'; ;(7):

Fj,](f) — e*Ec(szzNth’l)TFj,J(O) (Bl)
— F(O)e_EC(zN_ZNg_l)r. (Bz)

The first expression is derived by solving the Heisenberg
equation of motion of I'; ;(t), while the second comes from

09, +i2 1/2)26(x),6° 1/2)169,,2
= RO (DRI _ 1/DN02000]) = 0, (AS5) solving the Heisenberg equation of motion for I‘;J(r) and

taking the Hermitian conjugate. Similarly,

F;J(f) = eE"(ZN_ZNg—l)TFT(O) (B3)

[ ei¢5{,’ 207
= 200 (1/DR60.6,1 _ J1/D180,:26001) — ) (A56)

— F-'L(O)eEC(zN_ZNg+1)T. (B4)
Therefore, I'; ; commutes with all local operators.

Using these expressions, we have
T, (t)Tek () = Ot — )T} (1)Tek (1) — O(12 — T)Tek ()T} (1) (B5)
— ®(Tl _ Tz)eEC(ZN—ZNg—l)‘L'] F;J (O)Fk.K(O)e—EC(ZN—ZNg—l)‘L’z
_ ®(T2 _ Tz)e*EC(ZN*ZNgWLI)TZ Fk’K(O)F;’J(O)eEC(2N72Ng+l)T] (B6)

— )/j,JVk.KeEC (2N-2N,)(ni ) ~Eclu-nl| (B7)

In the penultimate line, we used the fact that the I'y x (0)I" ; ;(0) is proportional to the MZM parity and therefore commutes with
the number operator N. Now, in the charging energy ground state,

— 1 <{IN = Np)c < (B8)

L
20

therefore (T; Fj (@) k (12))c is always exponentially decaying in time. We can simplify the problem by focusing on N, = 0,
for which ((N — N,))c = 0 and find Eq. (36) of the main text,

(I.TT,(t)Tek (12))e = yiayvexe ol (B9)

APPENDIX C: TUNNELING MEASUREMENT DETAILS

To arrive at Eq. (46), we need to expand the product cz,(rl )cq(12) around t; = 1,. This can be achieved by switching variables

to
s=Hotn o . (1)
2
so that
B B
/ dTl/ dty e_EC‘T'_rz‘CZ(Tl)Cd(Tz)
0 0
B 2 min(S, 8—S) 1 1
= / ds / dse Eeblch (S - —s)cd (S — —s> (C2)
0 —2min(S, f—5) 2 2
B—1. 2 min(S,8—S) 1 . 1
= / ds / dse el (cj,(S) + =~ sdsch(S) + O(s2)> <cd(S) — —s595cq(S) + O(s2)> (C3)
T, —2min(S,8-S) 2 2
B o0 1 [ee) B . . o0
~ / ds / dse™" e, ($)ea($) + 5 / ds se~ el / dS(asc;(S)cd(SHc;l(S)aSCd(S))+o( / ds's eEclsl)
0 —00 —00 0 —00
(C4)
1 B
=2 / dScl(S)ca(S) + O(E?). (CS)
C JO
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In the second line we assumed a short-time cutoff 7, ~ « in the S integral. We then assumed Ec7, >> 1 and extended the range

of the s integral in the third line. Therefore,

(5:7)c

B B
—(It;s* + ek )* + 2Im[t;jtk,K]iijyk,K)/ dt / dr, e_ECITI_TZIC;(Tl)Cd(Tz)
0 0

) ltjs* + |tk |* + 2Imle} 2 k iy vex

(Co)

Ec

Importantly, each subsequent expansion in the difference
7) — T contributes an additional factor of E L Alternatively,
the effective action could be derived by modeling the quantum
dot as in Ref. [26] to solve explicitly for the time dependence
of the quantum dot operators c,. This contributes an additional
term to the denominator of the quantum dot’s charging energy.

