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Carrying information using generation and detection of the orbital current, instead of the spin current, is an
emerging field of research, where the orbital Hall effect (OHE) is an important ingredient. Here, we propose
a mechanism of the OHE that occurs in noncentrosymmetric materials. We show that the broken inversion
symmetry in the two-dimensional transition metal dichalcogenides (TMDCs) causes a robust orbital moment,
which flows in different directions due to the opposite Berry curvatures under an applied electric field, leading
to a large OHE. This is in complete contrast to the inversion-symmetric systems, where the orbital moment is
induced only by the external electric field. We show that the valley-orbital locking as well as the OHE both
appear even in the absence of the spin-orbit coupling. The nonzero spin-orbit coupling leads to the well-known
valley-spin locking and the spin Hall effect, which we find to be weak, making the TMDCs particularly suitable
for direct observation of the OHE, with potential application in orbitronics.
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Orbital Hall effect (OHE) is the phenomenon of the trans-
verse flow of orbital angular momentum in response to an
applied electric field, similar to the flow of spin angular
momentum in the spin Hall effect (SHE). The OHE is more
fundamental in the sense that it occurs with or without
the presence of the spin-orbit coupling (SOC), while in the
presence of the SOC, OHE leads to the additional flow of
the spin angular momentum resulting in the SHE. In fact,
the idea of OHE has already been invoked to explain the
origin of a large anomalous and spin Hall effect in several
materials [1–3]. Because of this and the fact that OHE is
expected to have a larger magnitude than its spin counterpart,
there is a noticeable interest in developing the OHE [4–7],
with an eye towards future “orbitronics” device applications.

In this work, we propose a mechanism of the OHE that
occurs in noncentrosymmetric materials and explicitly illus-
trate the ideas for monolayer transition metal dichalcogenides
(TMDCs) which constitute the classic example of two-
dimensional (2D) materials with broken inversion symmetry.
In complete constrast to the centrosymmetric materials [4,6],
where orbital moments are quenched due to symmetry and a
nonzero moment develops only due to the symmetry-breaking
applied electric field, here an intrinsic orbital moment is
already present in the Brillouin zone (BZ) even without the
applied electric field. Unlike the centrosymmetric systems, the
physics here is dominated by the nonzero Berry curvature,
which determines the magnitude of the OHE. Our work
emphasizes the intrinsic nature of orbital transport in contrast
to the valley Hall effect [8–12], for example, which can only
be achieved by extrinsic means (doping, light illumination,
etc.).

*bhowals@missouri.edu

We develop the key physics of the underlying mechanism
of the OHE using a tight-binding (TB) model as well as from
density-functional calculations. The effect is demonstrated for
the selected members of the family of monolayer TMDCs,
viz., 2H-MoX2 (X = S, Se, Te), where we find a large OHE
and at the same time a negligible intrinsic spin Hall effect,
making these materials an excellent platform for the direct
observation of the OHE.

The basic physics is illustrated in Fig. 1, where we have
shown the computed intrinsic orbital moments in the BZ
as well as the electron “anomalous” velocities at the K, K ′

valleys. Symmetry demands that in the presence of inversion
(I), orbital moments satisfy the condition �M(�k) = �M(−�k),
while if time-reversal (T ) symmetry is present, we have
�M(�k) = − �M(−�k). Thus for a nonzero �M(�k), at least one of the

two symmetries must be broken. In the present case, broken
I leads to a nonzero �M(�k), while its sign changes between
the K and K ′ points due to the presence of T . The Berry
curvatures ��(�k) follow the same symmetry properties leading
to the nonzero anomalous velocity �v = (e/h̄) �E × ���k [13]
which has opposite directions at the two valleys, and thus
leads to the OHE. These arguments are only suggestive,
and one must evaluate the magnitude of the effect from the
calculation of the orbital Berry curvatures [13] as discussed
below.

