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The pseudogap phenomenology is one of the enigmas of the physics of high-Tc superconductors. Many
members of the cuprate family have now been experimentally characterized with high resolution in both real
and momentum space, which revealed highly anisotropic Fermi arcs and local domains which break rotational
symmetry in the CuO2 plane at the intraunit cell level. While most theoretical approaches to date have focused
on the role of electronic correlations and doping-induced disorder to explain these features, we show that many
features of the pseudogap phase can be reproduced by considering the interplay between electronic and nonlinear
electron-phonon interactions within a model of fluctuating Cu-O-Cu bonds. Remarkably, we find that electronic
segregation arises naturally without the need to explicitly include disorder. Our approach points not only to
the key role played by the oxygen bond in the pseudogap phase, but opens different directions to explore how
nonequilibrium lattice excitations can be used to control the properties of the pseudogap phase.
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I. INTRODUCTION

The physics of high-Tc cuprate superconductors is one
of the great challenges of contemporary many-body physics.
Independently of material details, high-Tc superconductors
support a very rich and complex phase diagram [1,2]. While
the Mott insulator and the basic phenomenology of d-wave
superconductivity itself are reasonably well understood, the
nature of the metallic phase from which superconductivity
emerges is a mystery of the high-Tc landscape. In particular,
the origin of the pseudogap metal (PG) [3–5]—a phase with
highly suppressed low-energy excitations that appears as the
hole doping is increased beyond the Mott insulator phase, and
also above the superconducting dome up to a characteristic
temperature T ∗—is a widely debated topic. The pseudogap
has two complementary intriguing features: anisotropic Fermi
arcs in momentum resolved photoemission spectra [6–8] in-
stead of closed Fermi surfaces expected of metallic states,
and real-space nanoscale C4 (discrete rotational) symmetry-
breaking domains often associated with a local charge modu-
lation [9–11].

The Fermi-surface properties of the PG phase [12–19]
have been theoretically linked to various mechanisms: topo-
logical order and spin liquid physics [20], phase incoherent
d-wave superconductivity [21–26], and the breaking of vari-
ous electronic symmetries not necessarily related to supercon-
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ductivity [27–35]. A number of electronic correlation-based
approaches [36,37] predict nematic C4 symmetry-breaking
real-space orderings, where the organization of such phases
into nanoscale domains is usually considered to arise from
glassiness, i.e., the disordering effect of impurities [38,39].
While the main route to explain the high-Tc phenomenology
and its associated PG has been undertaken via electronic cor-
relations, several effects suggest that the coupling to the lattice
modes should not be neglected. These include the anomalous
isotope effect [40], the universal oxygen vibration frequency
shift in the superconducting phase [41–43], and more recently
the identification of the inequivalence of oxygen electronic
and vibrational states in the two lattice directions of the
CuO plane in the PG phase [44,45]. Furthermore, experi-
ments which drive the Cu-O bond to large displacements with
resonant femtosecond laser pulses have shown evidence that
a light-induced superconducting phase can be achieved for
temperatures up to T ∗ [46].

A development in this direction has been made through
the modeling of fluctuating Cu-O-Cu bonds [47–49]: these
works were able to reproduce the d-wave superconductivity
and some characteristics of the PG without electronic correla-
tion effects. Interestingly, the fluctuating bond model (FBM)
predicts a uniform smectic/nematic oxygen bond order with
C2 spatial symmetry. The mechanism for its disintegration
into the experimentally observed nanoscale domains remains,
however, unclear.

In this work, we revisit the FBM and show that (i) its
uniform smectic PG phase is intrinsically unstable towards
macroscopic charge separation, (ii) it is therefore necessary
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to include effects of Coulomb interactions and consider the
PG phase resulting from the interplay of bond-phonon insta-
bilities and electron correlations, (iii) this interplay leads to
a nanoscale phase separated PG in real space with a local C4

symmetry-breaking bond order and Fermi arcs in momentum
space, and (iv) the nanoscale separation in this scenario does
not result from quenched disorder. However, as reported in ex-
periments, the PG is enhanced (reduced) by adding magnetic
(nonmagnetic) impurities to the system.

II. DESCRIPTION OF THE FLUCTUATING BOND MODEL

The FBM describes the interplay of the buckling of an-
harmonically oscillating Cu-O-Cu bonds and hopping of elec-
trons via a nonlinear electron-phonon coupling. The Hamilto-
nian HFBM = Hel + Hph + Hel-ph consists of the bare electron
and phonon Hamiltonians, and the electron-phonon interac-
tion. The bare electron Hamiltonian reads

Hel = −t0
∑

〈i, j〉,σ
c†

i,σ c j,σ + t ′ ∑
〈〈i, j〉〉,σ

c†
i,σ c j,σ − μ

∑
j,σ

n j,σ ,

(1)

where c j,σ (n j,σ ) is the electron annihilation (occupation)
operator of a spin-σ electron in the 3dx2−y2 orbital centered on
site j, and t0 and t ′ are the nearest- and next-nearest-neighbor
hopping amplitudes. The bare phonon Hamiltonian is written
as the sum over the bond oscillators,

Hph =
∑

b

p2
b

2M
+ χ0

2
u2

b + w

16
u4

b, (2)

where M is the O mass and ub is its displacement perpendic-
ular to the Cu-O-Cu nearest-neighbor bond b. The oscillator
potential has a double-well structure with χ0 < 0 and w > 0.
A strong quartic potential for the Cu-O bond has been recently
observed in coherent phonon experiments in Yttrium Barium
Copper Oxide [50]. The electron-phonon interaction couples
the antibonding electron orbital charge Qb = 1

2

∑
σ (ni,σ +

n j,σ − c†
i,σ c j,σ − c†

j,σ ci,σ ) nonlinearly to the displacement ub,

Hel-ph = −ν

2

∑
b

u2
bQb. (3)

In this work, we show that the effects due to the interplay
of HFBM and Coulomb interactions, which we consider as
maximally screened, i.e., via an on-site term U

∑
i ni,↑ni,↓, are

of defining importance. These interactions are distinct from
the long-range interactions between charges in antibonding
orbitals ∝QbQb′ at different bonds considered in earlier works
on FBM [48,49].

III. MEAN-FIELD DECOUPLING OF THE
ELECTRON-PHONON INTERACTION

The large dimension of the Hilbert space of the Hamilto-
nian HFBM makes it impossible to treat with exact numerical
methods: In addition to the square lattice of fermions, the
motion of each O atom represents an additional continuum
quantum degree of freedom. Hence, one needs to perform a
series of approximations in order to extract the physics of the
model.

