
PHYSICAL REVIEW B 101, 125101 (2020)
Editors’ Suggestion

Wigner crystals in two-dimensional transition-metal dichalcogenides: Spin physics and readout
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Wigner crystals are prime candidates for the realization of regular electron lattices under minimal requirements
on external control and electronics. However, several technical challenges have prevented their detailed
experimental investigation and applications to date. We propose an implementation of two-dimensional electron
lattices for quantum simulation of Ising spin systems based on self-assembled Wigner crystals in transition-metal
dichalcogenides. We show that these semiconductors allow for minimally invasive all-optical detection schemes
of charge ordering and total spin. For incident light with optimally chosen beam parameters and polarization,
we predict a strong dependence of the transmitted and reflected signals on the underlying lattice periodicity, thus
revealing the charge order inherent in Wigner crystals. At the same time, the selection rules in transition-metal
dichalcogenides provide direct access to the spin degree of freedom via Faraday rotation measurements.
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I. INTRODUCTION

Ever since its theoretical inception 85 years ago [1],
Wigner crystallization has stimulated both theoretical and
experimental research to find unambiguous evidence for this
elusive state of matter. Since the earliest indication for quan-
tum Wigner crystals (WCs) obtained from high-magnetic-
field transport measurements [2,3], it has proven to be a very
demanding task to study WCs, especially in a minimally inva-
sive manner without destroying the crystalline order. Recent
experimental work demonstrated nondestructive read-out of
the charge distribution of one-dimensional WCs in carbon
nanotubes [4]. However, it remains an open challenge to find
approaches for the noninvasive detection of WCs in two-
dimensional and broader ranges of one-dimensional quantum
systems.

Apart from a fundamental interest in the physics of Wigner
crystallization, self-assembled crystals promise a route to-
ward highly ordered and scalable many-body systems under
minimal external control. Thus, they meet some of the key
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requirements posed by quantum computers [5] and simula-
tors [6]. It has therefore been proposed that WCs hosted in
semiconductor nanostructures [7,8], trapped above the surface
of liquid helium [9,10] or composed of trapped ions [11,12],
can be utilized for quantum information processing and sim-
ulation. In particular, electrons confined to low-dimensional
semiconductors [13] may be brought into the low-temperature
regime kBT � εF (Fermi energy εF) where quantum phe-
nomena occur and spin-exchange interactions can play an
important role. Since solid-state systems also offer a genuine
prospect for miniaturization and on-chip integration, the quest
for a faithful implementation of solid-state quantum WCs at
zero magnetic field remains tantalizing.

As recently pointed out, monolayer transition-metal
dichalcogenides (TMDs) [14] and TMD-based moiré super-
lattices [15–17] are unique platforms for realizing strongly
correlated systems and the study of WCs, in particular, owing
to the combination of reduced screening in two dimensions
and a relatively high effective electron mass. Their optical
band gap offers exciting possibilities to probe quasiparticle
excitations, e.g., excitons or trions [18–21] optically [22–24].

In this paper, we demonstrate the potential of scalable
quantum simulators based on two-dimensional WCs in TMDs
and propose an all-optical detection scheme for charge or-
dering and partial spin information in these systems (see
Fig. 1). In particular, the scheme possesses three key proper-
ties: (i) It provides clear evidence for Wigner crystallization in
monolayer TMDs. (ii) Under conditions specified below, the
detection scheme is noninvasive and leaves charge and spin
order intact. (iii) Optical selection rules provide spin-selective
addressability, which is a crucial requirement for quantum
simulation.
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FIG. 1. Schematic illustration of proposed setup and optical
detection scheme. Charge ordering of electrons in a lattice (black
dots) competes with random disorder-induced dislocations of lattice
sites in the presence of impurities and defects (green triangle). The
angle-dependent (φ) reflection of a tilted (θ ) focused laser beam
with wave vector k from a WC probes its lattice geometry. Light
polarization provides further information about the spin via optical
selection rules of TMDs.

II. THEORETICAL FRAMEWORK

A. Wigner crystals

At electron densities n below a critical density ncr and in
the presence of an external confinement potential, interacting
charge carriers (referred to as electrons in the following)
arrange themselves in a lattice [25], leading to a periodic
modulation of charge density n(r). In this low-density regime,
electrostatic interactions dominate over the kinetic energy of
electrons. In two dimensions, this regime is characterized by
a sufficiently large interaction parameter rs = 1/(

√
πnaB),

with the Bohr radius aB = 4πεh̄2/(e2m), effective electron
mass m, and permittivity ε. Monolayer TMDs feature an ex-
traordinarily small Bohr radius aB � 0.5 nm and thus render
the large-rs regime accessible at experimentally achievable
[26,27] densities n � ncr. For our calculations, we choose
ncr = 1011 cm−2 [14] and m = 0.5m0 (representative of MoX2

monolayers where X = S, Se [28]), where m0 denotes the
bare electron mass. In a square (triangular) lattice, this max-
imum electron density corresponds to a minimum lattice
spacing of a � 32 nm(a � 34 nm).

B. Model

We consider N electrons trapped at z = 0 in a global
harmonic potential such that the total potential reads

V (r1, . . . , rN ) = mω2

2

N∑
i=1

(
x2

i + y2
i

) +
∑
i �= j

Vint (ri, r j ), (1)

where ri = (xi, yi, 0) denotes the position of the ith electron.
The confinement is characterized by the trapping frequency ω

and Vint denotes the two-body interaction potential. In TMDs,
the former may be induced by strain [29,30] or defined via
local gates [31] and the latter is usually modeled by the

FIG. 2. Spin coupling and system size. (a) Maximum number of
electrons as a function of ω such that n < ncr . (b) Coupling constant
J as a function of the confinement ω for different particle numbers
N = 10 (dash dotted), N = 20 (solid), N = 50 (dashed), N = 100
(dotted). Black dots: Maximum frequency ω for given N such that
n < ncr .

Keldysh potential [32],

Vint (ri, r j ) = πe2

2r0

[
H0

( |ri − r j |
r0

)
− Y0

( |ri − r j |
r0

)]
, (2)

with a material-specific length scale r0 ≈ 5 nm. H0 and Y0

are Struve and Bessel functions, respectively. At electron
concentrations n < ncr, the interparticle distance |ri − r j | �
r0 and hence Vint (ri, r j ) ∼ 1/|ri − r j | behaves like a Coulomb
potential.