Tight-binding results near the valley points. The valley
points (K/K ′) have the major contributions to the OHE in
the TMDCs and this can be studied analytically using a TB
model. Due to the broken I [see Fig. 1(a)], the chalcogen
atoms must be kept along with the transition metal atom (M)
in the TB basis set; however, their effect may be incorporated
via the Löwdin downfolding [14] producing an effective TB
Hamiltonian for the M-d orbitals with modified Slater-Koster
matrix elements [15]. The effective Hamiltonian, valid near
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FIG. 1. Illustration of OHE in monolayer MX2. (a) Crystal struc-
ture of MX2, showing the triangular network of transition metal M
atoms as viewed from the top. The two out-of-plane chalcogen atoms
X occur above and below the plane. (b) The band structure near
K (−4π/3a, 0) and K ′(4π/3a, 0), showing the valley-dependent spin
and orbital characters. (c) The orbital moment Mz(�k) in the BZ and
the anomalous velocities v, indicated by the blue and the red arrows.
(d) Orbital moments flow in the transverse direction leading to the
OHE.

the K and K ′ valley points, reads

H(�q) = ( �d · �σ ) ⊗ Is + τλ

2
(σz + 1) ⊗ sz, (1)

where only terms linear in �q = �k − �K have been kept, ignor-
ing thereby the higher-order trigonal warping [16], which are
unimportant for the present study. Here �s and �σ are, respec-
tively, the Pauli matrices for the electron spin and the orbital
pseudospins, |u〉 = (

√
2)−1(|x2 − y2〉 + iτ |xy〉) and |d〉 =

|3z2 − r2〉. Is is the 2 × 2 identity operator in the electron spin
space, λ is the SOC constant, and the valley index τ = ±1 for
the K and K ′ valleys, respectively. The TB hopping integrals
appear in the parameter �d , with dx = τ tqxa, dy = −tqya,

and dz = −�/2, where a is the lattice constant, � is the
energy gap at the K (K ′) point, and t is an effective interband
hopping, determined by certain d-d hopping matrix elements.
We note that Eq. (1) is consistent with the Hamiltonian derived
earlier [10] using the k · p theory. The TB derivation has
the benefit that it directly expresses the parameters of the
Hamiltonian in terms of the specific hopping integrals.

The magnitude of the orbital moment �M(�k) can be com-
puted for a specific band of the Hamiltonian (1) using the
modern theory of orbital moment [13,17], viz.,

�M(�k) = −2−1 Im[〈 �∇ku�k| × (H − ε�k )| �∇ku�k〉]
+ Im[〈 �∇ku�k| × (εF − ε�k )| �∇ku�k〉], (2)

where ε�k and u�k are the band energy and the Bloch wave
function, and the two terms in (2) are, respectively, the angular
momentum (�r × �v) contribution due to the self-rotation and
due to the motion of the center of mass of the Bloch electron
wave packet. Diagonalizing the 4 × 4 Hamiltonian (1), we
find the energy eigenvalues εν

± = 2−1{τνλ ± [(� − τνλ)2 +

4t2a2q2]1/2}, where ν = ±1 are the two spin-split states
within the conduction or valence band manifold, denoted by
the subscript ±. The wave functions in the basis set (|u ↑〉,
|d ↑〉, |u ↓〉, and |d ↓〉) are

|uν=1
± (q)〉 = N [1 [Dν ∓

√
(Dν )2 + d2]/dν 0 0]T ,

(3)
|uν=−1

± (q)〉 = N [0 0 1 [Dν ∓
√

(Dν )2 + d2]/dν]T ,

where Dν = (� − ντλ)/2, dν = ta(τqx ± iνqy), d2 =
t2a2(q2

x + q2
y ), and N is the appropriate normalization factor.

With these wave functions, the orbital moments can be
evaluated exactly within the TB model from Eq. (2). For the
two valence bands (ν = ±1), the result is

Mz(�q) = τm0Dν (D−ν − λ)�

2[(Dν )2 + t2q2a2]3/2
(4a)

≈ τm0[1 + λ(3ντ − 2)/�](1 − 6 m0q2/�), (4b)

where m0 = �−1t2a2, only the out-of-plane ẑ component of
the orbital moment is nonzero, and the second line is the
expansion for small q and λ, both  �.

Note the important result (4) that a large orbital moment
Mz exists at the valley points (�q = 0) and its sign alternates
between the two valleys (τ = ±1) (valley-orbital locking).
Furthermore, it exists even in the absence of the SOC (λ = 0).
For typical parameters, t = 1.22 eV, � = 1.66 eV, and λ =
0.08 eV, relevant for the monolayer MoS2, m0 ≈ 9.1 eV Å2 ≈
2.4μB × (h̄/e). As seen from Eq. 4(b), there is only a weak
dependence on λ.

