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Misuse of the minimal coupling to the electromagnetic field in quantum many-body systems
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Consistency with the Maxwell equations determines how matter must be coupled to the electromagnetic field
(EMF) within the minimal coupling scheme. Specifically, if the Hamiltonian includes just a short-range repulsion
among the conduction electrons, as is commonly the case for models of correlated metals, those electrons must
be coupled to the full internal EMF, whose longitudinal and transverse components are self-consistently related
to the electron charge and current densities through Gauss’s and circuital laws, respectively. Since such self-
consistency relation is hard to implement when modeling the nonequilibrium dynamics caused by the EMF, as
in pump-probe experiments, it is common to replace in model calculations the internal EMF by the external one.
Here we show that such replacement may be misleading, especially when the frequency of the external EMF is
below the intraband plasma edge.
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I. INTRODUCTION

Modern ultrafast time-resolved pump-probe spectroscopy
offers the possibility to access the real-time dynamics of a
material perturbed by a laser pulse, thus providing information
complementary to more traditional experimental techniques.
Furthermore, properly tailoring the pump pulse allows ultra-
fast photoinducing phase transitions into states that may not
even exist in thermal equilibrium [1,2]. Strongly correlated
materials appeared as ideal candidates for such kind of ex-
periments [3–11], because of their rich phase diagrams that
include different insulating and conducting states, often dis-
playing notable properties, such as high-Tc superconductivity
[12–14].

The experimental activity has, in turn, stimulated a great
theoretical effort aimed to interpret the measurements, as well
as to achieve control over new states of matter that might
be stabilized by a properly designed laser pulse (see, for
instance, Refs. [15–33]), which is not at all an exhaustive
list. Evidently, this task requires a proper treatment of the
interaction with the electromagnetic field. The minimal cou-
pling scheme, describing the light-matter interaction when
only the monopole of the charged particles is taken into
account, is explicitly derived in many textbooks [34,35] and
routinely used to model the electromagnetic field coupling in
electronic systems. However, its precise meaning in the case
of many-body systems is often largely overlooked, ultimately
leading to a possible fallacious description of the effects of
light.

In the following we shall show that the inconsiderate use
of the simple minimal coupling recipe hides in reality some
approximations which are not always justified. In particular,
we review a correct treatment of the electromagnetic field
coupling in a system of electrons within linear regime, point-
ing out the implicit assumptions which may not be verified
in metallic systems. We discuss a simple paradigmatic, yet

generic, case in which the difference in the treatment of the
external field can lead to rather different results.

Finally, we emphasize that our aim is to properly account
for the screening effects on the external electromagnetic field
in a quantum many-body system. For simplicity we shall
ignore other issues that are equally important to reach a
realistic modeling of pump-probe experiments, e.g., the role
of the surface, the interband transitions driven by the band
bending in the strong electric field, or the mismatch between
pump and probe penetration depths.

II. DISCUSSION

We assume a system of charged particles in the presence
of external sources of the electromagnetic field that can be
described in terms of the external scalar, φext(r, t ), and vector
potentials, Aext(r, t ). We decompose Aext(r, t ) = A‖ext(r, t ) +
A⊥ext(r, t ), where A‖ext(r, t ) and A⊥ext(r, t ) are the longitudi-
nal and transverse components, respectively. In the following
we shall work in the Coulomb gauge ∇ · Aext(r, t ) = 0, so that
the vector potential is purely transverse [35].

Since our system is made of charged particles, they actu-
ally feel “internal” scalar and vector potentials, φ(r, t ) and
A⊥(r, t ), respectively, which do not in general coincide with
the external ones. Because of the linearity of the Maxwell
equations, we can express such internal fields as

φ(r, t ) = φext(r, t ) + φsys(r, t ),

A⊥(r, t ) = A⊥ext(r, t ) + A⊥sys(r, t ), (1)

where the system φsys(r, t ) and A⊥sys(r, t ) potentials are
obtained through the Gauss’s law

−∇2φsys(r, t ) = 4πρsys(r, t ), (2)
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and the circuital law(
∂2

∂t2 − c2 ∇2

)
A⊥sys(r, t ) = 4πcJ⊥sys(r, t ), (3)

with ρsys(r, t ) the system charge density, and J⊥sys(r, t ) the
transverse component of the system current density. Conse-
quently, the internal gauge-invariant electric and magnetic
fields are defined in terms of the internal scalar and vector
potentials through

E‖(r, t ) = −∇φ(r, t ),

E⊥(r, t ) = −1

c

∂A⊥(r, t )

∂t
, (4)

B⊥(r, t ) = ∇ ∧ A⊥(r, t ).