Due to the large difference in electron and O masses,
the motion of the latter on each bond can be treated as an
oscillation around the quartic potential minima, which allows
for a mean-field (MF) decoupling. One defines the mean-field
FBM as

HFBM = HMF
FBM + �HFBM, (4)

where HMF
FBM differs from HFBM in the electron-phonon inter-

action term

HMF
el-ph = −ν

4

∑
b,σ

〈
u2

b

〉
(ni,σ + n j,σ − c†

i,σ c j,σ − c†
j,σ ci,σ )

− ν

4

∑
b,σ

u2
b〈ni,σ + n j,σ − c†

i,σ c j,σ − c†
j,σ ci,σ 〉

+ ν

4

∑
b,σ

〈
u2

b

〉〈ni,σ + n j,σ − c†
i,σ c j,σ − c†

j,σ ci,σ 〉. (5)

Notice that the MF Hamiltonian consists of a quadratic
electron Hamiltonian with renormalized bond-dependent hop-
ping amplitudes tb = t0 − ν〈u2

b〉/4, and a set of isolated
phonon oscillators with renormalized bond-dependent χb =
χ0 + ν〈Qb〉/2. This MF system can be solved by finding,
self-consistently, the values 〈u2

b〉 and 〈Qb〉 minimizing the
free energy of the hole system (see Appendixes A and B for
details).

Finally, in order to benchmark the accuracy of the MF de-
coupling of the electron-phonon term, we have exactly solved
a simplified system of a four-site lattice and compared the
results of the two approaches (see Table I in Appendix C for
a quantitative analysis). The results show that the MF energy
is higher than the one obtained through exact diagonalization
(ED), but close to it, and that the effective hopping tb is also
similar in the two approaches.

IV. INSTABILITY OF THE FBM

The authors of Refs. [47–49] found the spontaneous sym-
metry breaking C4 to C2 〈u2

x〉 	= 〈u2
y〉 within a translationally

invariant mean-field ansatz. From the electronic viewpoint,
this is a bond ordered state with different hopping strengths
tx 	= ty. The PG phase is then characterized by the splitting of
the Van Hove singularity, which has an energy scale of the
order of �PG ∝ |tx − ty|. This leads to a strong reduction of
the density of states between the Van Hove peaks. Figure 1
shows the order parameter �PG with respect to hole doping
δ = 1 − n (n is the electron density) at different temperatures
(solid lines). We notice that the corresponding Fermi surface
does not present Fermi arcs, which exhibit a C4 symmetry.
Instead, the system only has a suppression of the spectral
weight at ktx>ty = (π, 0) or kty>tx = (0, π ). The authors of
Ref. [47] suggested that impurities would form, in real space,
domains of the two sectors of the symmetry breaking, leading
to a restoration of the Fermi arcs.

A more careful analysis nevertheless shows that this ho-
mogeneous PG solution is intrinsically unstable. The inset
of Fig. 1 shows that the compressibility ∂μ/∂n = −∂μ/∂δ

is negative in the PG phase. We find this feature not to be
specific to the choice of FBM parameters but rather to persist
for 〈u2

x〉 	= 〈u2
y〉 solutions. The effects of this instability can be
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FIG. 1. Pseudogap phase as a function of hole doping and for
different temperatures. The figure shows the homogeneous MF
parameter |tx − ty| of the HFBM Hamiltonian on an 80 × 80-site
lattice (solid lines) and the spatial average |tx − ty| of the residual
interactions model on a 30 × 30-site lattice (dashed lines). The inset
depicts the chemical potential as a function of the hole doping at
174 K. We observe a negative compressibility ∂μ/∂n < 0 in the
homogeneous PG phase of HFBM, which indicates the instability of
this phase. On the contrary, the PG phase of HRI has a positive
compressibility. The parameters of both Hamiltonians are fixed to
t0 = 0.0083, t ′ = 0.0011, ν = 0.03, w = 0.17, χ0 = −0.0025, and
U = 0, where we use atomic units (energy E0 = 27.2 eV and length
a0 = 0.53 Å).

visualized in real-space calculations using an unrestricted MF
approach, in which the self-consistent averages 〈u2

b〉 and 〈Qb〉
are allowed to be independent for each bond. One then obtains
macroscopic phase separation with distinct uniform regions
of low and high electron density, without any bond order (see
Fig. 2 for U = 0).

V. INCLUSION OF ELECTRON INTERACTIONS:
TOWARDS AN EFFECTIVE MODEL

An important conclusion of the previous Sec. IV is that
Coulomb interactions are intrinsically needed to suppress the
large charge imbalance of the FBM, and are therefore not only
interesting from the point of view of competing phases (e.g.,
the charge density wave). A minimal extension of the FBM
including Coulomb interactions leads to the Fermi-Hubbard
model with bond phonons,

HFBM+U = He + Hph + Hel-ph + U
∑

i

ni,↑ni,↓. (6)

A rigorous analysis of the FBM+U Hamiltonian, for U
values typical for cuprate superconductors, constitutes a great
challenge due to the strong electron correlations brought by
the Hubbard term. In the following, we first discuss the
numerical results obtained under different approximations.
We then present an effective model that can be numerically
studied in large clusters and leads to a stable pseudogap phase.

A. Hartree-Fock study of the FBM+U

We first study the effect of a large Hubbard repulsive U on
the phase separation with the unrestricted Hartree-Fock (HF)
decoupling,

(ni,↑ni,↓)HF = 〈ni,↑〉 ni,↓ + ni,↑ 〈ni,↓〉 − 〈ni,↑〉 〈ni,↓〉 , (7)

0 30x/a
0

30

y
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δ =0.2 (U = 3.6t0) δ =0.1 (U = 3.6t0) δ =0.1 (U = 0)
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n↑ − n↓ni
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(b) 0.0 0.4 0.8 1.2 1.6 2.0 −0.8−0.4 0.0 0.4 0.8

FIG. 2. Real-space features of HFBM+U at KBT = t0/15 for dif-
ferent dopings on a 30 × 30-site lattice. Parameters are set as in
Fig. 1, except for the Hubbard, which is specified on each col-
umn. (a) Density plots showing microphase separation with small
density amplitude (left and center) and macrophase separation with
huge density amplitude (right). (b) Local spin polarization showing
strongly polarized antiferromagnetic (AF) phase in the cases with
finite U (left and center).

where we do not impose the translational invariance ansatz
of Sec. IV. The solution of the self-consistent equations (see
Fig. 2) shows that, for a sufficiently large U � 3t0, the on-
site interaction cures the macrophase separation generated by
the electron-phonon interaction: the system exhibits smaller
disconnected charge domains with lower density fluctuations.
However, we do not observe any local C4 symmetry breaking.
This is due to the well-known overestimation of the magnetic
correlations from the HF decoupling (see, e.g., Ref. [51]). In
particular, the system has here a true gap with antiferromag-
netic order at the relevant dopings and temperatures, as shown
in Fig. 2(b), which masks any PG features.

