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Topological theory for perfect metasurface isolators

Wai Chun Wong, Wenyan Wang, Wang Tat Yau, and Kin Hung Fung *

Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China

(Received 20 August 2019; revised manuscript received 9 March 2020; accepted 12 March 2020;
published 26 March 2020)

We introduce a topological theory of perfect isolation: perfect transmission from one side and total reflection
from the other side simultaneously. The theory provides an efficient approach for determining whether such
a perfect-isolation point exists within a finite parameter space. Herein, we demonstrate the theory using an
example of a Lorentz nonreciprocal metasurface composed of dimer unit cells. Our theory also suggests that
perfect-isolation points can annihilate each other through the coalescence of opposite topological charges. Our
findings could lead to novel designs for high-performance optical isolators.
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Recently, various types of topological theories have been
applied successfully to the design of backscattering-immune
one-way photonic systems [1–4]. For example, topological
band theory can be used to design robust one-way waveg-
uides that guide waves through the topological edge modes
of photonic crystals [5]. Topological approaches have also
been applied to study numerous novel and exotic effects in
reciprocal systems, such as bound states in continuum [6–9],
complete polarization conversion [10], and coherent perfect
reflection [11]. These approaches entail considering vertices
or singularities in some vector fields and identifying the vertex
or singularity with notable phenomena. For example, the
singularity of the polarization direction of far-field radiation
could correspond to bound states in continuum; vertices of
complex reflection or transmission coefficients could corre-
spond to complete polarization conversion or coherent perfect
reflection. Such vertices or singularities are called topological
charges because they could be associated with a topological
invariant, such as winding number.

Lorentz nonreciprocal devices are crucial to photonics ap-
plications because such devices could stabilize laser operation
by suppressing backward reflections and enlarge the design
space of an optical-communication system. Various designs of
Lorentz nonreciprocal devices have been proposed by previ-
ous studies [12–16]. Nevertheless, designs based on photonic
crystals and other approaches are often bulky [14–16]. For
example, a Faraday rotator [17], which utilizes nonreciprocal
polarization rotation in magneto-optic (MO) materials, could
achieve nonreciprocal transmission only when a fairly large
propagation distance in the MO materials is provided. The
number of designs for miniaturization, such as metasurface
isolators, is limited because of the high complexity and diffi-
culty in determining a systematic scheme for optimization.

In this Rapid Communication, we introduce a topological
theory for perfect-isolating effect: perfect transmission from
one side and total reflection from the other side simulta-
neously. The perfect-isolation phenomena in our examples
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correspond to the zero of a real vector in the optimization
parameter space. For a theoretical demonstration, we intro-
duce a Lorentz nonreciprocal metasurface composed of dimer
unit cells. Furthermore, we can observe the annihilation of
these perfect-isolation points though changing parameters.
This work is expected to open up new avenues for robust
ultrahigh-isolation nonreciprocal metasurfaces and provide a
novel approach to the design of perfect metasurface isolators.

First, we consider a Lorentz nonreciprocal surface and
study the transmission and reflection properties when a plane
wave with wave vectors k and −k is incident on this surface.
Let tf and rf represent the transmission coefficient and reflec-
tion coefficient for waves with wave vector k. Similarly, the
coefficients for waves with wave vector −k are denoted as
tb and rb. We define the perfect-isolation condition as |tf |2 =
1 and |tb|2 = 0, satisfying perfect transmission from one
side and no transmission from the other side simultaneously
[Fig. 1(a)]. If the surface has no absorption or other channels
that could remove energy (e.g., a diffraction channel), con-
servation of energy ensures that |tf |2 + |rf |2 = 1; therefore we
could translate the conditions to rf = 0 and tb = 0. To discuss
the topology of these two zeros, we represent rf and tb as a
four-dimensional vector F:

F = (F1, F2, F3, F4) = (Re(r f ), Im(r f ), Re(tb), Im(tb)), (1)

where Re(z) and Im(z) are the real part and the imaginary
part of z, respectively; that is, F is composed of the real
and imaginary parts of rr and tb. As illustrated in Fig. 1(b),
a perfect-isolation condition corresponds to F = 0 and an
imperfect-isolation condition corresponds to a regular vector
F �= 0. Mathematically, a topological invariant (winding num-
ber, denoted as W ) could be assign to zero of F as follows
[18]:

W = 1
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FIG. 1. (a) Schematic of the difference between perfect isolation and imperfect isolation. Each green slab represents a Lorentz
nonreciprocal surface. Blue arrows represent the incident, reflected, or transmitted plane waves. One must have rf = 0 and tb = 0 for a
perfect-isolation case and one must have rf �= 0 or tb �= 0 for an imperfect-isolation case. (b) Schematic of vector F by Eq. (2) in parameter
space. Each blue vector represents the vector (Re(r f ), Im(r f )) and each dashed yellow vector represents the vector (Re(tb), Im(tb)). Perfect
isolation corresponds to zero of F. Imperfect isolation corresponds to a regular vector.

where |F| =
√

F 2
1 + F 2

2 + F 2
3 + F 2

4 ; � is a three-dimensional
closed surface surrounding the perfect-isolation point in the
parameter space, and (s, t, u) is a set of the parametrization
variables of �. The integration in Eq. (2) can be used to
calculate the higher-dimensional solid angle which the vector
F sweeps around the isolation point. Notably, this definition
is highly related to the notion of winding number used in
periodically driven two-dimensional (2D) systems [19,20],
and to the generalized winding number of 2D vector fields
used in previous studies [6,10,11]. Because perfect isolation
is topological, our theory predicts that this effect will have
other topologically protected properties such as being robust
against small perturbations and annihilations between oppo-
site charges.

To demonstrate our theory, we consider a Lorentz non-
reciprocal grating with two cylinder layers [Fig. 2(a) and
2(b)]. Each unit cell consists of two cylinders composed of
different materials. The first cylinder is a lossless dielectric
cylinder with refractive index n and with Im(n) = 0. A later
section of this Rapid Communication explains the effect of
loss. The second cylinder is composed of a ferromagnetic
yttrium iron garnet (YIG). When an external static magnetic
field is applied in the z direction, the ferromagnetic YIG
breaks Lorentz reciprocity and is characterized by permittivity
ε = 15ε0 and magnetic permeability

μ̄ =
⎛
⎝ μ i� 0

−i� μ 0
0 0 1

⎞
⎠, (3)

where μ = 1 + ωmωh/(ω2
h − ω2) and � = −ωmω/(ω2

h −
ω2), with precession frequency ωh = γ H0, gyromagnetic ratio
γ , applied static magnetic field H0, and characteristic fre-
quency ωm = γ Ms. Here Ms represents the saturation mag-
netization in the ferromagnetic materials. We set Ms to 1750
Oe and H0 to 500 Oe.

To evaluate transmittance and reflectance of this grating,
we apply the finite-element method (FEM) using COMSOL

MULTIPHYSICS. We confine k to the x-y plane and consider
only TE polarization (Ê = ẑ) because TM polarization waves
do not have nonreciprocal properties. Figure 2(c) illustrates

the Tf and Tb spectra of the grating with specific incident angle
θ . All parameters used in this calculation are described in the
caption of Fig. 2. We observe that this surface can support
nonreciprocal transmission over a wide frequency range. The
transmittance difference �T = Tf − Tb can reach 99.9996%
at a frequency f of 3.801 GHz, which is near-perfect isolation.
According to these parameters, no diffraction will occur be-
cause |kx ± 2π/a| > k0; therefore, we could apply our theory
to this isolation point.

Here, we calculate the winding number for this example.
We set � as a 3-sphere S3 embedded in (θ, dy, n, f ) with the
center at the parameter explained in Fig. 2(c), and set the other
parameters constant. Through numerical calculations, we can

FIG. 2. (a), (b) Schematic of Lorentz nonreciprocal grating with
dimer unit cells. Two cylinder layers are arranged such that vertical
separation is dy and horizontal offset is dx; that is, center-to-
center displacement between the different layers is dr = (dx, dy).
Ferromagnetic YIG cylinders are indicated in green and dielectric
cylinders are indicated in blue. (c) Transmittance spectra of grating
in (a) and (b) with a = 50 mm, dx = 12 mm, dy = 14.72 mm,
r = 1 mm, n = 10.20, and θ = 0.5735. The blue solid line and red
dashed line correspond to the incident wave vectors k (i.e., forward
propagation) and −k (i.e., backward propagation). (d) Vector field
(Re(r̃f ), Re(t̃b)) with the same parameters as in (c), but Eqs. (8) and
(9) are assumed such that Im(r̃f ) = Im(t̃b) = 0.
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FIG. 3. (a) Vector field (Re(r̃f ), Re(t̃b)) defined in Eqs. (4)–(7) when the configuration is the same as in Fig. 2(c); b0
die and dy are assumed to

be b1
YIG and (π/2 − θ )/ky such that Im(r̃f ) = Im(t̃b) = 0, and the vectors are normed individually. Two nodal lines Re(r̃f ) = 0 and Re(t̃b) = 0