Using the above definitions, the Hamiltonian that describes
our system coupled to the electromagnetic field, which we
assume to be classical, reads, in the minimal coupling scheme
[34,35] and neglecting the Zeeman term,

H =
∫

dr

{[∑
σ

�†
σ (r)

1

2m

(
− ih̄ ∇ + e

c
A⊥(r, t )

)2

�σ (r)

]

+V (r)�†
σ (r)�σ (r)

}

+ e2

2

∑
σσ ′

∫
dr dr′�†

σ (r)�†
σ ′ (r′)

1

|r − r′|

× �σ ′ (r′)�σ (r) +
∫

dr φext(r, t )ρ(r, t ), (5)

where �σ (r) is the Fermi field of spin σ electrons, V (r)
the periodic potential of an underlying lattice of immobile
ions that also provide a positive charge density, ρion(r), neu-
tralizing the electron one. Thus we have ρ(r) ≡ ρion(r) −
e
∑

σ �†
σ (r)�σ (r).

It is worth emphasizing that Eqs. (2) and (3), where

ρsys(r, t ) = 〈ρ(r)〉,

J⊥sys(r, t ) = −c

〈
δH

δA⊥(r, t )

〉
, (6)

to be verified require that (i) one must explicitly include
the Coulomb interaction among the electrons in order for
the Hamiltonian (5) to involve only the external longitudinal
field φext(r, t ); and (ii) the transverse vector potential A⊥(r, t )
is the internal one, i.e., the sum of the external potential
A⊥ext(r, t ) plus the one generated by the electrons, A⊥sys(r, t ),
through Eq. (3).

The issue is that both points (i) and (ii) make it difficult
to model the system dynamics during and after the action of
an electromagnetic pulse. To proceed further, some approx-
imations have to be assumed. Concerning point (i), we note
that correlated materials are commonly described in terms of
lattice models with short-range electron-electron interactions,
e.g., the paradigmatic Hubbard model. Although such mod-
els are in general not exactly solvable, powerful techniques
are available to investigate them in controlled approxima-
tion schemes, such as dynamical mean field theory (DMFT)
[36], originally designed to treat just short-range interactions.

Several attempts to add nonlocal correlations in equilibrium
DMFT have been put forward [37–39]; still, the inclusion of
the true long-range Coulomb interaction remains a serious
challenge. The extension of some of those attempts to the
out-of-equilibrium regime has been achieved in simple cases
[18,32,40], but a more systematic development and a proper
description of the dynamics in the presence of a longitudinal
field is yet to come.

However, since the laser frequency in experiments usually
ranges from far to near infrared, i.e., wavelengths λ � 1 μm,
the difference between longitudinal and transverse compo-
nents of the electromagnetic field is negligible. In this case,
one can in principle focus only on the transverse response,
which is seemingly less sensitive to the long-range tail of the
Coulomb repulsion [41].

However, the long-range nature of the coupling to the
transverse field is hidden in point (ii) above, which entails the
self-consistency condition (3) that is not easy to implement
in an actual calculation. One can avoid that self-consistency
by treating the transverse field quantum mechanically, and
integrating out the photons. The result would be that only the
external vector potential would now appear in the minimal
coupling scheme, at the cost of introducing a current-current
interaction among the electrons, nonlocal both in time and
space. At the end, one faces again the same problems as
in the longitudinal response, worsened by the nonlocality in
time.