In fact, it is interesting to note that the valley-dependent
spin splitting [Fig. 1(b)] directly follows from the valley-
orbital moments due to the 〈�L · �S〉 term, which favors an-
tialignment of spin with the orbital moment [3]. Thus for the
valence bands, the spin-↓ band is lower in energy at K , while
the spin-↑ band is lower at K ′, with a spin splitting of about
2λ. Therefore, the well-known spin polarization of the bands
at the valley points can be thought of to be driven by the robust
orbital moments via the perturbative SOC.

The orbital moment is the largest at the valley points K, K ′,
as seen from Eq. (4), falling off quadratically with momentum
q. This is also validated by the density-functional (DFT)
results shown in Fig. 2. The orbital moment at the center of
the BZ (�) vanishes exactly due to symmetry reasons, and
therefore is expected to be small in the neighborhood of � as
seen from Fig. 2(b) as well.

It is easy to argue that under an applied electric field, the
electrons in the two valleys move in opposite directions, so
that a net orbital Hall current is produced. To see this, we first
realize that only the Berry curvature term in the semiclassical
expression [13] for the electron velocity �̇rc = h̄−1[ �∇kεk +
e �E × ��(�k)]�kc

is nonzero for the two valleys. Furthermore,
only the ẑ component of the Berry curvature survives, which
we evaluate near the K, K ′ valleys within the TB model using
the Kubo formula below. The result is

�z
n(�q) = −2h̄2

∑
n′ �=n

Im[〈un�q|vx|un′ �q〉〈un′ �q|vy|un�q〉]
(εn′ �q − εn�q)2

= 2Mz(�q)

� + λ(ντ − 2)
≈ 2τm0

�2
(� + 2ντλ − 6m0q2).

(5)
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FIG. 2. (a) Density-functional band structure together with the
orbital characters near the valley points and (b) the computed sum
of the orbital moments (Mz) over all occupied bands along selected
symmetry lines.

Clearly, �z has opposite signs for the two valleys, so that �v ∝
�E × �� is in opposite directions for the K and the K ′ valley
electrons. Thus the positive orbital moment of the K valley
moves in one direction, while the negative orbital moment of
K ′ moves in the opposite direction, leading to a net orbital
Hall current.

The magnitude of the orbital Hall conductivity (OHC) may
be calculated using the Kubo formula by the momentum sum
of the orbital Berry curvatures [4,6], viz.,

σ
γ ,orb
αβ = − e

NkVc

occ∑
n�k

�
γ,orb
n,αβ (�k), (6)

where α, β, γ are the Cartesian components, and jorb,γ
α =

σ
γ ,orb
αβ Eβ is the orbital current density along the α direction

with the orbital moment along γ , generated by the electric
field along the β direction. In the 2D systems, Vc is the surface
unit cell area, so that the conductivity has the dimensions of
(h̄/e)�−1.

The orbital Berry curvature �
γ,orb
n,αβ in Eq. (6) can be evalu-

ated as

�
γ,orb
n,αβ (�k) = 2h̄

∑
n′ �=n

Im
[〈

un�k
∣∣J γ ,orb

α

∣∣un′ �k
〉〈un′ �k|vβ |un�k〉

]
(εn′ �k − εn�k )2

, (7)

where the orbital current operator is J γ ,orb
α = 1

2 {vα, Lγ }, with
vα = 1

h̄
∂H
∂kα

the velocity operator and Lγ is the orbital angular
momentum operator.