B. Exact diagonalization study of the FBM+U

We now characterize more rigorously the PG close to
half filling and in the presence of Hubbard interactions. To
this end, we study the FBM+U model for a 3 × 3 cluster
with periodic boundary conditions. We treat the Hubbard
interactions exactly and the electron-phonon interactions with
an unrestricted MF decoupling. In Fig. 3, for the unpolarized
subspace of eight electrons (density n = 0.89), we observe
macrophase separation at U = 0 with large density fluctua-
tions through the lattice. For a moderately large interaction
U = 3.6t0, these fluctuations are strongly suppressed. Impor-
tantly, the C4 symmetry breaking of the bonds is manifest and
survives the formation of local magnetic moments.

We emphasize that the exact treatment of the FBM+U
model for larger system sizes is numerically challenging due
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FIG. 3. Exact diagonalization results for KBT = t0/15. (a) U =
0. (b) U = 3.6t0. (c) U = 3.6t0, ν = 0. We show the relevant local
observables on a 3 × 3 lattice at electron filling 8/9. The site colors
encode the on-site occupation while the bond colors encode the
values of the bond charge Qb. The color scales are shown in the lower
panel.

to the large values of U typical of the cuprates. Nevertheless,
we are here interested in the phonon bond order mechanism
of the PG state and the associated generation of microphase
separation, and the previous numerical results point to a
scenario where electronic correlations do not generate the PG
phase but are essential to stabilize it.

C. Residual interactions model

We propose to discard the spatial fluctuations of the local
density in the electron-phonon interaction as it would allow
one to better treat larger systems without having the exag-
gerated effects of magnetic correlations at low hole doping.
This effective model preserves the main effect of the repulsive
interaction, which is to prevent macrophase separation. One
then obtains a model with at most a residual small U that now
does not lead to magnetic order at temperatures relevant for
the PG phase. We will see that this approximation reproduces
qualitatively the ED results of the FBM+U model, preventing
the macrophase separation while allowing for a C4 symmetry
breaking.

The resulting model, which we call the residual interac-
tions (RI) model, differs from the FBM in the electron-phonon
term, which is obtained by replacing the number operators
ni,σ by the average density per spin species 〈nσ 〉 in the Qb

of Eq. (5). The latter gives rise to an effective

Q̃b = −1

2

∑
σ

(c†
j,σ c j+1,σ + H.c.), (8)
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FIG. 4. PG dependence on hole doping for a fixed temperature
T = 174 K on a 30 × 30-site lattice for the RI model with the param-
eters of Fig. 1. (a) Real-space plots of the effective electron hopping
at each bond tb. For δ = 0.2, the system presents an homogeneous C4

symmetry breaking. For smaller dopings, we observe the formation
of nanoscale domains with ladder structures. (b) Fermi surface D(k)
in the Brillouin zone. We observe the appearance of Fermi arcs when
increasing the hole doping.

and a (total) density dependent renormalization of the
quadratic part of the oscillator potential,

χ̃0 = χ0 − ν/2〈n〉. (9)

VI. PSEUDOGAP PHASE IN THE RI MODEL

In this section we analyze in depth the pseudogap phase
of the RI model within MF+HF approximation with no
translational invariance.

A. Fermi arcs and nanoscale domains

Figure 1 shows the pseudogap parameters obtained for
the unrestricted MF of the RI model for U = 0 at different
temperatures (dashed lines). These results are qualitatively
similar to the ones obtained for the homogeneous solution
of the FBM, but with a positive compressibility. We now
characterize more in depth the PG phase of the RI model.
Figure 4 shows the PG dependence with respect to hole doping
for a fixed temperature. Figure 4(a) shows the real-space
distribution of the bond order parameter: for large doping, i.e.,
δ = 0.2, we observe a homogeneous C4 symmetry breaking.
Then, for smaller dopings, the system adopts a microphase
separation with nanoscale domains, restoring on average the
C4 symmetry. We also study the Fermi surface D(k) given by

D(k) =
∑
j∈F

| 〈k|φ j〉 |2, (10)

where |k〉 are the periodic Bloch states of the square lat-
tice, |φ j〉 are the single-particle states of the unrestricted
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FIG. 5. PG dependence on temperature for a fixed hole doping
of δ = 0.1 on a 30 × 30-site lattice for the RI model with the
parameters of Fig. 1. (a) Real-space plots of the effective electron
hopping at each bond tb. The nanoscale domains are smeared out for
increasing temperatures. (b) Fermi surface in the Brillouin zone. As
the temperature is increased, the Fermi arcs evolve towards a closed
metallic surface.

Hartree-Fock solution, and F is the subset of these states
whose energy lies inside a window of width t0/10 around the
Fermi energy. The results are shown in Fig. 4(b). For δ = 0.2,
close to the C4 symmetry-breaking transition, the system is
homogeneous and the Fermi surface is simply connected. The
quasiparticle energies at the nodal points k = (±π/2,±π/2)
are not affected by bond orderings, whereas at antinodal
points, the dependence on bond orderings is stronger. There-
fore, for small dopings where microphase separation occurs,
the system presents nodal “cold regions” [52], forming char-
acteristic anisotropic Fermi arcs, and strongly scattered “hot
regions” at antinodal points, resulting in a disconnected Fermi
surface. This picture bears some similarity to the nematic
glass theory [33,39], which however depends on external
disorder. The Fermi arcs’ length increases with hole doping
and leads to reconstruction of a simply connected Fermi
surface close to the C4-C2 transition. The latter is in qualitative
agreement with experimental observations [1,53].

Figure 5 depicts the dependence of the PG with respect to
temperature for a fixed doping. For increasing temperature, a
progressive closing of the Fermi arcs towards a metallic Fermi
surface is observed. In real space, the local amplitudes of the
inhomogeneous C4 symmetry breaking then become strongly
suppressed.

B. Role of impurities in the RI model

The previous section shows that the nanoscale domains
appear without the need of any type of quenched disorder.
We now address the effect of nondoping impurities on the PG

phase. These are often used as (destructive) probes of super-
conducting and PG properties of high-Tc materials. In partic-
ular, disorder is expected to destabilize nematic phases. How-
ever, two different behaviors are observed in experiments [54]:
while substituting Cu for nonmagnetic Zn suppresses the PG,
substitution by magnetic Ni, remarkably, seems to have an
enhancing effect on the PG energy scale. Here, we show
that the results obtained from the RI model are in qualitative
agreement with this impurity related phenomenology.