In view of the above difficulties, it is rather common to sim-
ply ignore points (i) and (ii) above, and just consider models
of correlated electrons interacting via a short-range repulsion,
and minimally coupled to a uniform vector potential assumed
to coincide with the external one, A(t ) = Aext(t ) (see, e.g.,
Refs. [18,33]).

Our aim here is not to revise all results that have been so
far obtained under those simplifications, but just to select a
few examples that can be explicitly worked out and where the
difference between taking into account, or not, points (i) and
(ii) is most dramatic.

For simplicity, we consider the half-filled single-band Hub-
bard model in a three-dimensional cubic lattice with nearest-
neighbor hopping −t, and in the presence of a uniform AC
vector potential. Using the Peierls substitution method, the
Hamiltonian reads

H(t ) =
∑
kσ

ε
[
k + e

h̄c
A(t )

]
c†

kσ ckσ

+ 1

2

∑
i, j

(ni − 1)Ui j (n j − 1)

= H0 +
∑
kσ

{
ε
[
k + e

h̄c
A(t )

]
− ε(k)

}
c†

kσ
ckσ

= H0 + δH(t ),

H(t ) 

∑
kσ

[
ε(k)

(
1 − e2a2

6h̄2c2 A(t ) · A(t )

)

+ e

h̄c

∂ε(k)

∂k
· A(t )

]
c†

kσ ckσ + U

2

∑
i

(ni − 1)2, (7)
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where

ε(k) = −2t
3∑

n=1

cos kna, (8)

with a the lattice constant, A(t ) the internal vector potential,
transverse and longitudinal losing their meaning in the present
uniform case, and Ui j the Coulomb interaction.

Focusing on the response to the internal A(t ), we can
sensibly discard the long-range tail of Ui j [41], and thus
approximate Ui j = U if i = j, and zero otherwise, i.e., the
standard local Hubbard repulsion.

We assume to be in a linear response regime, and that
the probing measurement is performed well beyond the char-
acteristic relaxation time of the system [42–44]. With those
assumptions the Hamiltonian is and the equation relating the
internal field to the external one has the simple solution, in the
frequency space,

A(ω) = Aext(ω)

ε(ω)
, (9)

with the uniform dielectric constant

ε(ω) = 1 + i
4π

ω
σ (ω), (10)

where σ (ω) is the optical conductivity that, in linear response,
is defined by

Jsys(ω) = σ (ω)E(ω) = iω

c
σ (ω)A(ω), (11)

and can be calculated through the current-current response
function. We shall here focus on two physical quantities that
can be readily obtained once the optical conductivity and the
dielectric constant are known.

The first is the expectation value of the hopping

T [A(t )] =
〈
∂H(t )

∂t

〉

 T (0)

(
1 − e2a2

6h̄2c2 A(t ) · A(t )

)
, (12)

which is renormalized downwards by the electromagnetic
field, with potentially interesting consequences (see, e.g.,
[15,16,45]). We choose to quantify this reduction through
the relative variation of the hopping expectation value aver-
aged over one period τ = 2π/ω of a monochromatic field of
frequency ω, which reads

δT

T
=

∫ τ

0

dt

τ

∣∣∣∣T [A(t )] − T (0)

T (0)

∣∣∣∣ = e2a2

12h̄2ω2 |E(ω)|2

= e2a2

12h̄2ω2

|Eext(ω)|2
|ε(ω)|2 . (13)

The reduction thus becomes significant when δT/T = 1,
which corresponds to a threshold field

∣∣E th
ext(ω)

∣∣ =
√

12h̄ω

ea
|ε(ω)|. (14)

We observe that, if one discards point (ii), i.e., assumes
A(t ) to coincide with Aext(t ), the threshold field changes into
|E th

ext(ω)|appx related to the true one of Eq. (14) through∣∣E th
ext(ω)

∣∣
appx∣∣E th

ext(ω)
∣∣ = 1

|ε(ω)| ≡ Y1(ω). (15)

We shall use Y1(ω) as the first estimate of the error one can do
by replacing the internal vector potential with the external one
in the minimal coupling scheme (5).