In a WC, the electrons are localized around lattice sites at
r0

i (i = 1, . . . , N) which can be determined from the equilib-
rium conditions ∇iV |ri=r0

i
= 0. Numerical calculations show

that harmonic confinement potentials, as described in Eq. (1),
give rise to triangular lattice geometries while other potentials
can give rise to, e.g., square lattices; see Appendix A for
details. For any ω, the maximum number of WC electrons
can be calculated given a critical density, and vice versa.
Small systems containing N ∼ (10 − 100) electrons require
h̄ω ∼ (1 − 3) meV at n ∼ ncr (see Fig. 2).

The strong interactions in Eq. (2) enable the descrip-
tion of charge excitations in terms of phonons in the
WC. These can be expressed as small displacements qi =
ri − r0

i (i = 1, . . . , N) from the lattice sites such that V =
(m/2)

∑
Kαβ

i j qα
i qβ

j (α, β ∈ {x, y}) with an elasticity matrix K.
All 2N normal modes of the system with eigenfrequencies 	n

(n = 1, . . . , 2N) are readily obtained by diagonalization of K
and for the nonzero eigenfrequencies one finds that 	n � ω

(cf. Appendix A). Given the relation between ω and N at
n ∼ ncr, this indicates that large WCs have low-energy phonon
modes. Using anharmonic potentials, there is no limit placed
on N by the phonon modes or ncr.

C. Requirements

Wigner crystallization requires low disorder. Disorder-
induced potential fluctuations are incorporated based on
Eq. (1) by adding further randomly distributed local con-
finement terms to analyze the impact of impurities (e.g.,
atomic defects or charges) on the electron lattice. To obtain
a regular lattice structure with an approximately equidistant
spacing between adjacent electrons (see schematic Fig. 1), the
impurity density nimp should be significantly smaller than the
electron density, i.e., nimp � 0.1n; see Appendix B for details.
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To date, atomic and charge defects in TMDs still prevent
the realization of systems with sufficiently low disorder [33].
However, both sample quality and deterministic control over
defects [34] have been improving rapidly in recent years
and defect densities around ncr can already be achieved.
Moreover, WCs require sufficiently low temperature. Cooling
into the motional ground state requires low temperatures
T ∼ 1 K for h̄ω � meV, as the thermal occupation n̄th =
1/[exp(h̄	n/(kBT )) − 1] of the modes increases as ω is de-
creased (cf. Appendix C).

There are many interesting aspects about the dynamics of
strongly correlated electrons that can be studied in the system
we describe, including the entanglement properties of the
ground state, the nature and dynamics of excitations, and the
transitions to neighboring phases. In the following, we focus
on the spin physics.

III. SPIN PHYSICS

TMD monolayers exhibit strong spin-orbit coupling and
an intricate interplay between spin and valley degrees of
freedom. Here we focus on the case where, by energetic
isolation of the lower spin states of the conduction band,
spin and valley become locked [35]. For this reason, we
require that the electron density be sufficiently low such that
the Coulomb interaction energy Eint ∼ rs · εF = rsπ h̄2n/m is
small compared to the spin-orbit splitting in the conduction
band, 
c

SO. At n � ncr, one typically finds Eint � 10 meV,
such that the above condition is readily satisfied in MoSe2

(
c
SO ≈ 23 meV), though not necessarily in MoS2 (
c

SO ≈
3 meV) [36]. Nevertheless, the requirement can be met in
all TMDs by considering holes instead of electrons, since the
spin-orbit splitting in the valence band 
v

SO is on the order of
a hundred meV [21].

At low temperature and small displacements qi, we assume
that the electron spins are localized around the lattice sites at
r0

i . Adjacent spins are coupled via exchange interactions that
can be either ferromagnetic or antiferromagnetic, depending
on the density n [37,38]. Here, we provide an estimate for the
magnitude of the spin-spin coupling, demonstrating the po-
tential of TMD-based electron lattices as a platform for quan-
tum simulation of prototypical spin systems. As exchange
couplings decay exponentially with a2, where a denotes the
interparticle distance, the low-density regime necessary for
WCs stands in contrast with the strong couplings of interest
for spin physics. However, at intermediate densities n � ncr,
we still find significant exchange couplings which exceed
predicted spin relaxation rates [39,40].

Due to the spin polarization in each of the K and K ′ valleys,
we find that the effective spin model in the spin-valley locked,
low-temperature regime reduces to an Ising Hamiltonian (cf.
Appendix D for details) of the form

Hσ =
∑
i, j

Ji jσ
z
i σ z

j . (3)

Here σ z
i is a Pauli operator and Ji j denotes the coupling

strength between spins at sites i and j. In a tight-binding ap-
proximation, we calculate Ji j (1 � i < j � N) using Gaussian
ansatz wave functions centered around the sites r0

i . The width

of these wave functions is expressed in terms of the normal
mode frequencies 	n and, upon inserting typical material
parameters, we find for the magnitude J of the spin-spin
interaction between nearest neighbors typical values in the
range J ∼ (5 − 30) μeV for n � ncr. Due to the exponential
decay of Ji j with distance, nearest-neighbor interactions are
dominant and typically roughly one order of magnitude larger
than next-nearest-neighbor interactions. In Fig. 2(b), we show
the resulting spin-coupling constant J as a function of ω for
different particle numbers 10 � N � 100. At the intermediate
densities n � ncr considered here, we find antiferromagnetic
exchange couplings which can result in geometrical frustra-
tion [41], depending on the lattice structure.