For Ni impurities, we use the Hamiltonian proposed by
Vašátko and Munzar [55],

H = −t0
∑

〈i, j〉,σ
c̃†

i,σ c̃ j,σ + J
∑
〈i, j〉

(
Si · S j − 1

4
nin j

)

+ ENi

∑
α

nα − 4K
∑

α

S′
α · Sα, (11)

where c̃†
i,σ = c†

i,σ (1 − ni,−σ ) are the electron creation opera-
tors in the 3dx2−y2 orbitals projected such as to avoid double
occupancy ni = ∑

σ c†
i,σ ci,σ , and Si are the spin operators of

the d orbital. The Ni impurity sites are denoted as α and host
additional 3d3z2−r2 orbitals. These orbitals carry a magnetic
spin S′

α . The last term in Eq. (11) describes ferromagnetic
Ni on-site interaction between d orbitals. Considering an
initial AF state polarized in the z direction and in mean-field
approximation, only the Sz components survive,

Sα · S′
α ≈ 〈

Sz
α

〉
S′z

α + Sz
α

〈
S′z

α

〉 − 〈
Sz

α

〉〈
S′z

α

〉
. (12)

Since the 3d3z2−r2 orbitals are not affected by hopping, their
spin within such approximation is classical. Nevertheless,
the effect of these classical spins S′

α cannot be considered
as quenched disorder, as their equilibrium magnetization is
determined self-consistently with the other spins Sα: at each
step of the self-consistent loop, the requirement for 〈S′z

α 〉 =
1/2 sgn(Sz

α ) aligns it to the local 3dx2−y2 orbital magnetization
Sα lowering the energy by

−4K ′Sz
α

〈
S′z

α

〉 ≈ −4K ′(Sz
α

)2
. (13)

The latter follows from that sgn(4Sz
α ) ≈ 4Sz

α . As a conse-
quence, we can consider the following effective Hamiltonian
for Ni impurities: for the doped sites α we neglect the shift
in the chemical potential proportional to ENi and consider that
the Hamiltonian is modified by the addition of the on-site term

Hα,Ni = −4KS2
z,α = −K (nα,↑ − nα,↓)2

= −K (nα,↑ + nα,↓) + 2Knα,↑nα,↓, (14)

which leads to a modified on-site chemical potential μi →
μi+K and Hubbard strength Ui → Ui + 2K . K is set to 3/4t0.

On the other hand, we denote the Zn-doped sites as λ, and
we set μλ = ∞ to effectively remove the doped site from the
lattice [56]. In order to keep the hole concentration constant
in the remaining available sites, we increase this quantity by
δ̃ = δ + nZn, nZn being the concentration of Zn impurities.

To quantify the effect of the above-mentioned impurities
in the pseudogap unrestricted solutions we use the frequency-
dependent transverse conductivity σ1c(ω). The transverse con-
ductivity is in general some combination of two parts, a
momentum-conserving and a momentum-nonconserving part
(see discussion in [57]). The hole doping in cuprates results
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FIG. 6. Density of states N (ω) histograms for the cases consid-
ered in Fig. 4 of the main text. The number of bins is set to 45. For the
residual interactions model (FBM+RI) we set the bare hole density
δ = 0.1, T = 174 K, and U/t0 = 1.6 on a 30 × 30 lattice. The rest
of the parameters are fixed to the same values of the main text.

in disorder in interlayer coupling since dopants can reside be-
tween the copper oxide layers. In this paper we focus therefore
on the nonconserving part of the c-axis conductivity assuming
that interlayer tunnelings are in principle randomized both
with and without Zn/Ni substitution, as in Ref. [55]. This
c-axis conductivity contribution is given by

σ1c(ω) ∼ 1

ω

∫
dω′ [ f (ω′ − μ) − f (ω′ + ω − μ)]

×N (ω′)N (ω′ + ω), (15)

where N (ω) is the density of states, and f (ω) is the Fermi-
Dirac distribution. For completeness, we show in Fig. 6 the
density of states N (ω) corresponding to the cases plotted in
Fig. 4 of the main text.

The c-axis conductivity results are shown in Fig. 7 for both
types of impurities, together for the pure case and a metallic
solution, obtained as the self-consistent homogeneous mean-
field solution with C4 symmetry (ni,σ = n/2 and tb = t). The
PG solutions show a characteristic low-energy suppression in
the real c-axis conductivity spectrum as well as a peak. The
PG energy scale �PG is often taken to be the peak position.
It indeed behaves as advertised above. Furthermore, the depth
of the suppression of the pure and Ni cases are similar, while
the Zn PG is more filled in.

VII. CONCLUSIONS

We have shown that including anharmonic Cu-O-Cu bond
oscillations in Hubbard-type models leads to a number of key
features of the PG phase including an inherent mechanism
for nanoscale phase separation, Fermi arcs, and appropriate
response to defects. This points towards the fact that phonons
play a key role in dictating the properties of high-Tc cuprates,

0 1 2 3
ω/t0

0.0

0.5

1.0

σ
1
c

(ω
)

[a
rb

.
un

it
s] pure

6% Ni
6% Zn
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FIG. 7. Effect of impurities on the real part of the c-axis con-
ductivity spectra in the residual interactions model for hole density
δ = 0.1, T = 174 K, and U/t0 = 1.6 on a 30 × 30 lattice. The
metallic solution (violet, dashed curve) is compared to the PG phase
with and without impurities. The PG without impurities presents a
characteristic peak. The latter is shifted to the left (right) for Zn (Ni)
impurities.

and are not simply secondary corrections to electronic cor-
relation effects. Fundamentally, we therefore believe that
our results will fuel deeper investigations into the FBM+U
model, in particular via the treatment of electronic correlation
effects more exactly beyond the mean-field approximation.
Furthermore, it would be interesting to study the interplay of
the electron-phonon interaction and the Coulomb interaction
on the properties of the high-Tc superconductivity, within
a nontransitionally invariant ansatz. Finally, the FBM+U
model could also serve as a natural basis to investigate how
nonthermal and dynamical phonon distributions can be used
to enhance and control phase competition in the cuprates.
This would provide insights into the origins of light-induced
nonequilibrium superconductivity and potentially lead to im-
proved nonequilibrium control of the cuprates phase diagram.
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APPENDIX A: BOGOLIUBOV INEQUALITY

The mean-field treatment approach is based on the Bogoli-
ubov inequality. We express the exact FBM Hamiltonian as
HFBM = HMF

FBM + �HFBM. The Bogoliubov inequality reads

FFBM � F MF
FBM + 〈�HFBM〉MF, (A1)

where F is the thermodynamic free energy, and the ther-
mal ensemble of HMF

FBM with partition function ZMF
FBM is used
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to compute the expectation value 〈�HFBM〉MF and the free
energy F MF

FBM = −KBT ln ZMF
FBM. The problem then reduces in

finding the equilibrium state |�0〉 of HMF
FBM minimizing the

right-hand side of Eq. (A1). Notice that |�0〉 will only contain
MF correlations between electrons and phonons, and that it
will satisfy the constraint 〈�0| HMF

FBM |�0〉 = 〈HMF
FBM〉. These

conditions can be used to find |�0〉 within the self-consistency
iterative algorithm described in Appendix B.

