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Tailoring metal-insulator transitions and band topology via off-resonant
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A triangular lattice with onsite Coulomb interaction U present only on one sublattice is periodically
driven by electromagnetic field with a frequency � � (t, U ) at half filling. In this high frequency limit, the
electromagnetic vector potential, with an amplitude A, modifies the bare hopping and generates new next nearest
neighbor hopping parameters. For U = 0, the driving acts like an emergent intrinsic spin-orbit coupling term and
stabilizes three dispersive bands with the lower and upper bands having nonzero Chern numbers. Within a slave
rotor mean field theory, we show that while U freezes out charge fluctuations on the interacting sublattice, it does
not open up a charge gap without the external drive. In the presence of the drive, and small U , the system exhibits
repeated metal-insulator transitions as a function of the amplitude A. For large U , we establish that the freezing
of charge fluctuations on the interacting sublattice stabilizes an emergent, low energy half filled noninteracting
Kane-Mele model, whose band gaps can be tuned by varying A. In this limit, we show that the external drive
provides a handle to engineer periodic band inversions at specific values of A accompanied by topological phase
transitions that are characterized by swapping of band Chern numbers.
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I. INTRODUCTION

In the last decade, the advent of topological insulators
(TIs) has caused a revolutionary impact on the concept of
band structure of materials, both on the theoretical [1–14] as
well as on the experimental [15–19] front. This has lead to
intense theoretical [20–26] as well as experimental [27–29]
investigation of the effects of strong correlation in systems
that host nontrivial topological bands. Very recently, there
has been an upsurge of research activity in emergent topo-
logical phases in out of equilibrium nontopological systems
via external periodic driving [30–32]. Experimental feasibil-
ity of engineering such periodically driven systems [33–36]
has opened up the opportunity for investigating existence of
nonequilibrium Majorana modes [37–39], nontrivial transport
properties [40–42], as well as controlling of band structure
[43,44], disorder effect [45]. The effects of drive on the tight
binding band structure in graphene [46,47], spin-orbit coupled
Dirac materials like silicene and germanene [48–51], and low
energy spectrum of semi-Dirac materials [52,53] are being
actively pursued.

Given this background, it is natural to investigate the
interplay between strong local electronic correlations and
external electromagnetic driving on different model systems.
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This is a rather broad question and some aspects have been
addressed in recent literature. There are three regimes where
different theoretical tools can be applied: small driving fre-
quency h̄� � U , near resonance h̄� ∼ U , and off resonance
h̄� � U . Dynamical localization has been investigated in
one-dimensional spin half Fermi systems [54] within small
frequency approximation. Effective spin model for one and
two orbital Hubbard model at half filling has been studied
[55]. The effect of near and off resonant driving on the
double occupation in the Mott state has been investigated [56].
Also perturbative analysis of driving on Kondo insulators
[57,58] has been undertaken. The Bose Hubbard model has
been studied in the off resonant (high frequency) regime both
experimentally [59] and theoretically [60–62].

While these have added valuable insights to the physics
of driven systems, explicit study of metal-insulator transition
(MIT) under driving, for Fermi systems, has not yet been
addressed. Even more unexplored is the nature of MIT, when
the underlying bands are driven into a topologically nontrivial
regime. Here we investigate these issues for a triangular lattice
with diluted Hubbard interaction at half filling. One of the
concerns of periodic driving of an isolated many body system
is that it leads to a featureless thermal state in long time limit
[58]. However, it has been shown that the time scale of heating
is exponentially/quasiexponentially slow [63–65] allowing
one to work in a pre-thermal regime which survives for exper-
imentally relevant time scales [66]. With this justification in
our study we incorporate the drive via Peierls’s substitution to
the bare tight binding hopping through a time dependent vec-
tor potential A(t ) = {Ax cos �t, Ay cos (�t − φ)}. We denote

2469-9950/2020/101(11)/115428(12) 115428-1 ©2020 American Physical Society

https://orcid.org/0000-0001-9918-5153
https://orcid.org/0000-0003-1358-5194
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.101.115428&domain=pdf&date_stamp=2020-03-27
https://doi.org/10.1103/PhysRevB.101.115428