The other physical quantity we consider is the power
dissipated by the monochromatic electromagnetic field during
one period, defined as [see Eq. (7)]

P(ω) =
∫ τ

0

dt

τ

∂

∂t
〈H0〉 = −i

∫ τ

0

dt

τ
〈[H0,H(t )]〉

= 1

2
Re σ (ω)|E(ω)|2 = 1

2

Re σ (ω)

|ε(ω)|2 |Eext(ω)|2. (16)

As before, if one uses Aext(t ) instead of A(t ) in the Hamilto-
nian, the power dissipated takes the approximate expression

Pappx(ω) = 1
2 Re σ (ω)|Eext(ω)|2. (17)

P(ω) is the energy of the electromagnetic field that is actually
absorbed by the system per unit time. If the system thermal-
izes, such supplied energy is transformed into heat that yields
an effective temperature raise �T given by

�T = P(ω)τpulse

cV
, (18)

where τpulse is the laser pulse duration, and cV the system
specific heat. Seemingly, if one identifies the vector potential
in the minimal coupling with the external one, and thus
uses the approximate expression (17), the temperature raise
changes into �Tappx, where

�Tappx

�T
= Pappx(ω)

P(ω)
= |ε(ω)|2 ≡ Y2(ω). (19)

Y2(ω) is the other quantity, besides Y1(ω) of Eq. (15), that we
shall study to evaluate how wrong the replacement of A(t ) by
Aext(t ) in the minimal coupling scheme may be.

III. RESULTS

We calculate at zero temperature the optical properties
of the Hubbard Hamiltonian (7) at half-filling by means of
DMFT [36], using numerical renormalization group (NRG)
as the impurity solver [46–48]. Specifically, we calculate the
single-particle Green’s function, through which we obtain the
local single-particle spectral function, A(ω), and the uniform
current-current response function [36,49–52], which, in turn,
allows computing the optical conductivity and thus the di-
electric constant. In what follows we shall use as units of
measurement the half-bandwidth 8t = 1, the lattice constant
a = 1, the electric charge e = 1, and finally h̄ = 1.

To fix ideas, we show in Fig. 1 the evolution of the
local single-particle spectral functions A(ω) with increasing
U from the weakly correlated metal, U = 0.1, up to the Mott
insulator, U = 3. We note that for the intermediate interaction
strength (U = 2) coherent quasiparticles narrowly peaked at
the chemical potential ω = 0 coexist with the lower and
upper forming Hubbard sidebands, centered at ω ∼ ±U/2,
respectively.

We now discuss the optical properties of the model from
the weak-coupling metal to the Mott insulator [36,49,53,54].
According to Eq. (16), the absorption spectrum from the inter-
nal field is the real part of the optical conductivity, Re σ (ω),
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FIG. 1. Evolution of the local spectral function A(ω) of the
single-band Hubbard model on the cubic lattice. Data are for dif-
ferent values of U = 0.1, 1, 2, 3, from the weakly correlated metal
up to the Mott insulator.

while that from the external field is instead Re σ (ω)/|ε(ω)|2,
shown, respectively, in the top and bottom panels of Fig. 2.

Looking at the top panel of Fig. 2, we observe that the
optical conductivity of the weakly correlated metal at U = 0.1
just shows a very narrow Drude peak. This peak broadens
upon increasing the interaction strength U . Two additional
absorption peaks emerge, which are most visible for U =
2: an intermediate one involving an excitation from/to the
quasiparticle peak to/from the Hubbard bands, and a high-
energy peak corresponding to an excitation between the two
Hubbard bands. The latter is the only one that survives in the
Mott insulator at U = 3.

