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Thermal conductance of one-dimensional disordered harmonic chains
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We study heat conduction mediated by longitudinal phonons in one-dimensional disordered harmonic chains.
Using scaling properties of the phonon density of states and localization in disordered systems, we find nontrivial
scaling of the thermal conductance with the system size. Our findings are corroborated by extensive numerical
analysis. We show that, suprisingly, the thermal conductance of a system with strong disorder, characterized by
a “heavy-tailed” probability distribution, and with large impedance mismatch between the bath and the system,
scales normally with the system size, i.e., in a manner consistent with Fourier’s law. We identify a dimensionless
scaling parameter, related to the temperature scale and the localization length of the phonons, through which the
thermal conductance for different models of disorder and different temperatures follows a universal behavior.
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Introduction. The study of heat transport via phonons
in low-dimensional (spatial dimension d < 3) classical and
quantum-mechanical systems has attracted considerable the-
oretical and experimental attention in recent years [1–13].
One of the main objectives of these studies is to understand
the scaling of heat flux J which, according to Fourier’s law
[4], should scale with the system size L as J ∝ L−1 (L
is measured along the direction of heat propagation). But
extensive numerical and analytical studies in the past few
decades have revealed the possible violation of Fourier’s law
for low-dimensional systems [10,14–18]. These studies show
that J ∝ L(γ−1) with γ �= 0 which in turn implies L-dependent
thermal conductivity, κ = limL→∞ lim�T →0

JL
�T ∝ Lγ (�T

being the temperature difference across the system) [4]. The
violation of Fourier’s law in low-dimensional systems is also
observed experimentally in the case of carbon nanotubes [19],
nanowires [20], and graphene [21].

For systems of finite size, instead of thermal conductivity,
κ , it is useful to study thermal conductance, G = κ/L, and
we expect G(L) ∝ L−β , with β(= 1 − γ ) = 1 for normal heat
transport, while β �= 1 implies anomalous heat transport.

Various aspects, such as disorder [14,22,23], phonon-
phonon interaction [24,25], presence of pinning potential
[26,27], nature of the heat baths [10], and the coupling be-
tween the system and the heat bath [23], have been shown to
affect heat transport. Particularly, theoretical studies for one-
dimensional isotopically (mass) disordered harmonic chains
show that J ∝ L−1/2 with free boundary conditions [15] while
J ∝ L−3/2 with a fixed boundary condition [14], implying
that β can be 1

2 or 3
2 . For this particular model, it was also

shown that normal scaling (i.e., β = 1) can be observed only
under specific choices of the thermal bath [10]. It was also
argued, under free boundary conditions, that one-dimensional

*Deceased.

harmonic chains with spatially correlated disorder may ex-
hibit normal heat conduction asymptotically [22].

Can one have normal heat transport in one-dimensional
disordered (uncorrelated) harmonic chains even within free
boundary conditions? A recent theoretical study [23] predicts
that for a weakly coupled disordered harmonic chain one
may observe normal heat transport in the presence of strong
disorder, when disorder is characterized by a heavy-tailed
distribution. While it is important to verify this theoretical
prediction, it is equally interesting to ask: How does thermal
conductance scale with L if the coupling between the system
and the heat bath is not weak? For a given coupling, how does
β depend on the nature of the disorder? In this Rapid Commu-
nication, we address these questions by studying, analytically
as well as numerically, the scaling of thermal conductance
in one-dimensional disordered harmonic chains for different
types of disorder and coupling between the system and the
heat bath.

Heat conduction by phonons is similar to electrical con-
duction, but with a crucial difference: the presence of a local-
ization threshold at zero frequency. This leads to a diverging
localization length, ξ (ω), for ω → 0 [28,29] and has strong
consequences on the scaling of thermal conductance. Specif-
ically, for a given L and disorder strength, one can define
a cut-off frequency ωL, for which ξ (ωL ) = L. All phonons
with ω � ωL are effectively delocalized, i.e., ξ (ω) � L, and
contribute to the heat transport.