JANA, MOHAN, SAHA, AND MUKHERJEE PHYSICAL REVIEW B 101, 115428 (2020)

the amplitude of the vector potential by A. We employ high
frequency Brillouin-Wigner perturbation theory [67] to obtain
a quasistatic effective Hamiltonian (Heff ) in the zero photon
subspace up to the order of 1/�. The effect of driving gives
rise to correction to the nearest neighbor (NN) bare hopping
elements between different sublattices as well as generates
new next-nearest neighbor (NNN) hopping terms [68]. These
emergent hopping amplitudes are chiral in nature and act
like intrinsic spin-orbit coupling, which leads to topologically
nontrivial bands in the Floquet quasienergy spectrum [69].
While magnetism is certainly an important feature of the
Hubbard model, here our focus lies in the study of the effect of
drive only on charge fluctuations. Hence, we study our model
in the paramagnetic regime within a slave rotor mean field
theory (SR-MFT) [70,71].

In the uncorrelated model with three dispersive bands,
nonzero A generates chiral NNN hopping terms and also mod-
ifies the bare hopping elements. The resulting Hamiltonian
hosts topologically nontrivial lower and upper bands and a
trivial dispersive middle band. Variation of A causes periodic
touching of the three bands. Switching on U on one sublattice
(on one site of the three site unit cell of the triangular lattice),
induces a ‘local Mott transition’ beyond a threshold value of
the correlation strength UCrit that suppresses charge fluctua-
tions at the correlated sublattice. In the presence of the drive,
and for U > UCrit, we show that the local Mott transition, the
drive modulated NN hopping, and the emergent NNN hopping
terms conspire to stabilize an insulating state. This insulating
state is characterized by topologically nontrivial low energy
bands split by a small charge gap and high energy bands
separated by U . We show that, similar to the U = 0 case, the
charge gap between the low energy bands oscillates periodi-
cally with A and stabilizes a semimetal at specific values of
A where the charge gap goes to zero. Moreover at each such
band touching there is a topological phase transition whereby
the Chern number of the topologically nontrivial bands is ex-
changed. For a range of bare hopping parameters, we establish
that this periodic gap closing and swapping of Chern numbers
holds for the entire insulating regime and is independent of U ,
once U > UCrit. We establish that this phenomenology can be
understood in terms of an emergent low energy Hamiltonian
that resembles the half filled noninteracting Kane-Mele model.
Further, based on single particle density of states, we map out
UCrit as a function of A and present the U vs A phase diagram,
emphasizing how the peaks and dips of UCrit are governed by
a competition between the interaction strength and the drive
induced bandwidth modulations.

The remainder of the paper is organized as follows. In
Sec. II we discuss our model, the slave rotor mean-field the-
ory, and the observables. In Sec. III we present our numerical
results. Finally, we summarize and conclude the paper in
Sec. IV.

II. MODEL AND METHOD

We consider a triangular lattice as our model system with a,
b, and c sublattices as shown in Fig. 1(a). The Hamiltonian of
the system is defined as H = HFree + HInt. The tight binding

FIG. 1. (a) Schematic structure of the triangular lattice is demon-
strated. Each unit cell consists of three atoms a, b, and c shown
enclosed in a triangle. Here, tab, tbc, tca represent the nearest neighbor
hopping amplitudes between the three atoms. U denotes the strength
of onsite Hubbard interaction on the a sublattice. The lightning bolt
represents the external electromagnetic radiation. (b) The thin red
arrows indicate the three directional vectors l = 0, 1, 2 in the triangu-
lar lattice. The thick, magenta, orange, and green arrows denote the
light induced next nearest neighbor hopping along the path-1(P1),
path-2(P2), and path-3(P3), respectively, within a sublattice. Similar
terms also exist for both b and c sublattices. The chirality of light
induced hopping terms are discussed in the text.