APPENDIX D: EFFECT OF SPATIAL FLUCTUATIONS
OF 6,

In this Appendix, we discuss how our results affect spatial
fluctuations of 6,, i.e., finite K,. Let’s consider first the case
of a single wire and examine how the equal time correlator
(F «I'j.s) changes when 9,6, # 0:

(F;Lrj,R> — i(e(i/\/i)(gp(Xj,R)_ep(Xj,L))eiﬂ(m/.L_’nj.R)>. (D1)
Just as it was useful to define a difference field 91 for wire j,
it is also useful to define an average field

0] = %(% - 9) (D2)
so that 6, can be rewritten as
B _ 0, + 9; (D3)
V2 2

Given that 0_ is pinned by Ap to a spatially constant value
for a given wire implies that the 6_ dependence drops out of
Eq. (D1):

(T}, TjR) = ie

—i(0+(xj,)—0+(xjr)) m(m]L mj, R)> (D4)
The 6, fields (only defined in the proximitized wire section)
decouple from the m; ; fields (defined in the bare semiconduc-
tor wire section), so the correlator can be factored. As we have
already shown that the term e ™. =Mi%) = y; py; ;. we have

(]";qu]"j’R> — i(e—i(9+(X/.L)—9+(x,AR))>yquyj,L' (D5)
Finally, using the formula
(16+ =00y — =1/ )6 (D6)

we just need to evaluate ([0, (x) — 6.(y)]?). For a single wire,
the action in terms of the 6. fields is (neglecting the barrier
and charging energy terms)

1
= /dt—/dx{ —2i0;0, 0,0, — 2i0,0_0:¢_
2

+ Qu,K, + vK)((axm)2 + %(axef )2)

+ (2v,K, — vK)(0,0,)(3,0_)

B
/ dScl(S)ca(S) + O(EZ?). (C7)
0

v, v 1 2 2
+ (E + E) <Z(ax¢+) + (3x9-) )
E>(a Jobo) + 22 cos(26.)
- ) () + : cos(20_ }

D7)

where & ~ v/Ap is the coherence length which defines the
short-range cutoff at the strong-coupling fixed point due to
the pairing term. Note that the action is quadratic for the 6,
field. If we take 6_ to be pinned from the cosine term, then
we can neglect spatial and temporal fluctuations of 6_, so that
the action decouples for the =+ fields (temporal fluctuations
contribute instanton terms, which result in an exponentially
suppressed degeneracy splitting [46]). Defining the coefficient
of (3,0)% as K v, and the coefficient of (3,¢,)* as v, /K,
the resulting action for 6, ¢, maps to a Luttinger liquid
action, with effective Luttinger liquid parameter

2v,K, + vK
K, =22K,K |22 ——— D8
+ Kv, + 2K, v’ (D8)
which in the limit of K, >> 1 becomes
Up
Ky ~2 [2K,K—. (DY)
v

The correlator ([ (x) — 6, (y)]?) will therefore be given
by that of a Luttinger liquid with Luttinger liquid parameter
K, [57]:

1 (.X J.R

—x.1)2 2
(104 (xjp) = 04(xj)) = o —In );JiL) e
+

(D10)

Assuming the wire length is Ly, this implies

) 1/4K,
(ei(9+(x,i.k)*9+(Xj,L))> — ( § > ]
+e

w1re

(D11)

Reconnecting to Eq. (54) in the main text, we have argued that
for a single wire

e—(1/4)([9p(Xj,L)—Op(Xj.R)]Z) — e—(1/2)([9+(xij)—9+(X/.R)]Z) (D12)
%_ /v/32K,Kv,
~ < > ., (DI3)
Lyire

where in the last line we have taken the limit Ly;. > & and
plugged in the definition of K. As K, — oo, the exponent
approaches 0 and the results are unaffected. When K, remains
finite, the above expression is smaller than 1, and thus reduces
the measurement visibility.
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For multiple wires, the calculation changes somewhat, but
the conclusion remains the same. Assuming that for multiple
wires the backbone contribution to the action is the dominant
term, we can as a first approximation ignore the proximitized

wires and find that the correlator is suppressed by a factor
£ The proximitized wires will add additional K

dependence.
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