Model and background. We consider a one-dimensional
disordered system consisting of N particles, each of mass M,
connected by harmonic springs with spring constants Ki (i =
1, 2, . . . , N − 1), chosen randomly from a given distribution
(cf. Fig. 1). Ki is the spring constant of the spring connecting
particles i and i + 1 in the disordered chain. The two ends (i =
1 and i = N) of the chain of length L are coupled to two heat
baths at temperatures T1 (left bath) and T2 (<T1; right bath),
respectively. Here, L = (N − 1)r0 with r0 being the average
interparticle distance. Heat baths are modeled as ordered
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FIG. 1. Schematic illustration of a one-dimensional disordered
harmonic chain. All particles and springs in the heat baths are
identical, with mass m and spring constant k. Particles in the system
all have mass M, and particles i and (i + 1) are connected by a spring
with stiffness Ki. The masses at the two ends of the disordered chain,
i = 1 and i = N , are connected to heat baths through a spring of
strength k.

harmonic chains consisting of an infinite number of equal
masses (m), and connected by identical springs (k). The sys-
tem is coupled to two heat baths via two springs each having
spring constant k. If k is much smaller (larger) compared to
the typical spring constant in the disordered chain, we refer to
the system as weakly (strongly) coupled to the reservoir. Our
setup corresponds to the case of “free boundary condition”
[10,15] with no local pinning potential which has been shown
to affect the scaling of heat flux [12,26]. Below we work in
units where the mass M of the system’s particles, the natural
frequency of the bath ω0 = √

k/m, and Boltzmann’s constant
are all set to unity. We express the stiffness of the springs in
units of Mω2

0 = 1. For a fixed disorder strength, when we vary
k to study the effect of coupling strength, we also vary m with
it to maintain ω0 = 1.

In the current study, we consider two models of disorder:
(1) Uniform distribution: Ki = (1 + Ri ) where Ri follows a
uniform distribution of width W , i.e., Ri ∈ [−W/2,W/2].
Large values of W correspond to stronger disorder and W =
2 is the strongest possible disorder strength. (2) Power-law
distribution: Ki follow a power-law probability distribution,
P(K ) ∝ Kε−1, where 0 < K � 1 and disorder strength is
quantified by the dimensionless parameter ε(>0) [30]. This
situation arises naturally if K decays exponentially with inter-
particle separation which follows a Poisson process [31,32].
The effective spring constant of the chain is the inverse of
the sum of 1/Ki, hence the compressibility Z is related to
〈1/K〉. For ε = 1, the behavior of Z changes drastically as
the mean of the distribution P(Z = K−1) ∝ Z−(ε+1) diverges
at this point. We identify ε � 1 as the strong disorder regime
within this model. A smaller value of ε(< 1) implies a spring
distribution with a power-law tail characterizing a “heavy-
tailed” distribution [23].

As noted above, transport is mediated by effectively de-
localized low-frequency phonons. Thus, it will be crucial to
understand the scaling behavior of the localization length,
ξ (ω), and density of states (DOS), ρ(ω), in the limit ω → 0
[33]. Earlier theoretical predictions related to these scaling
behaviors are summarized in Table I and numerically demon-
strated in Figs. 2(a), 2(b) and 3.

Analytical results. To study the heat transport we follow
the Landauer scattering approach in which propagation of a
phonon of given frequency ω through the disordered chain is
characterized by a transmission coefficient, τ (ω). For a one-
dimensional system the thermal conductance G(L, T ) is [34]

G(L, T ) ≈
∫ ∞

0

dω

(2π )2
hω

∂ fT (ω)

∂T
τ (ω), (1)

TABLE I. Summary of the scaling behavior for thermal con-
ductance, G (from this work), density of states (DOS), ρ, and
localization length, ξ (from Refs. [28,29,32,36,37]) under different
impedance mismatch (coupling k) and disorder strengths.