Hamiltonian HFree can be written as

HFree = Hab + Hbc + Hac

= −
∑
〈i, j〉

(taba†
i b j + tbcb†i c j + tcaa†

i c j + H.c.), (1)

where, tab, tbc, and tac represent the nearest-neighbor (NN)
hopping amplitudes between the a, b, and c sublattices. Here
a†

i (ai ), b†i (bi ), and c†i (ci ) correspond to the creation (annihila-
tion) operators for the a, b, and c sublattices, respectively. For
notational clarity, the spin indices are suppressed for now. The
main steps here consist of first treating the effect of driving on
the HFree and then studying the effect of interaction on the
emergent tight binding model. This is the standard procedure
in the high frequency limit [56].

A. The effective kinetic energy Hamiltonian

In our analysis, we consider the high-frequency limit of
the periodic driving. In this limit, one can derive an effective
quasistatic Hamiltonian taking into account only the virtual
photon transitions. Technically, the full Floquet Hamiltonian
in the extended Sambe space is projected back to the zero
photon subspace using a high-frequency expansion based on
the Brillouin-Wigner (BW) perturbation theory [72]. In com-
parison to Floquet-Magnus [73,74] and van Vleck expansions
[75,76], higher order terms are easier to calculate using BW
expansion.

The vector potential of the electromagnetic radiation is
given by

A(t ) = (Ax cos �t, Ay cos (�t − φ)), (2)

where � is the frequency of the light, Ax, Ay are the ampli-
tudes of the irradiation, and φ is the phase. The polarization of
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the laser can be controlled by choosing appropriate values for
Ax/Ay and φ. For, e.g., circular polarization can be obtained by
choosing Ax = Ay, φ = π/2 and linear polarization by φ = 0,
respectively. The other values of Ax/Ay and φ correspond to
elliptical polarized light.

The vector potential of the external irradiation is incorpo-
rated by Peierls substitution thereby transforming the above
Hamiltonian time dependent. The hopping elements thus ac-
quire a phase given by

t → te−i(r1 sin �t+r2 cos �t ), (3)

where r1(l ) = ãAy sin(φ) cos( 2π l
3 ) and r2(l ) =

ã[Ay cos(φ) cos( 2π l
3 ) − Ax sin( 2π l

3 )]. Here l = 0, 1, 2 denotes
the three directions within the lattice as shown in Fig. 1(b)
and ã is the lattice spacing.

The Floquet Hamiltonian [43,77] can be defined in the
following way:

H p = 1

T

∫ T

0
H (t )eip�t dt . (4)

As discussed in Appendix A, the final form of the Floquet
Hamiltonian is

HK = H0 +
∑
n �=0

H−nHn

n�
. (5)

For the triangular lattice under our consideration [see
Fig. 1(a)], the zeroth order term is given by,

H0 = −
∑
〈i j〉

J0
(√

r2
1 + r2

2

)

× (tab a†
i b j + tbc b†i c j + tca a†

i c j + H.c.). (6)

In the zeroth order Hamiltonian, the effects due to periodic
driving are manifested in renormalized hopping parameters.
The first order term from Eq. (5) results in an effective
spin-orbit coupling as described later. Similar terms has also
been reported earlier in case of hexagonal lattice (graphene)
[72], spin-orbit coupled Dirac materials [51]. In our case, the
O(t2/�) term is shown in Eq. (7).

In Eq. (7), νi j = ±1 depending on whether the next near-
est neighbor (NNN) hopping takes place in clockwise or
anticlockwise manner. This introduces an intrinsic chirality
in the model, similar to intrinsic spin orbit coupling [1]. In
Fig. 1(b), this external light induced spin-orbit coupling terms
are denoted by paths P1,P2, and P3 within the a sublattice.
Similar terms are also present for b and c sublattices which
can be seen from Eq. (7). The full analytical form of χ1,2,3

in Eq. (7) is provided in Appendix A, where it is shown
that for circularly polarized light, χ1 = χ2 = χ3. Also, from
Eq. (7) it is apparent that for tab = tbc = tca, the 1/� order
term vanishes.