IV. OPTICAL READOUT

We now address the optical detection of charge ordering in
TMD-based WCs and consider an incoming (z < 0) Gaussian
laser beam Ein(r) with wavelength λ focused to a spot on
the electron lattice (z = 0) at a tilt angle θ (see Fig. 1). Our
approach is similar in nature to the one taken in Refs. [42,43],
where the reflection and transmission of arrays of discrete
atomic emitters in a lattice configuration were analyzed. Such
an approach is valid for highly localized charges [44], in
contrast to the study of mobile polarons [45]. Due to optical
transition selection rules in monolayer TMDs, specific elec-
tron spin states can be addressed using circularly polarized
σ+ and σ− light. For example, σ− (σ+) light may couple
a WC electron in a |↑K〉 (|↓K′ 〉) spin state to a trionic state
|↑K,↓K′⇓K′ 〉 (|↓K′ ,↑K⇑K〉) with a hole spin ⇑ (⇓) in the K ′
(K) valley. For our calculations, we assume a low-amplitude
light beam with sufficiently small detuning h̄
0 � Eb, Eg

from the trion resonance such that other quasiparticle exci-
tations and transitions can be neglected. Prototypical values
for the trion binding energy Eb ∼ 20 meV and quasiparticle
band gap Eg ∼ 500 meV are given in Ref. [21]. When the
incoming beam is sufficiently close to resonance with a dipole
transition at lattice points r0

n, the scattered light field E(r)
at position r is obtained by solving a set of coupled linear
equations,

E(r) = Ein(r) + 4π2

ε0λ2

N∑
n=1

G
(
k, r, r0

n

)
αn(
0)E

(
r0

n

)
, (4)

with the detuning from resonance 
0, the dyadic Green’s
function G evaluated at k = 2π/λ, and the polarizability ten-
sor αn. The magnitude of the polarizability tensor is given by
the scalar polarizability α(
0), while the orientation depends
on the electron spin at site n; see Appendix E for more details.

To probe charge ordering, it is advantageous to address
all WC electrons equally. To this end, we assume for the
following discussion that the WC is fully spin polarized,
which could be achieved by applying a large magnetic field
or via optical pumping [46]. Alternatively, one could consider
a TMD heterobilayer system where an electron-hole pair
excited in one layer forms a trion state with a WC electron
in the other layer, such that both valleys can be addressed
independent of the spin of the resident electron [21].
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FIG. 3. Density and angle-dependent transmission of elliptically
polarized [see Eq. (E3)] incoming light beam at incident angle θ

and in-plane rotation angle φ (see Fig. 1). (a) Transmission T at a
tilt angle θ = π/4 for a square lattice configuration as a function
of lattice constant a and density n. (b) T (φ) at chosen values for
a/λ = 0.1 (red, dash-dotted line), a/λ = 0.45 (blue, dashed line) and
same parameters as in (a). Contrast 
T is depicted by oscillation
amplitude of T (φ). (c) Same as (a) but for a triangular lattice config-
uration. Angle of incidence θ = π/3. (d) T (φ) at chosen values for
a/λ = 0.2 (red, dash-dotted line), a/λ = 0.45 (blue, dashed line) and
same parameters as in (c). Numerical parameters: Gaussian beam
waist w0 = 1.0λ, N = 40 × 40, detuning 
0 = 0.

The total power P transmitted by the WC to z > 0 is
obtained by integrating the transmitted signal (μ0 = 1),

P = 1

2

∫
S

Re[E × B∗] · ẑ dA, (5)

with the electric and magnetic fields E and B, respectively,
and B∗ denotes the complex conjugate of B. The transmission
T = Pwc/P0 is calculated as a function of density n, incidence
angle θ , and rotation angle φ (see Fig. 1) by comparing
the transmitted power Pwc in the presence of a WC with
a reference signal P0 obtained in the absence of localized
dipoles [42], e.g. in a system with no doping at n = 0.

In Fig. 3, T is shown as a function of the electron density
n ∼ 1/a2 for square [Fig. 3(a)] and triangular [Fig. 3(c)]
lattices with a lattice constant a. Here we consider 
0 = 0,
which corresponds to a wavelength λ ∼ (700-800) nm in
state-of-the-art TMD setups [47,48]. We choose θ such that
the cross section of the Gaussian beam is small enough and
does not exceed the size of the WC. Varying the twist angle
φ of the laser beam leads to smooth variations in T (φ). The
periodic modulation of T (φ) reflects the rotational symmetry
of the WC. Figures 3(b) and 3(d) display the 2π/4 and
2π/6 rotational symmetry of a square and triangular lattice,
respectively. The amplitude of this periodic signal shows that
the contrast 
T = max0�φ<2πT (φ) − min0�φ<2πT (φ) can
be of the order of a few percent. This modulation provides
an unambiguous experimental signature of Wigner crystalliza-
tion. The beam parameters and polarization of the incident
light can be optimized to maximize the transmission contrast

Δc
so

Δv
so

|

|

|

|

|

|

|

|

K K

n↑ n↓

(a) (b)

FIG. 4. Faraday rotation and optical selection rules. (a) θF from
Eq. (6) as a function of detuning 
0 from the bare resonance and
spin imbalance N↑ − N↓. Results for a total number of N = N↑ +
N↓ = 25 electrons in a square lattice at a/λ = 0.4. (b) Energy-level
diagrams for conduction and valence bands at the K and K ′ valleys
of MoX2 monolayers with spin-orbit splittings between |↓〉 and |↑〉
in the conduction (
c

SO) and valence (
v
SO) bands. Carrier densities

n↑ and n↓ in the |↑K〉 and |↓K′ 〉 conduction bands, respectively.
Right-circularly (left-circularly) polarized light couples only to spin-
up (spin-down) electron states in the K (K ′) valley. Numerical pa-
rameters: Nonradiative linewidth h̄γnr = 0, tilt angle θ = 0 (normal
incidence) and beam waist w0 = 1.0λ.

(cf. Appendix E). Momentum transfer onto the WC can be
safely neglected since the recoil energy ER = h̄2k2/(2m) ∼
(5 − 10)μeV is much smaller than interaction energy and
trapping potential. This approach already incorporates spin
information, as it can be used to detect ferromagnetic ground
states and may pick up signatures of the lattice constant 2a
prevailing in an antiferromagnetic ground state.

Faraday rotation

While we have focused on the detection of charge ordering
in a spin-polarized WC before, we now further examine the
spin degree of freedom by analyzing the polarization of the
scattered field. With the probe beam Ein detuned far enough
from the trionic resonance, the presence of the optical tran-
sition merely imprints a state-dependent phase shift on the
incoming field. According to selection rules of monolayer
TMDs [49,50], σ+ (σ−) polarized light couples to the resident
electron density n↑ (n↓) in the K (K ′) valley [see Fig. 4(b)]. In
optical Faraday (Kerr) rotation using linearly polarized light,
the polarization of the transmitted (reflected) part of the light
is rotated by an angle θF which depends on the spin imbalance
n↑ − n↓ [46,51]. Here we inspect the Faraday rotation of an
incident s- or p-polarized beam, which is given by [52]