are graphed as a dashed red line and as a solid blue line, respectively; therefore, the topological point could also be indicated by crossing of the
two nodal lines. Shaded region indicates that diffraction will occur. (b)–(e) FEM-simulated electric field of the grating at topological charges
in (a) under incident plane waves. Arrows denote the directions of incident waves and transmitted or reflected waves. For (b) and (c), the
parameters used are r = 1 mm, a = 50 mm, dx = 12 mm, dy = 17.10 mm, n = 11.42, θ = 0.2133, and f = 3.804 GHz, which correspond
to positive charge with lower θ . For (d) and (e), the parameters used are r = 1 mm, a = 50 mm, dx = 12 mm, dy = 14.72 mm, r = 1 mm,
n = 10.20, θ = 0.5735, and f = 3.801 GHz, which correspond to negative charge with higher θ .

determine that the perfect-isolation point in the previous ex-
ample is topological with winding number −1. This nonzero
winding number ensures that a perfect-isolation points exist
inside the 3-sphere S3.

To further study the conditions for perfect isolation, we
formulate a 2 × 2 matrix model based on multiple-scattering
theory. In general, in multiple-scatting theory, electromagnetic
fields near cylinders are expanded into sums of cylindri-
cal harmonics and the couplings between all cylinders are
considered [21]. Although all harmonic orders contribute to
any scattering process, here, we model each cylinder by its
dominant harmonic, which is +1 order for a ferromagnetic
YIG cylinder and 0 for a dielectric cylinder. This choice
is motivated by comparing the magnitude of different Mie
coefficients and also motivated by observing the electric field
pattern in Figs. 3(b)–3(e). We reveal that the FEM and the
aforementioned model have high agreement with little dis-
crepancy [21]; therefore, we can regard this approximation
as a small perturbation and the topology is not altered. On
the basis of this simplification, the forward-reflection and
backward-transmission coefficients can be calculated as fol-
lows [22]:

rf = 2eiθ

aky
[(

b−1
die − L

)(
b−1

YIG − L
) − ζ+ξ+

] r̃f , (4)

tb = 1[(
b−1

die − L
)(

b−1
YIG − L

) − ζ−ξ−
] t̃b, (5)

where

r̃f = (
b−1

die − L
)
ei(θ−kydy ) − (

b−1
YIG − L

)
e−i(θ−kydy )

+ ξ+e−ikxdx − ζ+eikxdx , (6)
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(
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die + 2

aky

)(
L − b−1

YIG + 2

aky

)

−
(

ζ− + 2

aky
e−iφ

)(
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aky
eiφ

)
. (7)

Here φ = θ + kydy − kxdx; bdie and bYIG are the domi-
nant Mie coefficient of the dielectric and ferromagnetic
YIG cylinders, respectively; L = ∑∞

l=1 H (1)
0 (lk0a)[eilkxa +

(−1)n−me−ilkxa] is the lattice sum of the grating; and
ζ+ = ∑∞

l=−∞ H (1)
1 (k0|lax̂ + dr|)ei(lhkx+arg(lax̂+dr)) and ξ+ =∑∞

l=−∞ H (1)
−1 (k0|lax̂ − dr|)ei(lhkx−arg(lax̂−dr)) are the relative

lattice sums between the dielectric and ferromagnetic YIG
cylinders, respectively. arg(r) is the polar angle of r. ζ− and
ξ− are ζ+ and ξ+ when k is reversed.

Because r̃f , t̃b and rf , tb are related by Eqs. (4) and
(5), that is, multiplied by a nonzero continuous factor, F̃ =
(Re(r̃f ), Im(r̃f ), Re(t̃b), Im(t̃b)) is a continuously transformed
version of F. Moreover, both F̃ and F have the same
topology. This transformation may appear unnecessary, but
F̃ has superior analytical properties to F as detailed in the
following explanation: First, we have two useful identities
about the lattice and relative lattice sums [23–25]: Re(L) =
1 − 2

hky
, ζ± + ξ̄± = ∓ 4i

hky
sin(θ ∓ kydy)e∓ikxdx , where ky, kx >

0 for both directions and ξ̄ is the complex conjugate of ξ .
Substituting the two identities into Eqs. (6) and (7) reveals
sufficient conditions for Im(r̃f ) and Im(t̃b) to become equal to
zero [21]:

bdie = bYIG ⇒ Im(r̃f ) = 0, (8)

kydy + θ = π

2
⇒ Im(t̃b) = 0. (9)
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FIG. 4. Evolution of topological charges in the parameter space. (a) Nodal lines and topological charge when dx = 12 mm. Other
parameters are the same as in Fig. 2(c). b0

die and dy are assumed to be b1
YIG and (π/2 − θ )/ky such that Im(r̃f ) = Im(t̃b) = 0 according to

Eqs. (8) and (9). Two nodal lines Re(r̃f ) = 0 and Re(t̃b) = 0 are shown as a dashed red line and as a solid blue line, respectively. Both (b) and
(c) are essentially similar to (a) but with dx increased to 14 and 16 mm.