H−nHn

n�
=

P1∑
〈〈i j〉〉

χ1 νi j
[(

t2
ab − t2

ca

)
a†

i a j + (
t2
ab − t2

bc

)
b†i b j

+ (
t2
ac − t2

bc

)
c†i c j

]
+

P2∑
〈〈i j〉〉

χ2 νi j
[(

t2
ab − t2

ca

)
a†

i a j + (
t2
ab − t2

bc

)
b†i b j

+ (
t2
ac − t2

bc

)
c†i c j

]
+

P3∑
〈〈i j〉〉

χ3 νi j
[(

t2
ab − t2

ca

)
a†

i a j + (
t2
ab − t2

bc

)
b†i b j

+ (
t2
ac − t2

bc

)
c†i c j

]
. (7)

This is different from honeycomb lattices where the light
induced spin-orbit term is nonzero irrespective of the polariza-
tion of the external irradiation [72]. In triangular lattices, the
spin-orbit coupling term between each pair of next-neighbor
sites has two contributions with opposite chirality. Thus,
they can nullify each other if the hopping amplitudes are
equal to each other. Here, we define the light induced NNN
hopping amplitudes as taa = χ1νi j (t2

ab − t2
ca), tbb = χ2νi j (t2

ab −
t2
bc), tcc = χ3νi j (t2

ac − t2
bc).

B. Interaction effects

To discuss the effects of HInt, we first rewrite HK is a
succinct notation as a tight binding model on a triangular
lattice with nearest and chiral NNN hopping and also make
the spin indices explicit. The unit cell consists of three atoms
indicated by a, b, and c as shown in Fig. 1(a). Hence, the
kinetic term (HK ) in a compact form can be written as

HK =
∑

I,J,α,β,σ

(
tA
Iασ ;Jβσ d†

Iασ dJβσ + H.c.
)
, (8)

where the indices I, J denote the three site unit cells of the
lattice. The hopping terms depend on the strength A of the
external periodic drive. Here, I equal to J implies the hopping
within a unit cell, while I �= J indicates to the hopping be-
tween different unit cells, while α and β runs over the three
atomic labels a, b, and c. tA

Iασ ;Jβσ parameters are appropriately
chosen to incorporate NN and NNN hopping elements as
necessary. The Hubbard interaction is introduced only on the
a sublattice. The final form of the off-resonant Hamiltonian
[68] reads as:

HOR
eff =

∑
I,J,α,β,σ

(
tA
Iασ ;Jβσ d†

Iασ dJβσ + H.c.
)

+
∑

I

UnIa↑nIa↓. (9)

As is usual in slave-rotor decomposition, we rewrite the
creation and annihilation operators on the site with interaction
as:

d†
Iaσ = f †Iaσ e−iθIa ,

dIaσ = fIaσ eiθIa . (10)

Here f †Iaσ is the spinon operator at the a site in the Ith unit cell
and e±iθia denotes the rotor creation and annihilation operators
defined through its action as follows: e±iθIα |nθ

Iα〉 = |nθ
Iα

± 1〉.
At half filling, to preserve the physical Hilbert space on the
interacting site we impose the following operator constraint:(

nθ
Ia + n f

Ia↑ + n f
Ia↓

) = 1, (11)

with electron occupation equal to that of the spinon, i.e.,
n f

Iaσ = ne
Iaσ , where n f

Iaσ = f †Iaσ fIaσ . We now treat HOR
eff within

a mean field scheme. We refer the reader to literature for the
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details of the slave rotor mean field method [70,71]. Here we
briefly outline the method in the context of our calculations.
We make a mean field ansatz for the many body ground
state [69] as |�〉 = |� f d〉|�θ 〉, where the superscript d refers
to a collective index representing the operators on the b, c
sublattices, the spinon operator on the a sublattice is denoted
by the f and the rotor operator by θ superscript. We note
that, considering Hubbard interaction U only on single site
is rather interesting as there is spinon contribution emerging
from the a site and the free electron contribution from the
b, c sites. This type of mixed quasiparticle contribution in the
topological edge modes is novel in nature [26]. Also this gives
rise to correlated metallic behavior as seen in the total density
of states of the system [26]. Moreover, the scenario of large U
on one sublattice and U = 0 or very small on the other sublat-
tices is not novel but routinely occurs in strongly correlated
materials (for, e.g., CuO2, LaNiO3, etc.) [78,79]. The next
step is to compute the expectation values Hf d ≡ 〈�θ |H |�θ 〉
and Hθ ≡ 〈� f d |H |� f d〉 which are solved self consistently
all the while respecting the above constraint at a mean field
level by suitable introductions of chemical potentials. The full
detailed expressions are provided in Appendix B. Here we
note that Hθ is the interacting problem that is solved with
a cluster mean field theory. For the choice of the hopping
amplitudes discussed below, we use a single site rotor cluster,
containing one a site, for our results. We have contrasted the
results against the solution of bigger clusters containing two
interacting a sites as well. We now describe the observables
calculated before proceeding to the results.