θF = 1

2
arctan

2ReχF

1 − |χF|2 , (6)

where χF = tps/tss for s-polarized light (χF = −tsp/tpp for
p-polarized light) depends on the Jones matrix elements tss,
tps (tpp, tsp) encoding the polarization state of the scattered
light [53]. We consider N↑ (N↓) electrons in the |↑K〉 (|↓K′ 〉)
conduction band and numerically calculate θF as a function of
spin imbalance N↑ − N↓ and detuning 
0. Here we assume
that the electron sites r0

i are distributed in a square-lattice
configuration in the spot of the beam with N↑ (N↓) ran-
domly assigned |↑〉 (|↓〉) states. We average over many such
configurations. In Fig. 4(a), the resulting Faraday rotation is
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depicted for a p-polarized input field, yielding the strongest
signal at |
0| = γr/2 with the radiative linewidth γr. For
the strongly localized quantum emitters considered here, we
estimate h̄γr ∼ 10−2 μeV. Nonradiative decay processes can
also be taken into account in our framework, yielding weaker
Faraday signals for larger nonradiative decay rates γnr (cf.
Appendix E). Since the Faraday rotation is proportional to
N↑ − N↓, it provides a measure for the spin imbalance in
the system. With this tool, one may distinguish between
ferromagnetic and antiferromagnetic configurations or even
locally probe domain walls in the spin system, where the
spatial resolution would be limited by the spot size ∼λ2.

V. SUMMARY AND OUTLOOK

In conclusion, we have proposed an all-optical detection
scheme for TMD-based WCs, highlighting their potential as
a platform for the quantum simulation of geometrically frus-
trated magnetism with adjustable and self-assembled lattice
structures. Beyond the Ising model considered here, richer
spin physics with multi-spin-exchange interactions has been
predicted for these systems, potentially offering a platform
to study three- and four-body interactions [54,55]. Moreover,
recent results show that multielectron quantum dots hold
promise as exchange-based mediators of quantum informa-
tion [56]. In this context, intermediate-scale WCs in 2D
semiconductors could be interesting for achieving long-range
spin coupling with minimal external control requirements [8].
Control over the spin degree of freedom may be provided
via magnetic fields or optical pumping into a specific valley,
e.g., in parts of the system to study the formation of domain
walls. Inversion symmetric TMD bilayers, whose bands are
spin degenerate, may further give rise to a wider range of
spin Hamiltonians and allow for coherent optical control of
the electron spin as no momentum is required to flip the spin.
High-quality samples of monolayer TMDs should provide
access to first proof-of-principle experiments with small sys-
tem sizes. Local spin probes may be enabled by illuminating
only parts of the WC. Besides the optical techniques we
propose, which we believe can be readily implemented given
sufficiently clean samples, we envisage that it might become
possible in the future to extend existing and developing work
on high-resolution electron beam imaging with (close-to)
single site resolution [57,58] to the point that a single electron
charge can be directly spatially probed. Furthermore, other
detection schemes could be considered like magnetic noise
spectroscopy [59], microwave spectroscopy [60], or using sur-
face acoustic waves in piezoelectric TMD monolayers [61].
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APPENDIX A: CALCULATION OF LATTICE
STRUCTURE AND NORMAL MODES

We consider a general potential of the form

Vp =
N∑

i=1

μp
(
xp

i + yp
i

) +
∑
i �= j

Vint (ri, r j ), (A1)

where μp is the strength of the potential and the interaction
potential Vint is modeled by the Keldysh interaction potential
given in Eq. (2). The results presented in the main text are
derived for the special cases p = 2 and μ2 = mω2/2.

1. Lattice structure

The lattice sites r0
i are calculated by solving the equations

∂Vp

∂xi

∣∣∣∣
ri=r0

i

= ∂Vp

∂yi

∣∣∣∣
ri=r0

i

= 0 (A2)

for each electron i ∈ {1, . . . , N}. This leads to a set of 2N
coupled equations which are of the form

μp pαp−1
i + ξ

∑
j �=i

(α j − αi )h(|r j − ri|/r0) = 0, (A3)

with α ∈ {x, y}, ξ = πe2/(2r3
0 ) and the function

h(x) = H−1(x) − H1(x) + Y1(x) − Y−1(x) + 1√
π�

(
3
2

) , (A4)

which is obtained by making use of recurrence relations for
the Struve and Bessel functions of the second kind Hν and Yν

(ν ∈ N), respectively. To solve Eqs. (A3), it is instructive to
introduce dimensionless variables scaled by a length scale � =
[e2/(4πεpμp)]1/(p+1). For r0 � �, we find that the obtained
lattice configurations agree very well with the correspond-
ing results obtained with a Coulomb interaction potential,
Vint (ri, r j ) ∼ 1/|ri − r j |. Since � ≈ 30 nm at h̄ω = 1 meV,
this condition is typically well satisfied in the situations
considered in the main text. The resulting lattice structure
{r0

1, . . . , r0
N } depends on the details of the confinement poten-

tial. Two exemplary charge configurations are shown in Fig. 5.

FIG. 5. Lattice configurations {r0
i }1�i�N (black dots) for small

systems of (a) N = 7 electrons in a harmonic potential with p = 2
and (b) N = 9 electrons in an anharmonic potential with p = 8.
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2. Normal modes

A two-dimensional lattice with N electrons has 2N elemen-
tary excitations, the so-called normal modes of the crystal. The
normal-mode excitation spectrum of WCs can be calculated
from the the system’s elasticity matrix K.

Starting with Eq. (A1), the elasticity matrix is obtained
from the second-order derivatives of Vp with respect to the
spatial coordinates. In the general case of arbitrary p � 2 and
the interaction potential in Eq. (2), we find that

∂2Vp

∂αm∂αn
=

⎧⎨⎩μp(p − 1)pαp−2
m + ξ

[∑
i �=m

(αi−αm )2

r2
0

g(|ri − rm|/r0) − h(|ri − rm|/r0)
]
, if m = n

−ξ
[ (αn−αm )2

r2
0

g(|rm − rn|/r0) − h(|rm − rn|/r0)
]
, if m �= n,

(A5)

and

∂2Vp

∂αm∂βn
=

⎧⎨⎩ξ
∑

i �=m
(αi−αm )(βi−βm )

r2
0

g(|ri − rm|/r0), if m = n

−ξ
(αn−αm )(βn−βm )

r2
0

g(|rn − rm|/r0), if m �= n,
(A6)

where α, β ∈ {x, y}, α �= β and the function g is given by

g(x) = H2(x) + H−2(x) − 2H0(x) − Y2(x) − Y−2(x) + 2Y0(x) + 2√
π�

(
3
2

)
x

− x

2
√

π�
(

5
2

) . (A7)

The eigenmodes of the system are then calculated from the
eigenvalues of the elasticity matrix Kαβ

mn = ∂2Vp/(∂αm∂βn).