APPENDIX B: SELF-CONSISTENT MEAN-FIELD +
HARTREE-FOCK LOOP

Here we discuss the self-consistent loop used to determine
the equilibrium state of HFBM+U , equivalent to the FBM for
U = 0. After the MF+HF decoupling, the electron Hamil-
tonian has a quadratic form H̃el with renormalized bond-
dependent hopping amplitudes tb = t0 − ν〈u2

b〉/4 and on-
site chemical potential μi,σ = −U 〈ni,σ̄ 〉 + ν

4

∑
b∈i〈u2

b〉. The
phonon Hamiltonian H̃ph = ∑

b H̃b
ph consists of a set of iso-

lated phonon oscillators b with renormalized bond-dependent
χb = χ0 + ν〈Qb〉/2.

The MF parameters 〈u2
b〉, 〈Qb〉, and 〈ni,σ 〉 are found with

a self-consistent iterative loop. Before starting the iterative
algorithm, we have fitted the value of 〈u2

b〉 as a function of
〈Qb〉 at a given temperature T . For this purpose, we have used
a local phononic basis of 800 states to find the eigenstates
of H̃ph for 200 values of 〈Qb〉 in the interval [0,2]. These
eigenstates are then used to compute the thermal expectation
value of 〈u2

b〉 according to the Boltzmann distribution. Finally,
a simple fitting routine is used to extract 〈u2

b〉 as a function of
〈Qb〉 from the 200 values obtained.

Once the fitting for the phonons has been performed, the
iterative algorithm proceeds as follows: the initial conditions
are imposed in the bond phonons, with an initial distribution
for each variable 〈u2

b〉, and to the electronic density, with an
initial density distribution 〈ni,σ 〉. At each iteration step, the
single-particle states of H̃el are obtained, and from them the
fermionic state at temperature T and filling n is constructed.
From this fermionic state, one obtains the new distribution for
〈ni,σ 〉, and 〈Qb〉, which gives the new value of 〈u2

b〉 through
the previously fitted function. In order to avoid oscillating
solutions, the update of the mean-field parameters is done
progressively as

〈·〉i+1 = (1 − η)〈·〉i + η〈·〉new
i . (B1)

Here 〈·〉i represents some mean-field parameter at the ith iter-
ation, and 〈·〉new

i its new value after performing one iteration
step. The update parameter η lies in the interval (0,1].

Each unrestricted solution has been obtained after ∼3 ×
104 iterations (see Fig. 8), starting from noisy homogeneous
distributions of 〈u2

b〉 and 〈ni,σ 〉. The fact that the mean-field
parameters evolve towards nonhomogeneous patterns reflects
the metastability of the homogeneous ansatz. The update
parameter η has been initialized at η = 0.03 and progressively
increased until reaching the value η = 1 for the last ∼3 × 103

iteration steps. The variation in the free energy in the last steps
of the iteration algorithm is around �F ∼ 10−8t0. The re-
stricted solution is obtained in the homogeneous unpolarized

0 104 2×104 3×104

iteration

−3.0

−2.9

−2.8

−2.7

−2.6

〈F
〉/

t 0

UMF
RMF 2.9 · 104 3 · 104

−22.5

−20.0
×10−7 − 2.66641

FIG. 8. Example of the free-energy evolution during a self-
consistent loop. This figure corresponds to the residual interactions
model with the same parameters as in Fig. 2 of the main text, at
T = 174 K.

parameter space (〈u2
x〉, 〈u2

y〉, 〈Qx〉, 〈Qy〉, 〈ni〉). That is, only
the breaking of the global rotational symmetry is allowed.
In this case, one can take advantage of the spatial symmetry
properties of the problem and express the quantities in Fourier
space in order to reduce the computational task. The number
of iterations needed to achieve convergence is much smaller
for this case (<100) and, for a given set of parameters, the
converged energy is significantly higher than the unrestricted
mean-field solutions.

Finally, notice that the convergence of the self-consistent
algorithm only ensures that a metastable solution has been
found. Thus, in order to choose between different solutions,
one needs to compare their Free energies and chose the lowest
one (e.g., in Fig. 8 the unrestricted mean-field solution has
lower free energy than the restricted one).

The free energy of the electron-phonon system treated in
MF+HF approximation can be written as

FMF = Fel + Fph + C, (B2)

where Fel (Fph) is the free energy of the effective electron
(phonon) Hamiltonian, and C accounts for the energy shift due
the MF+HF decouplings. For free fermions the free energy F
reads

Fel =
∑

i

{
μ

1+ exp
(

εi−μ

KBT

) − kBT ln

[
exp

(
−εi − μ

KBT

)
+ 1

]}
,

(B3)

where εi are the single-particle energies of H̃el, and μ is the
chemical potential. On the other hand, the free energy of the
phonon of the bond b with Hamiltonian Hb

ph reads

F b
ph = −KBT ln

(∑
i

e−Ei/(KBT )

)
, (B4)

where Ei are the energies of Hb
ph, and Fph = ∑

b F b
ph.
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APPENDIX C: COMPARISON BETWEEN THE MEAN FIELD AND THE EXACT DIAGONALIZATION

In Table I, we compare the results in a 4-site cluster with periodic boundary conditions, obtained with exact diagonalization
and a mean-field decoupling of the electron-phonon interaction.

TABLE I. Comparison of the homogeneous ground-state properties using exact diagonalization (left
columns) and a MF decoupling of the electron-phonon interaction (right columns) for different sizes of the local
phononic basis. Here we work at zero T , half filling, t0 = 0.0083, t ′ = 0, ν = 0.03, w = 0.17, χ0 = −0.0025,
and U = 0, where we use atomic units (energy E0 = 27.2 eV and length a0 = 0.53 Å). For both methods
the set of coherent states is used as a variational ansatz of the bond phonons to find the ground state around
one of the minima of the quartic potential. The different parameters appearing in the table are the number of
local phononic states taken into account (basis), the effective hopping of the electrons tb ≡ t0 − ν〈x2〉/4, the
ground-state energy (E ), and the expected value of the local phonon operator (〈Nph〉).

Basis tb/t0 E/t0 〈Nph〉
1 0.742 0.742 −5.795 −5.795 0 0
5 0.786 0.799 −5.855 −5.819 0.099 0.084
10 0.792 0.805 −5.855 −5.819 0.186 0.140
15 0.796 0.808 −5.855 −5.831 0.303 0.226
100 0.819 −5.831 5.594

[1] B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and
J. Zaanen, Nature (London) 518, 179 (2015).

[2] P. A. Lee, Rep. Prog. Phys. 71, 012501 (2008).
[3] T. Timusk and B. Statt, Rep. Prog. Phys. 62, 61 (1999).
[4] M. R. Norman, D. Pines, and C. Kallin, Adv. Phys. 54, 715

(2005).
[5] S. Sachdev, Rep. Prog. Phys. 82, 014001 (2018).
[6] D. S. Marshall, D. S. Dessau, A. G. Loeser, C.-H. Park, A. Y.

Matsuura, J. N. Eckstein, I. Bozovic, P. Fournier, A. Kapitulnik,
W. E. Spicer, and Z.-X. Shen, Phys. Rev. Lett. 76, 4841
(1996).