The Mie coefficients b represent the amplitudes of the fields
scattered by the cylinder array. The first condition can be
understood as equating the amplitudes of the scattered field
by two cylinder arrays, which could lead to destructive inter-
ference and could result in a situation with no reflected waves,
that is, a reflected wave with an amplitude of zero.

Using the conditions set in Eqs. (8) and (9), we further
investigate the topology of F̃. Figures 2(d) and 3(a) show the
vector field (Re(r̃f ), Re(t̃b)). The two conditions in Eqs. (8)
and (9) are assumed such that the nonzero components of F̃
are Re(r̃f ), Re(t̃b) only and are shown in the 2D vector field.
In both figures, all the vectors are normalized individually.
The vector field in Figs. 2(d) and 3(a) can be considered the
projection of F̃ in the parameter space along a surface that
is defined by Eqs. (8) and (9). This specific surface is chosen
because vectors on this surface are oriented in the 2D plane
such that no essential information is lost when the vectors are
projected. Figure 2(d) shows that the perfect-isolation point
described in Fig. 2 can be associated with a topological charge
using projection.

Figure 3(a) illustrates two topological charges. The nega-
tive charge with higher θ corresponds to the example in Fig. 2,
whereas the other positive charge is explained later in this
Rapid Communication. The negative charge is slightly shifted
when compared with the results calculated by FEM. This
shift is due to the omission of other cylindrical harmonics.
Contributions from other nondominant harmonics could be
treated as small perturbations. Because of the robustness of
topological charges, the perfect-isolation point is preserved.
We have also verified that if more harmonics are included,
the location of the perfect-isolation point can exhibit higher
agreement with the FEM result. For the positive charge with
lower θ , we confirm that there exists near-perfect isolation
near the topological charge; that is, we can estimate that
tb, rf = 0 through the FEM and multiple-scattering method.
Figures 3(b)–3(e) show the corresponding electric field pat-
terns for the forward and backward incident waves at both
topological charges.

Here, we investigate the evolution of isolation points with
changes in dx. With a small increase in dx, the two topological

charges move toward each other [Fig. 4(b)]. As dx increases
further, the two opposite charges collide and annihilate each
other. In other words, the nodal line Re(r̃f ) = 0 (dashed
red) moves down as dx increases, but the other nodal line
Re(t̃b) = 0 (solid blue) is less sensitive to the small change
in dx; eventually, the two interception points meet. After the
annihilation, no interception point (i.e., no topological charge)
exists [Fig. 4(c)]. This is a generic situation of annihilation
between two topological charges [6,7].

In the preceding paragraphs, we consider cylinders with
no absorption loss; here, we discuss the effect of loss on
isolation points. In a lossy system, no principle can guarantee
that the sum of transmittance T and reflectance R will be unity.
Therefore, we cannot relate perfect isolation to the topological
point. Nevertheless, the point where rf = 0 and tb = 0 is
still topological even with small absorption loss because the
point is indicated as being a singularity in Eq. (2). At this
point, the scattering properties of the grating are such that no
reflection is available from one side and no transmission is
possible from the other side. These properties can still prevent
backward transmission of energy. We successfully trace the
topological point in Fig. 2 with an increase in absorption
loss and provide a lossy system with rf , tb = 0 with high
transmittance difference [21].

In summary, we introduce topological theory describing
perfect-isolation phenomena as singularities in the parameter
space. We determent that a winding number can be associated
with each singularity through Eq. (2). Our theory predicts the
robustness and annihilation between two charges as a natural
consequence of perfect isolation being topological. To demon-
strate our theory, we introduce a Lorentz nonreciprocal dimer
metasurface with dielectric and ferromagnetic materials. With
an external static magnetic field, this metasurface exhibits
strong nonreciprocal transmissions. Under specific parame-
ters, the grating supports perfect isolation, and this perfect iso-
lation is topological with winding number −1. Furthermore,
the topological points are investigated using an analytical
model based on multiple-scattering theory. We demonstrate
that through the tuning of geometric parameters, two isolation
points with opposite charge can annihilate each other.
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