APPENDIX B: IMPURITY-INDUCED POSITIONAL
DISORDER: EQUIDISTANCE MEASURE

Random dislocations of single electrons from their lattice
sites r0

i may not only affect the lattice structure of a WC, but
also the detection scheme and spin couplings discussed in the
main text. For a simple estimate of how severe the impact
of impurities on the lattice is, we consider Nimp randomly
distributed Gaussian confinement potentials in addition to
the potential in Eq. (A1) and draw both size and depth of
these local confinement potentials from normal distributions.
For our calculations, we assume that they are localized on
a nanometer length scale and have a depth of the order of
∼meV. In a monolayer TMD, such defects could be, e.g.,
atomistic defects [62]. Starting from Eq. (1), we take these
into account by adding a disorder term,

V (r1, . . . , rN ; {si}1�i�Nimp )

= mω2

2

N∑
i=1

(
x2

i + y2
i

) +
∑
i �= j

Vint (ri, r j )

+ Vrand(r1, . . . , rN ; {si}1�i�Nimp ), (B1)

with

Vrand(r1, . . . , rN ; {si}1�i�Nimp )

= −
N∑

i=1

Nimp∑
j=1

Dj√
2πσ 2

j

exp

[
− (ri − s j )T (ri − s j )

2σ 2
j

]
, (B2)

with random variables Dj ∼ meV and σ j ∼ nm (where both
means and standard deviations are of these orders), where
{s j}1� j�N denote the positions of the impurities. To illustrate
how this impurity model affects the lattice site distribution
r0

i (i = 1, . . . , N) of a small system, an exemplary numer-

ical result obtained with N = 8 is shown in Fig. 6(a). The
same result, but obtained in the presence of two randomly
located (in the lattice) local harmonic potentials, is shown in
Fig. 6(b). Averaging over many such instances and calculating
the density-density correlations in the WC yields a measure of
how much the crystal structure is affected by the presence of
disorder. Similarly, here we look at another measure, χ , which
quantifies how equidistantly the lattice sites r0

i are distributed
in the x-y plane by summing up the distances between nearest
neighbors:

χ = 2n

N

∑
i

min
j �=i

∣∣r0
i − r0

j

∣∣. (B3)

Below we show that χ = 2
√

2/
√

3 (χ = 1) for an equidis-

tantly (completely randomly distributed) set of points r0
i

(i = 1, . . . , N). By increasing the number of impurities for a
given system size, i.e., increasing the impurity density nimp

FIG. 6. Impact of disorder-induced potential fluctuations on the
lattice structure of a small WC with N = 8 resident electrons in a
harmonic confinement potential. (a) Electron configuration without
disorder. (b) Exemplary electron configuration (red dots) in the
presence of two randomly positioned local confinement potentials
(black triangles). (c) Equidistance measure χ is shown as a function
of impurity density nimp/n for N = 10 electrons.
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as compared to the electron density n, χ drops from its
maximum value very fast, see Fig. 6. As would be intuitively
expected, this underlines that nimp � n should be fulfilled in
any experiment to maximize the chances to observe charge
ordering in regular electron lattices.

We briefly show that χ is upper bounded by χmax =
rm/r∞ = 2

√
2/31/4 ≈ 2.15 [63]. This can be achieved by (i)

calculating an upper bound for rm = ∑
i min j �=i |ri − r j |/N

and (ii) estimating r∞ = 1/(2
√

n) as a function of the aver-
age electron density n: (a) In a close-packed lattice with an
average nearest-neighbor distance rm, the unit cell occupies
an area in Auc = √

3r2
m/2. The electron density is then given

by n = 2/(
√

3r2
m ). (b) The mean number of lattice sites in

a sector of area Ak = πr2/k is m = nAk . The probability
of finding N sites in Ak is given by a Poisson distribution
P(N sites in Ak ) = mN e−m/N!. Hence, we obtain the proba-
bility that two lattice sites are separated by a distance |r0

i −
r0

j | smaller than a given r, P<(r) := P(|r0
i − r0

j | < r) = 1 −
exp(−nπr2/k). Therefore, we obtain for the mean of the
distance distribution (k = 1):

r∞ =
∫ ∞

0

dP<(r)

dr
rdr = 1

2
√

n
. (B4)

Combining the findings from (i) and (ii), we obtain an upper
bound for χ , χmax = 2

√
2/31/4 ≈ 2.15. Similarly, it can be

shown that χ = 1 for a random distribution of lattice sites.
In our numerical calculations, we have seen that the de-

tection scheme is only weakly affected by disorder if the
impurity density nimp/n � 0.1. The influence of disorder on
cooperative resonances such as the ones discussed in the main
text has also been investigated in Ref. [43].

APPENDIX C: FINITE TEMPERATURE EFFECTS

We first provide a simple estimate of the melting temper-
ature Tm of a WC by employing the Lindemann criterion,
which has been used extensively in the literature [64,65]. It
states that, in a lattice with charge-carrier density n, melting

FIG. 7. Melting curves of (left) GaAs and (right) monolayer
TMD systems according to the Lindemann criterion. The dark areas
indicate the onset of WC electron lattices, obtained for N = 20
electrons. The dashed line indicates kBT = εF.

FIG. 8. Bose-Einstein distribution n̄th (	1) at COM frequency
	1 = ω and temperature T .

occurs if the root-mean square (RMS) displacement of a
charge carrier from its lattice site r0

i exceeds a certain fraction
of the interparticle distance a. The RMS displacement can
be obtained from the thermally occupied vibrational (normal)
modes of the system at thermal equilibrium. Accordingly, the
melting temperature Tm and electron density n can be related.
Although it is only a phenomenological criterion, it provides
an efficient tool for estimating the melting temperature of a
lattice. The thereby numerically calculated melting curves,
obtained using typical material parameters of GaAs and
monolayer TMD systems, respectively, are shown in Fig. 7.
For the latter, we estimate melting temperatures of the order
of Tm ∼ 5 K, which is in agreement with previous estimates
[14].