0.00

0.02

0.04

0.06

0.08

0.10

R
eσ

(ω
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

ω

0.000

0.025

0.050

0.075

0.100

0.125

0.150

R
eσ

(ω
)/
|ε(

ω
)|2

U=0.1

U=1

U=2

U=3

10−4 10−3 10−2 10−1 100

ω

10−8

10−4

100

R
eσ

(ω
)

FIG. 2. Top panel: absorption spectrum from the internal field as
obtained from the optical conductivity. Inset: low-energy behavior
in logarithmic scale. Bottom panel: absorption spectrum from the
external field. See main text for the definition.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

ω

0.0

0.2

0.4

0.6

0.8

1.0

re
fle

ct
iv

it
y U=0.1

U=1

U=2

U=3

FIG. 3. Reflectivity as a function of frequency. Data are for the
same values of U of previous figures. The vertical lines indicate
the positions of the intraband plasmons. Note that the U = 3 Mott
insulator case is nearly vanishing.

The absorption spectrum from the external field,

Re σ (ω)

|ε(ω)|2 = − ω

4π
Im

(
1

ε(ω)

)
, (20)

is presented in the bottom panel of Fig. 2. This quantity is
rather different from the internal field absorption spectrum,
being dominated by the plasmon modes, i.e., the peaks of
Im[−1/ε(ω)]. At weak coupling, U = 0.1, there is just a
single and very sharp intraband plasmon, which is the man-
ifestation in the loss function of the Drude peak in the optical
conductivity. The plasmon peak shifts to lower frequencies
upon increasing U . Meanwhile, additional interband, i.e., in-
volving the Hubbard sidebands, broad plasma modes emerge
(see the intermediate coupling case at U = 2). In Fig. 3 we
show the corresponding reflectivity, where the plasma edges
become clearly visible. The behavior of the optical constants
in Figs. 2 and 3 comes as no surprise. This is just what one
expects and indeed observes in experiments [55], though here
it is explicitly uncovered in a model of a correlated electrons
system.

We can now return to our original aim, and try to quantify
through the behavior of the quantities Y1(ω) in Eq. (15) and
Y2(ω) in Eq. (19) the error generated by using the external
vector potential in place of the internal one within the minimal
coupling scheme. We show the functions Y1(ω) and Y2(ω) in
Fig. 4. From the behavior of Y1(ω), top panel of Fig. 4, we
conclude that, in the metal phase and for frequencies smaller
than the intraband plasmon modes, defined by the roots of
Re[ε(ω)], the external field required to significantly reduce
the expectation value of the hopping is orders of magnitude
larger than what is predicted (see, e.g., Refs. [15,16,45]) by
assuming that A(t ) in the Hamiltonian (5) can be replaced by
the external field Aext(t ). Within that same assumption and in
the same range of frequencies, the temperature raise produced
by the field would be huge compared to the actual value (see
bottom panel in Fig. 4). On the contrary, and not surprisingly,
A(t ) 
 Aext(t ) works well in the insulating phase at U = 3.
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FIG. 4. The behavior of the functions Y1(ω) (top panel), Eq. (15),
and Y2(ω) (bottom panel), Eq. (19). Data are for the same values of
U as in previous figures. The vertical lines indicate the roots of the
real part of the dielectric constant.

In conclusion, we have shown that replacing in the min-
imal coupling scheme the internal vector potential, which is
self-consistently determined by the system charges, with the

external vector potential may be quite inaccurate, in partic-
ular in a metal and when the frequency of light is small
compared with the intraband plasma edge, which is where
screening effects are maximal. In correlated metals the pre-
cise value of such plasma edge, which originates from the
itinerant carriers and is proportional to the square root of
their contribution to the optical sum rule [56–58], is material
dependent [55,57,59,60] and typically ranges from mid to near
infrared. This in turn implies that in common pump-probe
experiments the internal field A(t ) is rather different from the
external one Aext(t ); hence, replacing the former by the latter
in model calculations is simply incorrect. Such replacement
becomes visibly wrong in real optical experiments where the
laser pulse impinges on the surface of the metallic sample.
Here, the transmitted field, which is the actual internal one,
decays exponentially inside the bulk if the laser frequency is
below the plasma edge, in contrast with the freely propagating
external field.

We end by mentioning that mixing up the response to
the internal field with that to the external one is a mistake
that tends to recur. It was, e.g., at the origin of early claims
that the conductance of Luttinger liquids is renormalized by
interaction; an incorrect statement corrected in [61] by similar
arguments as ours.
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