[7] A. Damascelli, Z. Hussain, and Z.-X. Shen, Rev. Mod. Phys.
75, 473 (2003).

[8] I. M. Vishik, Rep. Prog. Phys. 81, 062501 (2018).
[9] Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien,

T. Hanaguri, M. Azuma, M. Takano, H. Eisaki, H. Takagi,
S. Uchida, and J. C. Davis, Science 315, 1380 (2007).

[10] Y. Kohsaka, T. Hanaguri, M. Azuma, M. Takano, J. C. Davis,
and H. Takagi, Nat. Phys. 8, 534 (2012).

[11] K. Fujita, M. H. Hamidian, S. D. Edkins, C. K. Kim, Y.
Kohsaka, M. Azuma, M. Takano, H. Takagi, H. Eisaki, S.-i.
Uchida, A. Allais, M. J. Lawler, E.-A. Kim, S. Sachdev, and
J. C. S. Davis, Proc. Natl. Acad. Sci. USA 111, E3026 (2014).

[12] A.-M. S. Tremblay, B. Kyung, and D. Sénéchal, Low Temp.
Phys. 32, 424 (2006).

[13] M. Civelli, M. Capone, S. S. Kancharla, O. Parcollet, and G.
Kotliar, Phys. Rev. Lett. 95, 106402 (2005).

[14] M. Ferrero, P. S. Cornaglia, L. De Leo, O. Parcollet, G. Kotliar,
and A. Georges, Phys. Rev. B 80, 064501 (2009).

[15] G. Sordi, P. Sémon, K. Haule, and A.-M. S. Tremblay, Phys.
Rev. Lett. 108, 216401 (2012).

[16] O. Gunnarsson, T. Schäfer, J. P. F. LeBlanc, E. Gull, J. Merino,
G. Sangiovanni, G. Rohringer, and A. Toschi, Phys. Rev. Lett.
114, 236402 (2015).

[17] T. A. Maier, T. Pruschke, and M. Jarrell, Phys. Rev. B 66,
075102 (2002).

[18] E. Gull, O. Parcollet, and A. J. Millis, Phys. Rev. Lett. 110,
216405 (2013).

[19] W. Wu, M. S. Scheurer, S. Chatterjee, S. Sachdev, A. Georges,
and M. Ferrero, Phys. Rev. X 8, 021048 (2018).

[20] P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78, 17
(2006).

[21] R. Micnas, J. Ranninger, and S. Robaszkiewicz, Rev. Mod.
Phys. 62, 113 (1990).

[22] M. Randeria, N. Trivedi, A. Moreo, and R. T. Scalettar, Phys.
Rev. Lett. 69, 2001 (1992).

[23] V. J. Emery and S. A. Kivelson, Nature (London) 374, 434
(1995).

[24] A. S. Alexandrov, V. V. Kabanov, and N. F. Mott, Phys. Rev.
Lett. 77, 4796 (1996).

[25] M. Franz and A. J. Millis, Phys. Rev. B 58, 14572 (1998).
[26] E. Berg and E. Altman, Phys. Rev. Lett. 99, 247001 (2007).
[27] C. M. Varma, Phys. Rev. B 73, 155113 (2006).
[28] S. Chakravarty, R. B. Laughlin, D. K. Morr, and C. Nayak,

Phys. Rev. B 63, 094503 (2001).
[29] C. Honerkamp, H. C. Fu, and D.-H. Lee, Phys. Rev. B 75,

014503 (2007).
[30] J. Zaanen and O. Gunnarsson, Phys. Rev. B 40, 7391

(1989).
[31] V. J. Emery, S. A. Kivelson, and J. M. Tranquada, Proc. Natl.

Acad. Sci. USA 96, 8814 (1999).
[32] S. Sachdev, Rev. Mod. Phys. 75, 913 (2003).
[33] E.-A. Kim, M. J. Lawler, P. Oreto, S. Sachdev, E. Fradkin, and

S. A. Kivelson, Phys. Rev. B 77, 184514 (2008).
[34] A. V. Chubukov and J. Schmalian, Phys. Rev. B 57, R11085

(1998).
[35] S. A. Kivelson, E. Fradkin, and V. J. Emery, Nature (London)

393, 550 (1998).
[36] M. Vojta, Adv. Phys. 58, 699 (2009).
[37] E. Fradkin, S. A. Kivelson, M. J. Lawler, J. P. Eisenstein, and