C. Observables

Within the SR-MFT, the first important indicator is
〈�θ |e−iθIa |�θ 〉 ≡ �Ia and it is assumed to be uniform or
site independent. When �Ia = 0 charge fluctuations on the
a sites are suppressed [70,71]. This signals a ‘local’ Mott
transition. However, with U operative only on the a sub-
lattice, this does not guarantee an insulating ground state.
For the metal-insulator transitions, we rely on the sublat-
tice projected density of states (PDOS) defined as Nγ (ω) =∑

α,σ

∑
iγ

|〈χα|iγ , σ 〉|2δ(ω − εα ), where, γ = a, b, c sites in
the Ith unit cell. Here, {|χα〉} and {εα} correspond to the eigen-
vectors and eigenvalues of HOR

eff . The derivation is straight-
forward and is provided in Appendix B. We also compute
the Chern number for the bands and the edge modes in the
strip geometry for Hf d , which provides information on the
electron-spinon band topology. There are standard methods
to investigate them which are discussed in Appendix C. For
Hθ with more than one a site, as illustrated in Appendix D,
we also have to calculate 〈�θ |e−iθIa eiθJa |�θ 〉, which encodes
rotor kinetic energy within the enlarged cluster. In the insu-
lating regime, this plays the role of virtual charge fluctuations
between the a sites in the rotor cluster, even if �Ia = �Ja = 0.
This will be elaborated on more later in the paper.

III. RESULTS

In this section, we present our results for the band spec-
trum, order parameter, and total density of states (DOS).
Throughout our analysis, we have chosen � = 10t � (t, U )

FIG. 2. The U -A phase diagram is shown in panel (a). The red
(dashed) line with squares depicts the evolution of UCrit with A/t .
The region below UCrit is metallic and above UCrit is insulating except
at special values of A/t , indicated by vertical (dashed) blue lines. At
these values of A/t , bands of the insulating state touch, leading to
a semimetallic behavior. Panel (b) shows the dependence of the NN
and NNN hopping parameters of the triangular lattice as a function
of the driving amplitude A/t . The NNN hopping amplitudes (tbb, tcc)
are small, so for visual clarity, they are magnified by a factor of 16. In
the case shown here, NNN hopping parameter taa is explicitly chosen
to be zero as tab = tac = 0.5t .

to be in the high frequency regime and Ax = Ay = ζ , φ =
π/2, i.e., circularly polarized light as our external electromag-
netic drive. We denote the amplitude of the vector potential,
for this choice by A ≡ √

2ζ . All energies are measured in
units of the nonirradiated (A = 0), bare b-c hopping parameter
tbc ≡ t , which is chosen to be 1. In these units, we choose
tac = tab = 0.5t . From Eq. (7) we find that for this choice
only b-b and c-c NNN hoppings survive in the 1/� order
term of HOR

eff . Furthermore, the emergent tbb is always equal to
tcc. Initially we will focus on results for these choices of pa-
rameters, we will then discuss effects on nonzero taa achieved
by setting tab �= tac. We also use a dimensionless parameter
A/t to quantify the magnitude of the vector potential, which
is equivalent to measuring the magnetic vector potential in
[Ampere × meter]−1.

Figure 2 shows the U -A phase diagram at zero temperature
and summarizes the main results for tac = tab = 0.5t . In panel
(b), we plot the variation of the NN and the NNN hopping
amplitudes as a function of the radiation amplitude. We begin
with the two limiting cases, i.e., only A and only U , before
discussing their combined effects shown in Fig. 2(a).