Cooling the system into its motional ground state puts
more demanding constraints on temperature than considering
melting only. We compare the thermal energy set by kBT
to the mode frequencies 	n and calculate the thermal mode
occupation n̄th = [exp(h̄	n/(kBT ) − 1]−1. Figure 8 shows
that for the center-of-mass (COM) mode, it is n̄th � 1 at
T � (1 − 5) K and h̄ω � 0.5 meV.

APPENDIX D: SPIN-SPIN INTERACTIONS:
DERIVATION OF COUPLING CONSTANT

We estimate the spin-coupling strength J as given by
Eq. (4) in the main text. For this, we model the interaction
potential Vint (ri, r j ) between two electrons at ri and r j with
a Coulomb potential ∼1/|ri − r j |. In the parameter regime
considered here, this (i) simplifies the calculation and (ii)
yields the same results as obtained with the Keldysh interac-
tion potential from Eq. (2) to a very good approximation, as
confirmed by our numerical calculations.

1. Estimate of spin-coupling constant

We calculate the spin-exchange interaction between two
electrons from the energy difference between the spin-singlet
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and spin-triplet energies [66],

J = Jab − S2C

1 − S4
, (D1)

where Jab, C, and S denote the exchange, Coulomb, and
overlap integrals, respectively, which are given by (in atomic
units)

Jab =
∫

d2r1

∫
d2r2�a(r1)∗�b(r2)∗

1

|r1 − r2|�b(r1)�a(r2),

S =
∫

d2r�b(r)�a(r), (D2)

C =
∫

d2r1

∫
d2r2|�a(r1)|2 1

|r1 − r2| |�b(r2)|2,

where �a/b(r) = φa/b(r) · χa/b(r) denotes the electronic wave
function and the labels a and b refer to the two electrons
located at around r0

a/b = (x0
a/b, y0

a/b). We model the wave
functions with a Gaussian wave packet of width wrZPF (see
Sec. D.2),

φi(r) =
(

1

2πw2r2
ZPF

)1/2

exp

(
−

(
x − x0

i

)2 + (
y − y0

i

)2

4w2r2
ZPF

)
,

where i ∈ {a, b}, and take into account spin-valley locking by
setting the Bloch wave χi(r) = exp(iKx) [χi(r) = exp(iK ′x)]
if the i electron, i ∈ {a, b}, is in a spin-|↑〉 (spin-|↓〉) state.
Next, we evaluate the exchange integral in the spin basis
spanned by |↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉. With the electrons in
different valleys (i.e., opposite spins), by performing some of
the integrations analytically, we find for Jab in Eq. (D2) that

JKK′
ab = e

− a2

4w2r2
ZPF

πw2r2
ZPF

∫ ∞

−∞
dxe

− x2

8w2r2
ZPF

× cos

(
8π

3

x

aTMD

)
K0

(
x2

8w2r2
ZPF

)
,

where a2 = (x0
a − x0

b )2 + (y0
a − y0

b )2, with a TMD lattice con-
stant aTMD ≈ 0.3 nm for MoX2 (X = S, Se) [67] and |K −
K′| = 8π/(3aTMD). K0 denotes the modified Bessel function of
the second kind. Inserting our numerical results for w, and in
particular with wrZPF � aTMD, we find numerically that JKK′

ab
evaluates to negligibly small values as compared with JKK

ab ,
with which we denote the case where the two electrons are in
the same valley. We find that JKK′

ab /JKK
ab ∼ aTMD/(wrZPF) and

that typically JKK′
ab is several orders of magnitude smaller than

JKK
ab .

For JKK
ab , we find an analytical expression and insert TMD

parameters such that

JKK
ab ≈ 35.5 meV

√
h̄ω[meV]

w
e
−37.9× h̄ω[meV]

n[1010 cm−2]w2
, (D3)

where we have expressed the electron density as n =
2/(

√
3a2) for a triangular lattice.

Similarly, we find for the overlap integral S in Eq. (D2) that

S ≈ exp

(
−37.9 × h̄ω[meV]

n[1010 cm−2]

)
. (D4)

In the low-density regime considered here, we find S � 1
such that J ≈ Jab in Eq. (D1) to a very good approximation.

Also the Coulomb integral C in Eq. (D2) can be calculated
analytically by employing the convolution and Parseval’s
theorems. Defining fa/b(r) := |φa/b(r)|2 and g(x) = 1/|x|, we
insert TMD parameters and find that

C =
∫

d2r1 fA(r1)( fB ∗ g)(r1) = 2π

∫
d2q

f̃A(q) f̃B(−q)

|q|

≈ 35.5 meV

√
h̄ω[meV]

w
e
−18.9× h̄ω[meV]

n[1010cm−2]w2

× I0

(
18.9

h̄ω[meV]

n[1010 cm−2]w2

)
, (D5)

where I0 is the modified Bessel function of the first kind.
Putting our results together, we find that JKK′

is several
orders of magnitude smaller than JKK for realistic parameters.
Evaluating the Coulomb interaction Hamiltonian in the spin
basis, with these results we obtain the spin model from Eq. (3)
in the main text. Finally, putting the results from Eqs. (D3)–
(D4) and Eq. (D1) together, we obtain coupling strengths in
the range ∼(5 − 30) μeV at densities n � ncr, as presented in
Fig. 2(a) of the main text.

2. Width of ansatz wave function

We have considered two approaches to calculate w, for
which we have found good agreement. (i) Mean-field ap-
proximation: First, we (iteratively, until the result is found
to be converged) calculate the effective potential seen by a
single electron due to the neighboring electrons by summing
up the Coulomb interaction terms. From this potential, we
calculate the wave function with a Gaussian ansatz, which
yields the width of the wave function ∼w. (ii) Harmonic
model: Second, we consider an expansion of the individual
electron displacements in the set of collective displacement
modes. In this way, we relate w to the normal modes which
we have calculated before,

w2 = 1

N

2N∑
n=1

1

	n
, rZPF =

√
h̄

2mω
, (D6)

where the mode frequencies 	n are expressed in units of the
external confinement ω. For a confinement h̄ω = 3 meV, we
obtain rZPF ≈ 5 nm.

APPENDIX E: OPTICAL READOUT: NUMERICAL
AND ANALYTICAL TREATMENT

Here we first briefly summarize how we solve the scatter-
ing problem of light incident on a finite WC and then continue
with an analytical treatment of the scattering problem for
an infinite lattice. The latter provides us with more physical
insight into the problem and is useful for optimizing the beam
parameters to maximize the transmission or reflection contrast
of the readout scheme.

