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Photovoltaic effect generated by spin-orbit interactions
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An AC electric field applied to a junction comprising two spin-orbit coupled weak links connecting a quantum
dot to two electronic terminals is proposed to induce a DC current and to generate a voltage drop over the junction
if it is a part of an open circuit. This photovoltaic effect requires a junction in which mirror reflection symmetry
is broken. Its origin lies in the different ways inelastic processes modify the reflection of electrons from the
junction back into the two terminals, which leads to uncompensated DC transport. The effect can be detected
by measuring the voltage drop that is built up due to that DC current. This voltage is an even function of the
frequency of the AC electric field.
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Introduction. Electric weak links made of materials with
strong spin-orbit interactions open a promising way to achieve
spin-dependent transport of electrons. In the particular case of
Rashba spin-orbit coupling [1], the interaction can be tuned
electrostatically [2–4] or mechanically [5,6]. This coupling
obeys time-reversal symmetry which prevents spin splitting of
electron transport in two-terminal junctions [7], in most cases
eliminating the possibility to manipulate electronic conduc-
tion through Rashba weak links. Spin-orbit interactions do,
however, have an effect on spin-polarized electrons in mag-
netic materials [8–10], and on electrons subjected to external
magnetic fields [11–16]. Here, we propose that imposing a
time dependence on the effective magnetic fields induced
by the spin-orbit coupling offers another means to destroy
the time-reversal symmetry of two-terminal junctions. In par-
ticular, we predict that time-dependent Rashba interactions
generate a DC electric current through unbiased junctions.

Coherent electronic transport in response to periodic mod-
ulations of the shape of quantum dots or of other poten-
tial parameters of mesoscopic junctions has been attracting
considerable interest [17,18] following the seminal paper by
Thouless [19], who showed that a slow periodic variation of
the potential landscape may yield quantized and nondissipa-
tive particle transport in unbiased junctions, a phenomenon
termed “adiabatic quantum pumping.” Adiabatic pumping
of spin currents resulting from periodic modulations of the
shape of a spin-orbit coupled junction has been discussed
as well [20], also as a result of temporal modulations of
the Rashba interaction [21–24]. However, the possibility to
induce a DC particle current by such modulations in the
absence of a bias voltage was not considered.

DC charge transport driven by time-dependent spin-orbit
coupling is an alternative to the pumping of charge caused
by tuning periodically the potential landscape of mesoscopic
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structures. It occurs in inhomogeneous junctions in which mir-
ror reflection symmetry is violated. In an unbiased junction
no net current flows when the spin-orbit interaction is static,
even in an asymmetric device: The transport of electrons
incident from the two opposite reservoirs is fully equilibrated.
In fact, a static spin-orbit coupling, which results in a unitary
evolution of the spinor wave function, does not modify the
DC transport. However, unitarity is destroyed by the time
dependence that entails additional reflection processes due
to inelastic tunneling. These in general differ for the two
opposite directions in which electrons can be reflected from
the junction, leading to uncompensated electronic transport.
To elaborate on this general statement we refer to the device il-
lustrated in Fig. 1: A quantum dot represented by a single level
of energy ε is connected by spin-orbit coupled weak links to
the left and right reservoirs. Due to the Aharonov-Casher ef-
fect [25], the tunneling matrix elements attain unitary-matrix
(in spin space) phase factors [26], denoted below by VL(R) for
tunneling through the left (right) link. When these are time
dependent, the reflection, say, to the left direction, is then
modified by factors of the form

∫ t

dt ′[V †
L (t )ei(ε−ω+i�)(t−t ′ )VL(t ′) + c.c.], (1)

where � is the width of the resonance formed on the dot
(using h̄ = 1). This form pertains to tunneling from the left
lead to the dot, accomplished at time t ′, followed by a time
evolution of the electronic wave function on the dot during the
time interval t − t ′, and then tunneling back to the left lead at
time t . One observes that in the static case, where V †

L VL = 1,
the integral (1) yields the usual Breit-Wigner density of states
on the dot, 2�/[(ω − ε)2 + �2]. For a Rashba interaction that
varies periodically with frequency �, the reflection comprises
multiple inelastic channels with emission and absorption of
n� energy quanta, which shift the resonance above and below
ε. This complex modification of the reflection may differ
for opposite directions of the junction, leading to a net DC
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FIG. 1. Illustration of the model system. A quantum dot, repre-
sented by a localized energy level, is attached by two weak links
lying in the x-y plane to two reservoirs, denoted L and R. An AC
electric field along ẑ, whose amplitude oscillates with frequency �,
induces a Rashba spin-orbit interaction in the links.

current. Below we show that such a difference can indeed
result from the Rashba interaction when the lengths of the two
weak links are not identical.