A. Noninteracting driven system

For A = U = 0, the system consists of three dispersive
bands, which touch at specific momenta points in the Brillouin
zone. The bands are shown in Fig. 3(a). From Fig. 2(b) we
find that the NN hopping amplitudes oscillate with a decaying
envelope with increasing A, following the Bessel function
form in Eq. (6). In addition, the NNN hoping amplitudes
tbb and tcc emerge with A and also oscillate with a decaying
envelope. These oscillations are due to the A dependence of
the pre-factors χ2 and χ3 of t2

ab − t2
bc and t2

ac − t2
bc, respectively,

which we define as tbb and tcc earlier. The expressions for χ2

and χ3 are given in Appendix A, Eq. (A6). We find that these
oscillations cause a periodic opening and closing of band gap
in the noninteracting model. Two typical cases for A/t ∼ 1.5
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FIG. 3. Panels (a) to (c) show the noninteracting tight binding bands of driven triangular lattice. Panel (a) depicts the energy band dispersion
and schematic DOS for A = 0, while panel (b) and (c) manifest the same for A = 1.5t and A = 3t , respectively. In all three panels, the dispersive
middle band is half filled which is shown by the small red arrow indicating the position of the chemical potential μ. The band touching points
for A = 0 are removed and band gaps open up at A ∼ 1.5t . The bands again touch for A ∼ 3t . Panel (d) shows the sublattice resolved DOS for
A = 0 and U = 7t . Panels (e) to (h) show the evolution of the sublattice resolved DOS with U , for fixed A = 1.5t in (e) and (f) and for A = 3t
in (g) and (h).

and A/t ∼ 3.0 are shown in Figs. 3(b) and 3(c). The schematic
of the DOS depicting the closing and opening of the band
gaps is shown directly below the bands for the three values
of A in panels (a) to (c). The red arrow denotes the chemical
potential for half filling. For A/t ∼ 1.5, when the bands are
separated, we find that the lowest band has a Chern number
−1, the middle band is topologically trivial, and the highest
band has a Chern number +1. From then on, beyond every A
at which the bands touch, the upper and lower bands exchange
their Chern indices. This shows that at half filling, the driven
triangular lattice system always has a metallic ground state for
U = 0, but with nontrivial topological energy bands.

B. Large U limit of the purely interacting system

Figure 3(d) shows the sublattice resolved PDOS for U =
7t for A = 0. We see that large U causes a charge gap, of the
order of U , in the states from the a sublattice, as seen from
the red curve. At half filling, the average a site occupation,
〈na〉 is 1. The half filled configuration constitutes the lowest
band in the a sublattice PDOS, the peak around ω − μ = 4
in panel (d). Any further occupation on the a sublattice is
pushed up in energy by U . The remaining b-c sublattice forms
a low energy band (blue cure) hybridizing through tbc. In
the large U limit, the effect of the hybridization between the
b-c and the a sublattices is negligible as virtual charges are
suppressed due to large U . Thus, the lattice connectivity for
the low energy bands is that of a hexagon [see Fig. 1(b)] and
the system shows graphenelike semimetallic behavior. From
Fig. 4(d), we see that �Ia goes to zero for U > 5.8t and

A = 0. This corroborates the PDOS by showing that the
charge fluctuations are completely suppressed at large U at
the a sublattice [80]. Based on the above discussion, it then
implies that for A = 0 and U/t > 5.8, the low energy bands,
the ones closest to the Fermi level, are predominantly consti-
tuted by electronic states delocalizing in the b-c sublattice and
are a topologically trivial semimetal.