A. P. Mackenzie, Annu. Rev. Condens. Matter Phys. 1, 153
(2010).

125107-8

https://doi.org/10.1038/nature14165
https://doi.org/10.1038/nature14165
https://doi.org/10.1038/nature14165
https://doi.org/10.1038/nature14165
https://doi.org/10.1088/0034-4885/71/1/012501
https://doi.org/10.1088/0034-4885/71/1/012501
https://doi.org/10.1088/0034-4885/71/1/012501
https://doi.org/10.1088/0034-4885/71/1/012501
https://doi.org/10.1088/0034-4885/62/1/002
https://doi.org/10.1088/0034-4885/62/1/002
https://doi.org/10.1088/0034-4885/62/1/002
https://doi.org/10.1088/0034-4885/62/1/002
https://doi.org/10.1080/00018730500459906
https://doi.org/10.1080/00018730500459906
https://doi.org/10.1080/00018730500459906
https://doi.org/10.1080/00018730500459906
https://doi.org/10.1088/1361-6633/aae110
https://doi.org/10.1088/1361-6633/aae110
https://doi.org/10.1088/1361-6633/aae110
https://doi.org/10.1088/1361-6633/aae110
https://doi.org/10.1103/PhysRevLett.76.4841
https://doi.org/10.1103/PhysRevLett.76.4841
https://doi.org/10.1103/PhysRevLett.76.4841
https://doi.org/10.1103/PhysRevLett.76.4841
https://doi.org/10.1103/RevModPhys.75.473
https://doi.org/10.1103/RevModPhys.75.473
https://doi.org/10.1103/RevModPhys.75.473
https://doi.org/10.1103/RevModPhys.75.473
https://doi.org/10.1088/1361-6633/aaba96
https://doi.org/10.1088/1361-6633/aaba96
https://doi.org/10.1088/1361-6633/aaba96
https://doi.org/10.1088/1361-6633/aaba96
https://doi.org/10.1126/science.1138584
https://doi.org/10.1126/science.1138584
https://doi.org/10.1126/science.1138584
https://doi.org/10.1126/science.1138584
https://doi.org/10.1038/nphys2321
https://doi.org/10.1038/nphys2321
https://doi.org/10.1038/nphys2321
https://doi.org/10.1038/nphys2321
https://doi.org/10.1073/pnas.1406297111
https://doi.org/10.1073/pnas.1406297111
https://doi.org/10.1073/pnas.1406297111
https://doi.org/10.1073/pnas.1406297111
https://doi.org/10.1063/1.2199446
https://doi.org/10.1063/1.2199446
https://doi.org/10.1063/1.2199446
https://doi.org/10.1063/1.2199446
https://doi.org/10.1103/PhysRevLett.95.106402
https://doi.org/10.1103/PhysRevLett.95.106402
https://doi.org/10.1103/PhysRevLett.95.106402
https://doi.org/10.1103/PhysRevLett.95.106402
https://doi.org/10.1103/PhysRevB.80.064501
https://doi.org/10.1103/PhysRevB.80.064501
https://doi.org/10.1103/PhysRevB.80.064501
https://doi.org/10.1103/PhysRevB.80.064501
https://doi.org/10.1103/PhysRevLett.108.216401
https://doi.org/10.1103/PhysRevLett.108.216401
https://doi.org/10.1103/PhysRevLett.108.216401
https://doi.org/10.1103/PhysRevLett.108.216401
https://doi.org/10.1103/PhysRevLett.114.236402
https://doi.org/10.1103/PhysRevLett.114.236402
https://doi.org/10.1103/PhysRevLett.114.236402
https://doi.org/10.1103/PhysRevLett.114.236402
https://doi.org/10.1103/PhysRevB.66.075102
https://doi.org/10.1103/PhysRevB.66.075102
https://doi.org/10.1103/PhysRevB.66.075102
https://doi.org/10.1103/PhysRevB.66.075102
https://doi.org/10.1103/PhysRevLett.110.216405
https://doi.org/10.1103/PhysRevLett.110.216405
https://doi.org/10.1103/PhysRevLett.110.216405
https://doi.org/10.1103/PhysRevLett.110.216405
https://doi.org/10.1103/PhysRevX.8.021048
https://doi.org/10.1103/PhysRevX.8.021048
https://doi.org/10.1103/PhysRevX.8.021048
https://doi.org/10.1103/PhysRevX.8.021048
https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1103/RevModPhys.62.113
https://doi.org/10.1103/RevModPhys.62.113
https://doi.org/10.1103/RevModPhys.62.113
https://doi.org/10.1103/RevModPhys.62.113
https://doi.org/10.1103/PhysRevLett.69.2001
https://doi.org/10.1103/PhysRevLett.69.2001
https://doi.org/10.1103/PhysRevLett.69.2001
https://doi.org/10.1103/PhysRevLett.69.2001
https://doi.org/10.1038/374434a0
https://doi.org/10.1038/374434a0
https://doi.org/10.1038/374434a0
https://doi.org/10.1038/374434a0
https://doi.org/10.1103/PhysRevLett.77.4796
https://doi.org/10.1103/PhysRevLett.77.4796
https://doi.org/10.1103/PhysRevLett.77.4796
https://doi.org/10.1103/PhysRevLett.77.4796
https://doi.org/10.1103/PhysRevB.58.14572
https://doi.org/10.1103/PhysRevB.58.14572
https://doi.org/10.1103/PhysRevB.58.14572
https://doi.org/10.1103/PhysRevB.58.14572
https://doi.org/10.1103/PhysRevLett.99.247001
https://doi.org/10.1103/PhysRevLett.99.247001
https://doi.org/10.1103/PhysRevLett.99.247001
https://doi.org/10.1103/PhysRevLett.99.247001
https://doi.org/10.1103/PhysRevB.73.155113
https://doi.org/10.1103/PhysRevB.73.155113
https://doi.org/10.1103/PhysRevB.73.155113
https://doi.org/10.1103/PhysRevB.73.155113
https://doi.org/10.1103/PhysRevB.63.094503
https://doi.org/10.1103/PhysRevB.63.094503
https://doi.org/10.1103/PhysRevB.63.094503
https://doi.org/10.1103/PhysRevB.63.094503
https://doi.org/10.1103/PhysRevB.75.014503
https://doi.org/10.1103/PhysRevB.75.014503
https://doi.org/10.1103/PhysRevB.75.014503
https://doi.org/10.1103/PhysRevB.75.014503
https://doi.org/10.1103/PhysRevB.40.7391
https://doi.org/10.1103/PhysRevB.40.7391
https://doi.org/10.1103/PhysRevB.40.7391
https://doi.org/10.1103/PhysRevB.40.7391
https://doi.org/10.1073/pnas.96.16.8814
https://doi.org/10.1073/pnas.96.16.8814
https://doi.org/10.1073/pnas.96.16.8814
https://doi.org/10.1073/pnas.96.16.8814
https://doi.org/10.1103/RevModPhys.75.913
https://doi.org/10.1103/RevModPhys.75.913
https://doi.org/10.1103/RevModPhys.75.913
https://doi.org/10.1103/RevModPhys.75.913
https://doi.org/10.1103/PhysRevB.77.184514
https://doi.org/10.1103/PhysRevB.77.184514
https://doi.org/10.1103/PhysRevB.77.184514
https://doi.org/10.1103/PhysRevB.77.184514
https://doi.org/10.1103/PhysRevB.57.R11085
https://doi.org/10.1103/PhysRevB.57.R11085
https://doi.org/10.1103/PhysRevB.57.R11085
https://doi.org/10.1103/PhysRevB.57.R11085
https://doi.org/10.1038/31177
https://doi.org/10.1038/31177
https://doi.org/10.1038/31177
https://doi.org/10.1038/31177
https://doi.org/10.1080/00018730903122242
https://doi.org/10.1080/00018730903122242
https://doi.org/10.1080/00018730903122242
https://doi.org/10.1080/00018730903122242
https://doi.org/10.1146/annurev-conmatphys-070909-103925
https://doi.org/10.1146/annurev-conmatphys-070909-103925
https://doi.org/10.1146/annurev-conmatphys-070909-103925
https://doi.org/10.1146/annurev-conmatphys-070909-103925


NANOSCALE PHASE SEPARATION AND PSEUDOGAP IN … PHYSICAL REVIEW B 101, 125107 (2020)

[38] L. Nie, G. Tarjus, and S. A. Kivelson, Proc. Natl. Acad. Sci.
USA 111, 7980 (2014).

[39] K. Lee, S. A. Kivelson, and E.-A. Kim, Phys. Rev. B 94, 014204
(2016).

[40] P. S. Häfliger, A. Podlesnyak, K. Conder, E. Pomjakushina, and
A. Furrer, Phys. Rev. B 74, 184520 (2006).

[41] D. Reznik, B. Keimer, F. Dogan, and I. A. Aksay, Phys. Rev.
Lett. 75, 2396 (1995).

[42] K. C. Hewitt, X. K. Chen, C. Roch, J. Chrzanowski, J. C. Irwin,
E. H. Altendorf, R. Liang, D. Bonn, and W. N. Hardy, Phys.
Rev. B 69, 064514 (2004).