1. Finite arrays

The principle behind the optical readout scheme discussed
in the main text is based on a cooperative resonance effect
as described in detail in Refs. [42,43]. As depicted in Fig. 1,
we consider a Gaussian beam Ein(x′, y′, z′) incident on the xy
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plane with a tilt angle θ and azimuthal angle φ, where

Ein(x, y, z) = E0epol
w0

w(z)
exp

(
−x2 + y2

w(z)2

)
× exp

(
−i

[
kz + k

x2 + y2

R(z)
− ϕ(z)

])
, (E1)

which is scattered from a lattice of dipoles. Here we have
introduced the coordinates⎛⎝x′

y′
z′

⎞⎠ =
⎛⎝x cos θ cos φ − y cos θ sin φ − z sin θ

x sin φ + y cos φ

x sin θ cos φ − y sin θ sin φ + z cos θ

⎞⎠. (E2)

In Eq. (E1), E0 denotes the the beam amplitude, w0 and
w(z) = w0

√
1 + (z/zR)2 are beam waist and radius at z,

respectively, zR = πw2
0/λ is the Rayleigh length and ϕ =

arctan z/zR refers to the Gouy phase of the laser beam [68].
epol encodes the polarization of the beam. For the results
presented in Fig. 3 in the main text, we consider elliptically
polarized light with

epol(θ, φ) = − 1√
1 + cos2 θ

⎛⎝cos2 θ cos φ + i sin φ

cos2 θ sin φ − i cos φ

sin θ cos θ

⎞⎠. (E3)

At small detunings 
0 from the transition frequency ω0,
|
0| � ω0, each lattice site is modeled as a dipole with
polarizability

α(
0) = − 3

8π2
ε0λ

3 γr


0 + i(γr + γnr )/2
, (E4)

with the radiative (nonradiative) linewidth γr (γnr). In general,
the radiative linewidth γr can be enhanced by the presence of
a medium [69], especially for high refractive-index materials
like TMDs [70]. At low temperatures as considered here,
hexagonal boron nitride (hBN) encapsulated TMD monolay-
ers feature optical transitions with a radiative linewidth h̄γ0 ∼
meV [71]. In our calculations, we assume that the excitons are
localized on a length scale much smaller than the wavelength,
i.e., aB � λ. Those spatially localized quantum emitters show
much narrower linewidths ∼100 μeV [72–75]. Using Fermi’s
golden rule, the increased radiative lifetime of such localized
excitons can be calculated, yielding a significantly enhanced
emission time as compared to free excitons [76]. We estimate
the radiative linewidth of a localized exciton to be of the
order of h̄γr ≈ 4π/3(aB/λ)2γ0 ≈ 10−5 γ0 ≈ 10−2 μeV. In
the results presented in the main text, we have considered
γnr = 0.

Given the Gaussian input field from Eq. (E1), we solve the
Lippmann-Schwinger Eq. (4), with the Green’s function [77]

Gαβ

(
k, r, r0

n

)
= exp

(
ik|r − r0

n|
)

4π
∣∣r − r0

n

∣∣ ×
[(

1 + ik
∣∣r − r0

n

∣∣
k2

∣∣r − r0
n

∣∣2

)
δαβ

+
(

3 − 3ik
∣∣r − r0

n

∣∣
k2

∣∣r − r0
n

∣∣2 − 1

)(
r − r0

n

)
α

(
r − r0

n

)
β∣∣r − r0

n

∣∣2

]
,

with α, β ∈ {x, y, z}. We solve Eq. (4) self-consistently for
various angles of incidence θ and φ, beam profiles, detunings,

FIG. 9. Transmission at normal incidence (θ = 0) for a square
lattice. Other numerical parameters as in Fig. 3 in the main text.

and electron lattices. At normal incidence, i.e., θ = 0, the
resulting transmission and reflection signals depend on the
lattice constant (see Fig. 9) but clearly not on φ. For 0 <

θ < π/2, the transmission and reflection contrasts can be
of the order of a few percent. An analytical derivation of
the maximum contrast for an infinite lattice, depending on
the angle of incidence θ and detuning 
0, is presented in
Sec. E 3.

2. Faraday rotation

In the main text, we investigate the Faraday rotation angle
according to Eq. (6). For the results in Fig. 4, we consider an
incoming beam at normal incidence (θ = 0) with

epol =
⎛⎝1

0
0

⎞⎠. (E5)

We consider N ≡ N↑ + N↓ dipoles which are located at lattice
sites r0

i with the spins assigned randomly to these lattice
lattices for fixed N↑ and N↓. Next we average over sufficiently
many (∼104) instances of such configurations to calculate the
Faraday rotation.

In Fig. 4, we show results for γnr = 0. For γnr > 0, the
maximum Faraday rotation decreases and shifts toward more
highly detuned frequencies, cf. Fig. 10.

3. Infinite arrays

Here we consider light scattering off an (infinite) two-
dimensional lattice of dipoles. If the transition dipole is paral-
lel to the unit vector ê, the electric field at position r satisfies
the equation

E(r) = Ein(r) + α(
0)
k2

0

ε0

∑
n

G(r, rn)êê†E(rn), (E6)

where k0 denotes the wave number of the transition. This
equation can be readily solved using a Fourier transform,
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FIG. 10. Faraday rotation for different γnr and the same numer-
ical parameters as in Fig. 3 at N↑ = 15, N↓ = 5. Also shown is the
maximum Faraday signal as a function of γnr/γr .

assuming that the medium surrounding the lattice is transla-
tionally invariant in the plane of the lattice. One obtains

E(k, z) = Ein(k, z) + α(
0)
k2

0

ε0A
G(k, z)êê†

×
[
I − α(
0)

k2
0

ε0A
G̃(k)êê†

]−1 ∑
B

Ein(k + B, 0),

(E7)

where A is the area of the unit cell and

G̃(k) =
∑

B

G(k + B, 0), (E8)

where the sum runs over all reciprocal lattice vectors, denoted
by B.

For an incident plane wave with momentum k, only a
single term contributes to the sum in Eq. (E7). The plane
wave will be Bragg scattered to momenta k + B. However,
for sufficiently small lattice constants, |k + B| > k0 for any
B �= 0, such that all nonzero scattering orders are evanescent.