Impedance
Disorder Localization DOS mismatch Conductance

Uniform ξ ∼ ω−2 ρ ∼ 1 Any G ∼ L−1/2

Power law,
ξ ∼ ω−2 ρ ∼ 1 Any G ∼ L−1/2

ε � 2 (weak)
Power law,

ξ ∼ ω−ε ρ ∼ 1 Any G ∼ L−1/ε

1 � ε � 2
Power law, Low G ∼ L−(1+ε)/2ε

ξ ∼ω−2ε/(ε+1) ρ ∼ω(ε−1)/(ε+1)

ε�1 (strong) High G ∼ L−1

where fT is the Bose-Einstein distribution function and we
also assume �T = T1 − T2 � T = T1+T2

2 .
The system features two competing frequency scales: the

disorder-related ωL and the thermal frequency ωT = T/h̄.
Phonons with ω > ωL do not contribute to conductance be-
cause they are localized. Phonons with ω > ωT do not con-
tribute because they are not populated. Therefore, the integral
in Eq. (1) is better represented in terms of the nondimensional
frequency x = ω/ωT ,

G(L, T ) = 3gqm

π2

∫ ∞

0
dx

x2ex

(ex − 1)2 τ (x ωT ). (2)
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FIG. 2. Density of states, ρ(ω), as a function of phonon fre-
quency ω for different disorder strengths for a one-dimensional
harmonic chain with (a) uniform disorder and (b) power-law disorder
and N = 2000. (a) For W = 0, ρ(ω) diverges when ω → 2 and
vanishes for ω > 2. The presence of disorder (W > 0) smears out the
divergence at ω = 2 and gives rise to finite ρ(ω) for ω > 2. For ω →
0, ρ(ω) approaches a constant for all disorder strengths. (b) For
power-law disorder, ρ(ω) diverges at ω → 0 in the strong disorder
regime and approaches a constant in the intermediate and weak
regimes (inset). (c) The transmission coefficient τ (ω) for various
coupling strengths (k) and a given realization of disorder (uniform
disorder with W = 0.5 and N = 11). For k = 1.0, transmission is
roughly constant up to a cutoff frequency ωL . For k � 1 or k  1, τ

is sharply peaked around the eigenfrequencies of the disordered
chain.
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FIG. 3. The dependence of localization length, ξ (ω), on the frequency ω of the phonons for different strengths of disorder (y axis in
logarithmic scale) for (a) uniform disorder and (b) power-law disorder. For small frequencies (ω → 0), ξ (ω) diverges as ω−α where α depends
on disorder strength. (a) For uniform disorder, α = 2 in weak as well as strong disorder regimes. (b) For power-law disorder, α ≈ 2 for weak
disorder (ε > 2) while for intermediate disorder (1 < ε � 2), α ≈ ε and in the strong disorder regime (ε � 1), α ≈ 2ε

1+ε
(inset).

Here gqm = π2T/(3h) is the quantum of thermal conductance
[34,35], which is the universal value of G(L, T ) in the limit
T → 0. To see this, note that τ (ω) → 1 for ω → 0 due to
the existence of a Goldstone mode, related to the translational
invariance of the system. Using this fact, it is straightforward
to show that for a given L Eq. (2) yields G(L, T ) → gqm for
very small T (ωT � ωL ), regardless of any other property
of τ (ω). gqm is thus the natural unit of conductance for our
system and below we express all results in these units by
defining Gqm(L, T ) = G(L, T )/gqm.

Of course, the limit of L → ∞ and finite T is of more
interest, but an exact evaluation of the integral in the general
case is not feasible. Nonetheless, much insight can still be
gained in some interesting cases.

We first consider the situation where the stiffness of the
coupling spring k is comparable to that of the chain, i.e., k ≈
1. In this case there is relatively little impedance mismatch
between the chain and the bath, implying less reflectance of
the incident phonons from the bath-system boundary. In this
situation, phonons get transmitted even when their frequency
is not close to an eigenfrequency of the chain. Therefore, from
a scaling perspective we can approximate that τ (ω) = 1 for
all phonons with ω � ωL and zero otherwise. A numerical
calculation of τ (ω), shown in Fig. 2(c), demonstrates that this
approximation is crude but reasonable. As shown below, it
quantitatively captures the scaling behavior.