Details of the model. The Rashba interaction in the links is
induced by external electric fields, which can be polarized in
various ways. Here, we focus on the simplest one of a longitu-
dinal field (along the ẑ direction), whose amplitude oscillates
with frequency � (see Fig. 1). The Aharonov-Casher phase
factor multiplying the tunneling amplitude through a link of
length d along d̂ is then [27,28]

exp[iϕAC(t )] = exp[iksod cos(�t )ẑ × d̂ · σ ], (2)

where σ = (σx, σy, σz ) is the vector of the Pauli matrices, and
kso is the Rashba coupling. For the geometry of Fig. 1, the
Aharonov-Casher phase factors are

VL(R)(t ) = cos[ksodL(R) cos(�t )]

+ i sin[ksodL(R) cos(�t )]σ · êL(R), (3)

where dL(R) is the length of the link connecting the dot to the
left (right) reservoir. For links along the x̂ direction (Fig. 1),
the effective magnetic fields created by the Rashba interaction
are along êL = −ŷ and êR = ŷ.

The entire junction is described by the Hamiltonian

H(t ) = H0 + Htun(t ), (4)

where the time-independent H0 pertains to the decoupled
system, i.e., two separate reservoirs and a quantum dot,

H0 =
∑

σ

εd†
σ dσ +

∑
k,σ

εkc†kσ ckσ +
∑
p,σ

εpc†pσ cpσ . (5)

The first term in Eq. (5) describes the decoupled dot, with d†
σ

(dσ ) being the creation (annihilation) operator of an electron
of energy ε in the spin state |σ 〉. The other two terms describe
the decoupled electronic reservoirs, assumed to comprise non-
polarized free electrons. There, c†kσ

(ckσ ) creates (annihilates)
a particle with energy εk (εp), momentum k (p), and spin σ in
the left (right) lead. The tunneling Hamiltonian reads

Htun(t ) =
∑

α=L,R

Hα
tun(t )

=
∑

α

JL(R)

∑
σ,σ ′

⎧⎨
⎩[VL(R)(t )]σσ ′

∑
k(p)

c†k(p)σ dσ ′ + H.c.

⎫⎬
⎭.

(6)

The tunneling amplitudes, characterized by the energy JL(R),
are assumed to be given by their values at the Fermi energy.

Currents in the time domain. Within the Keldysh tech-
nique [29,30], the particle current, say, into the left lead, is
conveniently expressed in terms of the Green’s function on
the dot [31] Gdd (t, t ′) (a matrix in spin space),

IL(t ) ≡ d

dt

∑
k

∑
σ

〈c†kσ
ckσ 〉

=
∫

dt1Tr{	L(t, t1)Gdd (t1, t ) − Gdd (t, t1)	L(t1, t )}<,

(7)

where the angular brackets denote quantum averaging. The
superscript < indicates the lesser Green’s function, and
	L(t, t ′) is the self-energy due to the coupling of the dot to
the left reservoir,

	L(t, t ′) =J2
LV †

L (t )gL(t, t ′)VL(t ′), (8)

where gL(t, t ′) is the Green’s function of the decoupled left
reservoir. Green’s functions without a superscript represent all
three Keldysh Green’s functions, the lesser, and the retarded
and advanced ones (marked by the superscripts r and a). The
expression in Eq. (7) can be worked out explicitly in the wide-
band limit [32,33], where the densities of states in each of
the reservoirs are approximated by their value on the Fermi
surface. The self-energy 	

r(a)
L (t, t ′) is then proportional to the

unit matrix in spin space, with

	
r(a)
L (t, t ′) = ∓i�Lδ(t − t ′), (9)

where

�L = πNLJ2
L (10)

is the (partial) width of the resonance formed on the dot due to
the coupling with the left reservoir and NL denotes the density
of states of the left lead on the Fermi surface. The total width
of the resonance on the dot is � = �L + �R. The lesser self-
energy is a matrix in spin space,

	<
L (t, t ′) = 2i�L

∫
dω

2π
e−iω(t−t ′ ) f (ω)V †

L (t )VL(t ′). (11)

Here, f (ω) = {exp[β(ω − μ)] + 1}−1 is the equilibrium
Fermi distribution, with the inverse temperature β and the
chemical potential μ being identical for the two reservoirs.
[	R(t, t ′) is obtained from these expressions by changing L to
R.]

The explicit expression for IL(t ) is found by applying the
Langreth rules [29] to Eq. (7),

IL(t ) = 2�L Tr

{
−iG<

dd (t, t ) −
∫

dω

2π
f (ω)

×
∫ t

dt1[e−i(ε−ω+i�)(t1−t )V †
L (t )VL(t1) + c.c.]