It turns out that due to the simplicity of the TB Hamil-
tonian (1), valid near the valley points, the orbital and the
standard Berry curvatures are the same, apart from a valley-
dependent sign, viz.,

�z,orb
n,yx (�q) = τ × �z

n(�q). (8)

To see this, we take the momentum derivative of (1) to get

h̄vx(�q) =

⎡
⎢⎣

0 τ ta 0 0
τ ta 0 0 0
0 0 0 τ ta
0 0 τ ta 0

⎤
⎥⎦ = taτσx ⊗ Is, (9)

and, similarly, h̄vy(�q) = −taσy ⊗ Is and vz(�q) = 0. Further-
more, in the subspace of the TB Hamiltonian, Lx = Ly =
0, and Lz = τ h̄(σz + 1) ⊗ Is. By matrix multiplication, we
immediately find that J z,orb

α = τ h̄vα and J x,orb
α = J y,orb

α = 0,
which leads to the result (8). The expression for the orbital
Berry curvature then follows from Eqs. (5) and (8), viz.,

�z,orb
ν,yx (�q) = 2τMz(�q)

� + λ(ντ − 2)
, (10)

where Mz(�q) is the orbital moment in Eq. (4). At a general k
point, the full expression (7) must be evaluated to obtain the
OHC.

This is a key result of the Rapid Communication, which
shows that the orbital Berry curvatures near the K and K ′
points are directly proportional to the respective orbital mo-
ments, and, more importantly, they have the same sign at the
two valleys as both τ and Mz change signs simultaneously.
Thus, the contributions from these two valleys add up, leading
to a nonzero OHC. Another important point is that �z,orb

ν,yx ex-
ists even without the SOC, and it has only a weak dependence
on λ as seen from Eq. (10). Neglecting the λ dependence,
we see that at both valley points, the contribution to the
OHC is given by �z,orb

ν,yx = 2t2a2/�2. In fact, the momentum
sum in OHC can be performed analytically in this limit by
integrating up to the radius qc (πq2

c = �BZ) to yield the
result

σ z,orb
yx = − 2e

(2π )2

∑
ν=±1

∫ qc

0
d2q × �z,orb

ν,yx (�q)

= −e

π
×

⎡
⎣1 − �√

�2 + (32πt2/
√

3)

⎤
⎦ + O(λ2/�2),

(11)

which is consistent with the anticipated result that the larger
the parameter t2/�2, the larger is the OHC, primarily because
the orbital moment Mz increases.

We pause here to compare the OHE with the related phe-
nomenon of the valley Hall effect, which has been proposed in
the gapped graphene as well as in the TMDCs [11,12]. In the
valley Hall effect, electrons in the two valleys flow in opposite
directions, leading to a charge current and additionally to an
orbital current (the valley orbital Hall effect [12]), if there
is a valley population imbalance (e.g., created by shining
light). This is in complete contrast to the OHE, which is an
intrinsic effect without any need for population imbalance
between the valleys. More interestingly, unlike the valley
Hall effect, the OHE described here does not have any net
charge current but there exists only a pure orbital current.
Furthermore, in the valley Hall effect, the nonzero valley
orbital magnetization [11] explicitly breaks the T symmetry,
which is preserved in the present case. In this sense the OHE
studied here is completely different from the valley Hall effect
proposed earlier.

Density functional results. We now turn to the DFT re-
sults for the monolayer TMDCs. Orbital moments were com-
puted using pseudopotential methods [18] and the Wannier

121112-3



SAYANTIKA BHOWAL AND S. SATPATHY PHYSICAL REVIEW B 101, 121112(R) (2020)

FIG. 3. (a) Orbital and (b) spin Berry curvatures (in units of Å2),
summed over the occupied states, on the kz = 0 plane for 2H-MoS2.
The contours correspond to the tick values on the color bar and the
zero contours have been indicated explicitly.

functions as implemented in the WANNIER90 code [19,20] (see
Supplemental Material [21] for details). The complementary
muffin-tin orbitals based method (NMTO) [23] was used to
compute the orbital moment as well as the orbital and the spin
Hall conductivities. In the latter method, effective TB hopping
matrix elements between the M-d orbitals are obtained for
several neighbors, which yields the full TB Hamiltonian valid
everywhere in the BZ, using which all quantities of interest
are computed. The BZ sums for the OHC and spin Hall
conductivity (SHC) were computed with 400 × 400 k points
in the 2D zone. The computed orbital moments using the
WANNIER90 or the NMTO method agree quite well.

The DFT band structure and the corresponding orbital
moments are shown in Figs. 1(c) and 2 for MoS2. As shown
in Fig. 2(b), the orbital moments computed from the Hamilto-
nian (1) near the valley points agree quite well with the DFT
results. Note that the total orbital moment (summed over the
BZ) vanishes due to the presence of T , though it is nonzero at
individual k points.