With this approximation, Eq. (1) depends only on the
dimensionless combination ωL/ωT (which is the upper inte-
gration limit) implying that thermal conductance for k ≈ 1
should follow a universal curve, independent of temperature
and disorder, when expressed in terms of ωL/ωT . In fact the
integral can be carried out in closed form, and for large L (or
large T , i.e., ωT  ωL) it reads

Gqm(L, T ) ≈ 3

π2

(
ωL

ωT

)
+ O

(
ωL

ωT

)2

. (3)

In order to get the explicit dependence on system size in
this limit, we use the known scaling ξ (ω) ∝ ω−α (see [23]

and Fig. 3). Straightforward manipulation shows that this
implies Gqm ∝ L−1/αT −1, that is, β = α−1 in this limit of
small impedance mismatch and large L. Also, for a given L,
G(T ) ∝ T for small T and G(T ) ∼ const (saturates) for high
T [33].

For uniform disorder, theory predicts α = 2 implying
G(L) ∝ L−1/2, in accord with previously reported results for a
mass-disordered chain under free boundary condition [10,15].
For power-law disorder, as α depends on disorder strength ε, β
also depends on ε with G ∝ L−1/2, L−1/ε , and L−[(1+ε)/2ε] in
the weak, intermediate, and strong disorder regimes, respec-
tively. These results are summarized in Table I.

This concludes the case of k ≈ 1, where transmission is
approximately constant for all ω below a certain cutoff. How
does the picture change in the case of strong impedance mis-
match, k  1 or k � 1? In this case transmission is negligible
for almost all frequencies, except those which are close to
an eigenfrequency of the disordered chain. In previous work
[23], it was shown that in the weak-coupling limit, k � 1, τ

has a structure of nonoverlapping Lorentzians for phonons
with ω < ωL [cf. Fig. 2(c)]. Each Lorentzian is centered
around an eigenfrequency of the disordered chain and the
area of each Lorentzian, i.e., it’s integrated contribution to
the thermal conductance, was shown to be ω independent for
the delocalized modes [23]. Calculating the integral in general
for any ωL/ωT is difficult, but if we are only interested in the
scaling behavior for large L, the integral essentially counts
the number of eigenmodes of the disordered chain within the
frequency range 0 < ω � ωL [38]:

G(L) ≈ �

∫ ωL

0
dω ρ(ω), (4)

where � is the area of each Lorentzian. Considering ρ(ω) =
Dωs [see [23] and Figs. 2(a) and 2(b)], where D depends on
disorder, for large L we get

G ∝ ωs+1
L ∝ L−[(s+1)/α]. (5)
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FIG. 4. Dependence of the thermal conductance Gqm(L) on the length L of the disordered chain for uniform (disorder strength W ) and
power-law (disorder strength ε) disorder in a log-log plot with (a) k = 1.0 and (b) k = 0.01. The mean temperature is fixed at T = 0.10.
For k = 1.0, Gqm(L) ≈ 1 for very small L, while Gqm(L) ∝ L−β for large L. β �= 1 for k = 1.0 except for ε = 1. For k = 0.01, β = 1.0
in the strong disorder regime (ε � 1.0) while in all other cases Gqm(L) scales anomalously. Unified description of thermal conductance for
one-dimensional disordered harmonic chains with different models of disorder in terms of the variable (c) ωL/ωT (for k = 1.0) and (d) ωs+1

L /ωT

(for k = 0.01). Here, G̃qm = (s+1)Gqm

D (see text for details).

Thus, in the weak-coupling regime Gqm ∝ L−[(s+1)/α]T −1

for a fixed T . For uniform disorder, as well as power-law
disorder with ε > 1 (i.e., the weak and intermediate regimes),
we have s = 0 and thus the scaling of thermal conductance
with L remains the same as in the case of an impedance-
matched bath k ≈ 1. Interestingly, for strong disorder, ε < 1,
we have s = ε−1

ε+1 and α = 2ε
1+ε

, which together cancel out
exactly to yield normal Fourier-like heat conduction β = 1.
Also, note that, when expressed in terms of ωs+1

L /ωT , thermal
conductance should follow a universal curve in the weak-
coupling regime and the large L limit.