}
. (12)

The equal-time lesser Green’s function −iG<
dd (t, t ), which

yields the occupation of the dot, is

−iG<
dd (t, t ) =

∫
dω

π
f (ω)[�LwL(ω, t ) + �RwR(ω, t )],

(13)
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where

wL(ω, t ) =
∫ t

dt1

∫ t

dt2e−iω(t1−t2 )

× e−i(ε−i�)(t−t1 )e−i(ε+i�)(t2−t )V †
L (t1)VL(t2), (14)

with an analogous expression for wR(ω, t ) [more details are
given in the Supplemental Material (SM) [33]]. Thus, inte-
grals of the form (1) determine the explicit expressions for the
current.

Using the expansion [34]

eiζ cos(φ) =
∞∑

n=−∞
inJn(ζ )einφ, (15)

where Jn(ζ ) in the Bessel function of integer order n, one finds
(see SM [33] for details)

wL(ω, t ) =
∣∣∣∣∣J0(ksodL )D(ω) +

∞∑
n=1

(−1)nJ2n(ksodL )F2n(ω, t )

∣∣∣∣∣
2

+
∣∣∣∣∣

∞∑
n=0

(−1)nJ2n+1(ksodL )F2n+1(ω, t )

∣∣∣∣∣
2

, (16)

where

D(ω) = i/[ω − ε + i�] (17)

is the Breit-Wigner resonance on the dot, and

Fn(ω, t ) = D(ω − n�)ein�t + D(ω + n�)e−in�t (18)

is an even function of � that contains the contributions of the
inelastic processes. The second term on the right-hand side of
Eq. (12) is found in a similar fashion [33]. The particle current
is then

IL(t ) = 4�L�R

∫
dω

π
f (ω)[wR(ω, t ) − wL(ω, t )]

− 2�L

∫
dω

π
f (ω)

dwL(ω, t )

dt
. (19)

One notes that IL(t ) + IR(t ) [the latter is obtained by inter-
changing L with R in Eq. (19)] equals the time derivative
of −Tr{iG<

dd (t, t )} [Eq. (13)] which is the occupation on
the dot, i.e., charge is conserved in the junction. Note also
that for � = 0, Eq. (16) becomes wL(ω) = [cos2(ksodL ) +
sin2(ksodL )]|D(ω)|2 = |D(ω)|2 which depends neither on the
length dL nor on the spin-orbit coupling kso. In that case the
first term on the right-hand side of Eq. (19) vanishes, and there
is no DC particle flow in an unbiased junction.

DC electromotive force generated by time-dependent
Rashba interaction. The current IL(t ) comprises a static term,
in addition to the time-dependent one. Obviously the deriva-
tive dwL(t )/dt depends on time, but wL (and similarly wR)
contains a static term, wL,s, which takes a particularly simple
form,

wL,s(ω) =
∞∑

n=−∞
J2

n (ksodL )|D(ω − n�)|2, (20)

(a)

(b)

FIG. 2. The particle current IDC, normalized to I0 =
(4�L�R )/(�π h̄), calculated from Eq. (21) as a function of
ksodR for ksodL = 1.0, ε − μ = 0.5�; (a) � = 0.5�, (b) � = 2.0�.
The increasing dash lengths correspond to β� = 10.0, 2.0, 1.0, and
0.5.

which is even in �. As a result, the DC particle current
through the junction is

IDC =
∫

dω

π
4�L�R|D(ω)|2

×
∞∑

n=−∞
f (ω + n�)

[
J2

n (ksodR) − J2
n (ksodL )

]
. (21)

(The time-dependent parts of the currents can be found in
SM [33].) Figure 2 portrays the current versus ksodR at a fixed
value of ksodL, as calculated from Eq. (21) for several values
of temperature and �. The oscillations, at low temperatures,
reflect the oscillatory length dependence of the effect of the
Rashba interaction [27]. These oscillations disappear grad-
ually as the temperature is raised. At low temperatures and
large �’s, IDC is dominated by the oscillations of the zeroth-
and first-order Bessel functions.

The appearance of DC electronic charge transport in the
absence of a bias voltage across the device is a manifestation
of an electromotive force acting in the electric circuit. In our
case, the force relies on the electronic spin, and drives the
electron flow through a junction subject to a time-dependent
spin-orbit interaction. The driving occurs due to the fermionic
nature of the electrons which imposes constraints on the in-
elastic spin scattering induced by the time-dependent Rashba
interaction: Some of the inelastic scattering channels become
partly blocked due to the Pauli principle. This is why the
unitarity of spin transmission, which would hold if all inelastic
transmission channels would be equally open, is broken [35].
The peculiar photovoltaic effect discussed above manifests
itself in inhomogeneous devices with a well-defined direction
of the inhomogeneity along the direction of the current flow.
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The single-dot tunneling device studied here, in which the
reflection asymmetry is generated by the different lengths of
the links (in conjunction with the Rashba coupling), is an
example of such an inhomogeneity.