From the TB model (1), we had studied the orbital mo-
ment and the OHE near the valley points. From the DFT
calculations, we can compute the same over the entire BZ,
the result of which is shown in Fig. 3(a). As seen from the
figure, the dominant contribution comes from the k space near
the valley points K, K ′. Since the intrinsic orbital moment
near the � point is absent, the orbital Berry curvature in
this region takes a nonzero value only due to the orbital
moments induced by the applied electric field in the Hall
measurement, similar to the centrosymmetric case [4]. This
results in a small contribution σ� to the net OHC, as seen
from Table I, which lists the partial contributions to the OHC
coming from different parts of the BZ. Note that there is only
one independent component of OHC, viz., σ z,orb

yx = −σ z,orb
xy .

Spin Hall effect. For a material to be a good candidate for
the detection of the OHE, the SHC must be small, as both
carry angular momentum. To this end, we compute the SHC,
first from the model Hamiltonian and then from the full DFT
calculations. Analogous to the calculation of the OHC, the
SHC can be obtained by the sum of the spin Berry curvatures,
�

z,spin
ν,yx (�k), evaluated by replacing the orbital current operator

with the spin current operator J γ ,spin
α = 1

4 {vα, sγ } in Eq. (7).
For the two spin-split valence bands near the valley points in

TABLE I. DFT results for the OHC of the monolayer TMDCs,
including the partial contributions (σ z,orb

yx = σK + σ� + σrest), σK, σ� ,
and σrest being the contributions, respectively, from the valley, �

point, and the remaining regions of the BZ. OHC are in units of
103 × (h̄/e)�−1, while the SHC are in units of (h̄/e)�−1.

Materials σK σ� σrest σ z,orb
yx σ z,spin

yx

MoS2 −9.1 1.7 −3.2 −10.6 1.0
MoSe2 −8.0 1.7 −3 −9.3 1.8
MoTe2 −9.1 1.1 −2.5 −10.5 3.0
WTe2 −8.6 1.0 −2.6 −10.2 9.4

the TB model, we find

�z,spin
ν,yx (�q) = νMz(�q)

� + λ(ντ − 2)
= ντ

2
�z,orb

yx (�q). (12)

Note that �
z,spin
ν,yx (�q) has opposite signs for the two spin-

split bands and in the limit of λ = 0, they exactly cancel
everywhere producing a net zero SHC. For a nonzero λ,
these two contributions add up to produce a small net SHC.
Calculating the contributions from the valley points with a
similar procedure as Eq. (11), we obtain the result σ

z,spin
yx ∼

−eλ(π�)−1, in the limit λ  �. This is clearly much smaller
than the OHC (11), by a factor of λ/�. From the DFT results
(see Table I), we do indeed find that the SHC is about three
orders of magnitude smaller than the OHC. Even in doped
samples though the SHC is expected to be higher than the
undoped sample, the typical values [8] are nevertheless still
an order of magnitude smaller than the computed OHC. These
arguments suggest TMDCs to be excellent candidates for the
observation of OHE, since the intrinsic SHC is negligible in
comparison.

In conclusion, we examined the intrinsic OHE in noncen-
trosymmetric materials and illustrated the ideas for the mono-
layer TMDCs. The broken I in TMDCs produces a robust
momentum-space intrinsic orbital moment �M(�k), present even
in the absence of λ. Due to the opposite Berry curvatures at the
valley points K and K ′, these orbital moments flow in opposite
directions, leading to a large OHC [≈104 (h̄/e )�−1]. The
vanishingly small intrinsic SHC in these materials make them
particularly suitable for the direct observation of the OHE,
which can be measured by detecting the orbital torque gener-
ated by the orbital Hall current [5]. The magneto-optical Kerr
effect may also be used to detect the orbital moments accu-
mulated at the edges of the sample due to the OHE [24]. Fur-
thermore, the valley-orbital locking can be probed in photon
polarized angle-resolved photoemission measurements [25].
In addition, it may be possible to tune the OHC by applying
a transverse electric field [26,27]. Experimental confirmation
of the OHE in the TMDCs may open up new avenues for the
realization of orbitronics devices.
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