Lastly, we deal with the case of very large k, i.e., the
strong-coupling regime. A careful analysis, presented fully
in the Supplemental Material [33], shows that this limit is
equivalent to a system with the first and last particles ex-
cluded, i.e., effectively a system of (N − 2) particles. There-
fore, like in the case of weak coupling, τ (ω) is composed
of nonoverlapping peaks with an ω-independent area (cf.
Fig. 2). Since ρ(ω) and ξ (ω) are independent of the coupling
k, all our predictions for k � 1 hold also for k  1. That
is, the same scaling exponents emerge in the case of strong
impedance mismatch, regardless of whether k is very small
or very large. All our theoretical predictions for different
disorder types and coupling strengths are summarized in
Table I.

Numerical results. We test our theoretical predictions by
numerically computing thermal conductance and other prop-
erties, such as density of states and localization lengths, for
all cases considered above. The density of states, ρ(ω), for

different disorder strengths is shown in Figs. 2(a) and 2(b)
for the uniform and power-law disorder, respectively, with
N = 2000 [33]. For uniform disorder, ρ(ω) approaches a
constant as ω → 0, that is, s = 0. For power-law disorder,
ρ(ω) diverges with an exponent consistent with the theoret-
ical prediction, s = ε−1

ε+1 . For weak and intermediate disorder
theory predicts s = 0 but a weak divergence is observed for
ε = 1, the origin of which is not clear to us at present.

To calculate G, we compute τ (ω) directly for different k
and disorder types using a transfer matrix method [33]. For a
single realization of the disorder, the dependence of τ (ω) on
k is shown in Fig. 2(c) (with W = 0.50 and N = 11).

For a given disorder and a fixed ω, we find that τ (ω)
decays exponentially with L [33]. This defines a length scale
which we interpret as the localization length ξ , i.e., τ (ω, L) ∝
exp[−L/ξ (ω)] [33]. We find that ξ diverges like ξ (ω) ∝ ω−α ,
consistent with theoretical predictions (see Fig. 3).

Finally, we compute G for different L, T , disorder types,
and coupling strengths, using Eq. (1), by considering ω ∈
(0, 2ω0). This is presented in Figs. 4(a) (for k = 1.0) and
4(b) (for k = 0.01), which shows that the numerical results for
all cases agree with the theoretical predictions (for k = 100,
see Supplemental Material [33]). Heat transport is anoma-
lous (β �= 1) for all cases except for the power-law disorder
in the weak-/strong-coupling regime and also when ε = 1
[Fig. 4(b)]. In addition, panels (c) and (d) demonstrate that
when expressed in terms of ωL/ωT (for k = 1) and ωs+1

L /ωT

(for k = 0.01), respectively, all data collapse on a single
curve, following Eqs. (3) and (5).
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Conclusions. In this Rapid Communication, we studied
the nontrivial scaling behavior of thermal conductance, G,
which depends both on the nature of disorder and the coupling
between the system and the heat baths, in one-dimensional
disordered harmonic chains. We found that G features anoma-
lous scaling with L for uniform disorder and for weak and
intermediate power-law disorder (i.e., with a well-defined
mean). Interestingly, for strong power-law disorder and strong
impedance mismatch, k � 1 or k  1, normal scaling G ∝
L−1 is observed. For strong disorder and low impedance mis-
match, i.e., k ≈ 1, the scaling exponent β can be greater than
unity. We also identified the dimensionless scaling parameter
with which one has a unified description for all temperatures

and system sizes. It is worth noting that although G—a global
measure of transport—features normal scaling in the strong
disorder regime, we cannot conclude that heat transport is in-
deed normal, in the sense that local dynamics follow Fourier’s
law. Thus, it remains to be explored how heat energy spreads
in the system in the strong disorder regime.
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