One may propose a simple procedure to measure the spin-
orbit-induced electromotive force. Suppose that the spin-orbit
coupled weak link (which contains the dot) is an element of an
open electric circuit. Then the spin-driven electromotive force
would lead to an accumulation of extra charges of opposite
signs on the two terminals, and in turn to the building up of a
voltage drop across the junction. A steady-state configuration
would then emerge, provided that the ohmic current generated
by this voltage drop compensates the DC current due to the
electromotive force induced by the Rashba interaction.

Thus, another photovoltaic effect can be predicted: A mi-
crowave field applied to a gate electrode (see Fig. 1) induces a
voltage drop across the junction. A simple analytical estimate
of the voltage signal can easily be obtained for a weak Rashba
coupling, ksodL(R) � 1: In the absence of the spin-orbit inter-
action, a bias voltage V on the junction gives rise to a DC
particle current [30],

IDC = 4�L�R

π h̄

eV

ε2
0 + �2

∼ 4�L�R

πε2
0

eV

h̄
, (22)

where ε0 ≡ ε − μ is assumed to be much larger than � in
the last step (h̄ was reintroduced into the expressions for the
following estimates). On the other hand, according to Eq. (21)
at small spin-orbit coupling, the oscillating Rashba interaction
generates the zero-temperature particle DC current

IDC|T =0 = 4�L�R

π h̄�

k2
so

[
d2

L − d2
R

]
2

×
[

1

2

(
arctan

ε0 + �

�
+ arctan

ε0 − �

�

)

− arctan
ε0

�

]
, (23)

which becomes, for ε0 
 � and � < ε0,

IDC|T =0 ∼ 4�L�R

πε2
0

k2
so

[
d2

R − d2
L

] (h̄�)2

2h̄ε0

. (24)

Thus, the voltage drop Vem generated by the electromotive
force is

Vem = k2
so

(
d2

R − d2
L

)
(h̄�)2/(2eε0). (25)

Similar considerations for the oscillatory length dependence
pertain to the case where the Rashba interaction is induced by
mechanical vibrations of the nanowire forming the link [5,6].

Our model system could be implemented by, e.g., three
in-line, side-gated InAs nanowires [36]. The left and right

nanowires of length dL and dR would serve as weak links
and be in tunneling contact with, respectively, the source and
drain electrodes as well as with the short, central nanowire,
which would serve as a quantum dot. One of the two gates on
either side of the weak links would be excited by a microwave
field that creates an AC gate voltage, VAC cos(�t ) [37], while
a static voltage on the the two gates on either side of the
quantum dot would be used to tune the energy levels in the
dot.

With a distance of ∼200 nm between the side gates [36]
a microwave-generated amplitude of VAC = 1 V on the side
gates would produce a transverse electric field amplitude
of ∼50 kV/cm in the wires, corresponding to a Rashba
parameter αR = h̄2kso/m∗ ∼ 50 meV Å [38] and, using m∗ =
0.023me, a Rashba coupling kso ∼ 2 × 10−3 (nm)−1 in the
weak links. Assuming dL ∼ dR ∼ 250 nm and microwave
frequency of 2π × 100 GHz [so that h̄� is of the order of the
energy level ε0 ∼ 1 meV (with respect to the chemical poten-
tial)], one finds Vem ∼ 10 μV; thus the photovoltaic voltage in
response to the microwave field seems to be measurable.

Summary. We have found that the spin-orbit (Rashba) in-
teraction confined to an electric weak link, which, when static,
has no significant effect on DC transport of two-terminal
devices, may act as a source of DC currents when generated by
a periodic electric field. This electric field renders the Rashba
interaction time dependent, breaking the unitarity of the spin
transmission by generating inelastic transmission channels.
We have shown that this loss of unitarity appears as additional
contributions to the backscattering [see Eqs. (1) and (14)].
An estimate of the generated voltage drop in an open circuit
suggests that it can be detected experimentally.

The effect we find is due to modifications of the probabil-
ities for electron reflections, which are different for electrons
approaching the junction from opposite directions; nonethe-
less, it is not related to quantum pumping [19]. The origin of
the latter are different time-dependent phases of the instan-
taneous reflection amplitudes [18], whereas a straightforward
calculation of the instantaneous scattering matrix for the junc-
tion illustrated in Fig. 1 shows that the reflection amplitudes
do not depend on time. This is because V †

L (t )VL(t ) = 1 due
to the unitarity of the Aharonov-Casher phase factor. In our
case, the reflections are modified by Aharonov-Casher phase
factors at different times, and necessitate the inclusion of the
inelastic dynamics on the dot.
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