In this case, the far field is completely described by

E(k, z)

= Ein(k, z) − 3πγr/k0A


0 + iγnr/2 + 3πγr ê†G̃(k)ê/k0A

× G(k, z)êê†Ein(k, 0). (E9)

We were able to turn the matrix inversion into a simple
division by using the fact that êê† is a projector. It is straight-
forward to show that the condition |k + B| > k0 is equivalent
to |B| > 4π/λ. For a square lattice, one obtains a < λ/2,
while for a triangular lattice a < λ/

√
3.

To simplify Eq. (E9) further, we consider the special case
that the array is placed in free space. The free-space Green’s
function is given by

G(k, z) = i

2kz
eikz |z|P±(k), (E10)

where

kz =
√

k2
0 − |k|2 (E11)

and P±(k) denotes the projector onto transverse polarizations
for waves propagating up (+, z > 0) or down (−, z < 0).
Explicitly, the P±(k) projects onto the two-dimensional space
spanned by

ŝ(φ) =
⎛⎝− sin φ

cos φ

0

⎞⎠, p̂±(θ, φ) =
⎛⎝± cos θ cos φ

± cos θ sin φ

− sin θ

⎞⎠, (E12)

where we defined the angles θ and φ according to

kx = k0 sin θ cos φ, ky = k0 sin θ sin φ, kz = k0 cos θ.

(E13)
We note that kz is always taken to have a positive real (|k| <

k0) or imaginary (|k| > k0) part. When |k| < k0, all angles are
real, and the vector (kx, ky,−kz ) is simply the wave vector of
the incident wave. We also point out that the Green’s function
is discontinuous at z = 0. Right at z = 0, one should take 1

G(k, 0) = i

4kz
eikz |z|[P+(k) + P−(k)]. (E14)

We focus on a circularly polarized transition, that is,

ê = 1√
2

⎛⎝1
i
0

⎞⎠. (E15)

When there is no Bragg scattering, it is easy to see that
Im G̃(k) = Im G(k, 0) such that

ê† Im G̃(k)ê = i

4k0

1 + cos2 θ

cos θ
. (E16)

A straightforward calculation further yields

P+(k)êê†P−(k) = 1
2 (1 + cos2 θ )v̂+(θ, φ)v̂−(θ, φ)†, (E17)

1We further neglect an unimportant δ-function contribution.
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FIG. 11. Reflection contrast according to Eq. (E30) for a square
and triangular lattice and various lattice constants a.

where

v̂±(θ, φ) = 1√
1 + cos2 θ

[iŝ(φ) ± cos θ p̂±(θ, φ)]. (E18)

Since Ein(k) = P−(k)Ein(k), we thus obtain

E(k, z) =
[

e−ikzz − eikz |z| i�(θ )/2


0 + 
̃(θ, φ) + iγnr/2 + i�(θ )/2

× v̂±(θ, φ)v̂−(θ, φ)†

]
Ein(k, 0), (E19)

where

�(θ ) = 3πγr

2k2
0A

1 + cos2 θ

cos θ
(E20)

and


̃(θ, φ) = 3πγr

k0A
ê† Re G̃(k)ê. (E21)

Equation (E19) has a simple physical interpretation. The
light probes a collective resonance with energy 
̃ and radia-
tive linewidth �. The vectors v̂± correspond to projections
of the transverse polarizations onto the transition dipole. The

0.1 0.15 0.2 0.25 0.3 0.35 0.4
a/

10 -6

10 -4

10 -2

R
m

ax

square lattice
triangular lattice

FIG. 12. Maximum value of 
R as a function of lattice constant.

response of the lattice is maximized when Ein ∝ v̂−, which
corresponds to an elliptic polarization whose projection onto
the xy plane is circular. The expression allows us to immedi-
ately read off the reflection and transmission coefficients:

r = − i�(θ )/2


0 + 
̃(θ, φ) + iγnr/2 + i�(θ )/2
v̂+(θ, φ)v̂−(θ, φ)†,

(E22)

t = P− − i�(θ )/2


0 + 
̃(θ, φ) + iγnr/2 + i�(θ )/2

× v̂−(θ, φ)v̂−(θ, φ)†. (E23)

Both r and t should be thought of as 2 × 2 matrices acting
on the subspaces of transverse polarizations. For a fixed
incident polarization êin, we may further compute the intensity
reflection and transmission coefficients. They are given by

R = �(θ )2/4

[
0 + 
̃(θ, φ)]2 + [γnr + �(θ )]2/4
|v̂−(θ, φ)†êin|2,

(E24)

T = 1 − �(θ )[�(θ ) + 2γnr]/4

[
0 + 
̃(θ, φ)]2 + [γnr + �(θ )]2/4
|v̂−(θ, φ)†êin|2.

(E25)

The intensity coefficients satisfy R + T = 1 when γnr = 0 as
required.

In practice, we would like to infer the rotational symmetry
of the lattice via the dependence of 
̃ on φ. Choosing the
optimal polarization êin = v̂−(θ, φ), the maximum contrast in
reflection for a fixed value of θ is given by


R = �2

4

[
1

(
0 + 
̃min)2 + �2/4
− 1

(
0 + 
̃max)2 + �2/4

]
,

(E26)

where 
̃min = minφ 
̃(θ, φ) and similarly for 
̃max. For
simplicity, we set γnr = 0, which implies that the contrast
in transmission is equal to the contrast in reflection. We
are free to choose 
0 to maximize the contrast. Writing

0 = −(
̃min + 
̃max)/2 + δ, the contrast can be expressed
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as


R = δ
̄/�2

(δ2/�2 − 
̄2/�2 + 1/4)2 + 
̄2/�2
, (E27)

where 
̄ = (
̃max − 
̃min)/2. In the limit 
̄ � �, the expres-
sion simplifies to


R ≈ δ
̄/�2

(δ2/�2 + 1/4)2
. (E28)

It is easy to show that the contrast is maximized by choosing

δ = 1

2
√

3
�, (E29)

yielding


R ≈ 3
√

3

2


̄

�
. (E30)

The value of 
̄ can be computed numerically. The results for
a square and triangular lattice are shown in Figs. 11 and 12.

As a final remark, we mention that by measuring the
transmission coefficient for a component of the electric field
that is neither parallel nor perpendicular to the incident field,
it is possible to observe dispersive (asymmetric) line shapes.
Such features could potentially enhance the sensitivity.
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