[43] L. Pintschovius, Phys. Status Solidi B 242, 30 (2005).
[44] V. Hinkov, D. Haug, B. Fauqué, P. Bourges, Y. Sidis, A. Ivanov,

C. Bernhard, C. T. Lin, and B. Keimer, Science 319, 597 (2008).
[45] R. Daou, J. Chang, D. LeBoeuf, O. Cyr-Choinière, F. Laliberté,

N. Doiron-Leyraud, B. J. Ramshaw, R. Liang, D. A. Bonn,
W. N. Hardy, and L. Taillefer, Nature (London) 463, 519
(2010).

[46] S. Kaiser, C. R. Hunt, D. Nicoletti, W. Hu, I. Gierz, H. Y. Liu,
M. Le Tacon, T. Loew, D. Haug, B. Keimer, and A. Cavalleri,
Phys. Rev. B 89, 184516 (2014).

[47] D. M. Newns and C. C. Tsuei, Nat. Phys. 3, 184 (2007).

[48] R. A. Nistor, G. J. Martyna, D. M. Newns, C. C. Tsuei, and
M. H. Müser, Phys. Rev. B 83, 144503 (2011).

[49] J. Hsiao, G. J. Martyna, and D. M. Newns, Phys. Rev. Lett. 114,
107001 (2015).

[50] A. Ramos-Alvarez, N. Fleischmann, L. Vidas, A. Fernandez-
Rodriguez, A. Palau, and S. Wall, Phys. Rev. B 100, 184302
(2019).

[51] P. Fulde, Electron Correlations in Molecules and Solids,
Springer Series in Solid-State Sciences Vol. 100, 3rd ed.
(Springer-Verlag, Berlin, 1995).

[52] L. B. Ioffe and A. J. Millis, Phys. Rev. B 58, 11631 (1998).
[53] K. Fujita, C. K. Kim, I. Lee, J. Lee, M. H. Hamidian, I. A.

Firmo, S. Mukhopadhyay, H. Eisaki, S. Uchida, M. J. Lawler,
E.-A. Kim, and J. C. Davis, Science 344, 612 (2014).

[54] A. V. Pimenov, A. V. Boris, L. Yu, V. Hinkov, T. Wolf, J. L.
Tallon, B. Keimer, and C. Bernhard, Phys. Rev. Lett. 94, 227003
(2005).

[55] J. Vašátko and D. Munzar, Phys. Rev. B 93, 094512 (2016).
[56] D. Poilblanc, D. J. Scalapino, and W. Hanke, Phys. Rev. Lett.

72, 884 (1994).
[57] P. Prelovšek, A. Ramšak, and I. Sega, Phys. Rev. Lett. 81, 3745

(1998).

125107-9

https://doi.org/10.1073/pnas.1406019111
https://doi.org/10.1073/pnas.1406019111
https://doi.org/10.1073/pnas.1406019111
https://doi.org/10.1073/pnas.1406019111
https://doi.org/10.1103/PhysRevB.94.014204
https://doi.org/10.1103/PhysRevB.94.014204
https://doi.org/10.1103/PhysRevB.94.014204
https://doi.org/10.1103/PhysRevB.94.014204
https://doi.org/10.1103/PhysRevB.74.184520
https://doi.org/10.1103/PhysRevB.74.184520
https://doi.org/10.1103/PhysRevB.74.184520
https://doi.org/10.1103/PhysRevB.74.184520
https://doi.org/10.1103/PhysRevLett.75.2396
https://doi.org/10.1103/PhysRevLett.75.2396
https://doi.org/10.1103/PhysRevLett.75.2396
https://doi.org/10.1103/PhysRevLett.75.2396
https://doi.org/10.1103/PhysRevB.69.064514
https://doi.org/10.1103/PhysRevB.69.064514
https://doi.org/10.1103/PhysRevB.69.064514
https://doi.org/10.1103/PhysRevB.69.064514
https://doi.org/10.1002/pssb.200404951
https://doi.org/10.1002/pssb.200404951
https://doi.org/10.1002/pssb.200404951
https://doi.org/10.1002/pssb.200404951
https://doi.org/10.1126/science.1152309
https://doi.org/10.1126/science.1152309
https://doi.org/10.1126/science.1152309
https://doi.org/10.1126/science.1152309
https://doi.org/10.1038/nature08716
https://doi.org/10.1038/nature08716
https://doi.org/10.1038/nature08716
https://doi.org/10.1038/nature08716
https://doi.org/10.1103/PhysRevB.89.184516
https://doi.org/10.1103/PhysRevB.89.184516
https://doi.org/10.1103/PhysRevB.89.184516
https://doi.org/10.1103/PhysRevB.89.184516
https://doi.org/10.1038/nphys542
https://doi.org/10.1038/nphys542
https://doi.org/10.1038/nphys542
https://doi.org/10.1038/nphys542
https://doi.org/10.1103/PhysRevB.83.144503
https://doi.org/10.1103/PhysRevB.83.144503
https://doi.org/10.1103/PhysRevB.83.144503
https://doi.org/10.1103/PhysRevB.83.144503
https://doi.org/10.1103/PhysRevLett.114.107001
https://doi.org/10.1103/PhysRevLett.114.107001
https://doi.org/10.1103/PhysRevLett.114.107001
https://doi.org/10.1103/PhysRevLett.114.107001
https://doi.org/10.1103/PhysRevB.100.184302
https://doi.org/10.1103/PhysRevB.100.184302
https://doi.org/10.1103/PhysRevB.100.184302
https://doi.org/10.1103/PhysRevB.100.184302
https://doi.org/10.1103/PhysRevB.58.11631
https://doi.org/10.1103/PhysRevB.58.11631
https://doi.org/10.1103/PhysRevB.58.11631
https://doi.org/10.1103/PhysRevB.58.11631
https://doi.org/10.1126/science.1248783
https://doi.org/10.1126/science.1248783
https://doi.org/10.1126/science.1248783
https://doi.org/10.1126/science.1248783
https://doi.org/10.1103/PhysRevLett.94.227003
https://doi.org/10.1103/PhysRevLett.94.227003
https://doi.org/10.1103/PhysRevLett.94.227003
https://doi.org/10.1103/PhysRevLett.94.227003
https://doi.org/10.1103/PhysRevB.93.094512
https://doi.org/10.1103/PhysRevB.93.094512
https://doi.org/10.1103/PhysRevB.93.094512
https://doi.org/10.1103/PhysRevB.93.094512
https://doi.org/10.1103/PhysRevLett.72.884
https://doi.org/10.1103/PhysRevLett.72.884
https://doi.org/10.1103/PhysRevLett.72.884
https://doi.org/10.1103/PhysRevLett.72.884
https://doi.org/10.1103/PhysRevLett.81.3745
https://doi.org/10.1103/PhysRevLett.81.3745
https://doi.org/10.1103/PhysRevLett.81.3745
https://doi.org/10.1103/PhysRevLett.81.3745