C. Interaction effects on the driven system

Figures 3(e) and 3(f) show the PDOS for U/t = 2 and 4, re-
spectively, for fixed A = 1.5t . We see that all three sublattices
contribute to the spectral weight at the Fermi energy in (e),
while in (f), a finite charge gap is clearly visible. A metallic
behavior is also found for small U/t (=1) for A = 3t as seen in
panel (g), which is similar to panel (e). However on increasing
U to 3t while staying at A = 3t , as shown in panel (h), we
see a semimetallic behavior, much like in the A = 0 case. In
U -A phase diagram shown in Fig. 2(a), the entire insulating
regime has a gapped DOS as in Fig. 3(f), except for special
values of A (marked by the vertical blue dashed line) where
the semimetallic ground state, as seen in Fig. 3(h), are located.

To understand this contrasting behavior in the insulating
regime, we first note that as discussed in Sec. II, finite A/t
generates NNN b-b and c-c hopping terms that are chiral
in nature and thus acts as an intrinsic spin-obit coupling.
Secondly, in Appendix B we also show that these NNN terms
(tbb and tcc) are not renormalized by the interaction effects.
We find that although tbb and tcc are small in magnitude, with
a maximum possible value of 0.018t as seen from Fig. 2(b)
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FIG. 4. In panel (a), we show the evolution of the charge gap in
the low energy bands as a function of A for U = 6t . Panel (b) depicts
the Chern numbers for the top and the bottom bands of Hf d as a
function of A for the same U (=6t), as in panel (a). Panel (c) shows
the edge modes for the band calculations in strip geometry for a
typical value of A = 1.5t in the insulating regime (U = 6t). The
red lines are the topologically protected zero energy edge modes.
Panel (d) demonstrates the dependence of order-parameter �Ia on
U , for various values of A. The value of U for local Mott transition
at the a sublattice has a nonmonotonic dependence on the driving
amplitude A.

at A = 1.7t , they have a drastic impact on the bands of the
model. Thirdly, in the insulating regime, �Ia is always zero
and any contribution from the a sublattice are far removed
from the Fermi level, as also seen from the PDOS contri-
butions from the a sublattice in Figs. 3(f) and 3(h). Thus,
the low energy kinetic energy comes primarily from the tbc

with small contributions from NNN tbb and tcc. Thus, the low
energy bands (close to the Fermi level) have NN hopping and
chiral NNN hopping terms, which is the hopping connectivity
of the noninteracting Kane-Mele model. Moreover, since the a
sites have an average occupation of one electron, the emergent
noninteracting Kane-Mele model is also at half filling. For a
general value of A, our calculations reveal that the ground state
of this low energy model hosts two distinct bands and that the
band gap between these can be tuned by varying A. These low
energy bands are shown in Fig. 4(a) in the insulating regime
(U = 6t). It shows that the charge gap at A = 2 reduces and
closes at A = 3t forming a semimetal. It then opens again
up immediately (data is shown for A = 3.6t). In addition, the
chiral nature of the NNN hopping amplitudes make these low
energy bands topologically nontrivial, as is expected in the
Kane-Mele model.

Finally, owing to the oscillatory dependence of the hopping
amplitudes on A, the gap closing discussed above occurs
repeatedly for specific values of A. We compute the Chern
number for the Hf d , after the SR-MFT convergence has been

achieved. The effect of the rotor Hamiltonian is encoded in the
renormalization of the a-b and a-c hopping terms as seen from
Eq. (B1) in Appendix B. In Eq. (B1) we see that �Ia multiplies
both tab and tac, so in the insulating regime (�Ia = 0) these
hopping paths are switched off. Thus calculating the Chern
number from the remaining terms in Hf d suffices to calcu-
late the topological properties of the low energy Kane-Mele
model. Figure 4(b) shows this evolution of the Chern numbers,
as a function of A/t for U/t = 6. As a function of A, the Chern
numbers of the two bands are swapped periodically. We see
that the Chern numbers are swapped exactly at the band touch-
ing point A = 3t , as seen from panel (a). In Fig. 4(c) we show
the edge states computed from the eigenstates of Hf d on a strip
geometry for a specific value of A as indicated in the caption.
Details of the calculations are presented in Appendix C.
We find a linearly dispersing electronic edge mode, as ex-
pected for the Kane-Mele model.

We now consider the dependence of UCrit on A, the red
(dashed) curve in Fig. 2(a). First of all, we observe an overall
suppression of UCrit with increasing A. This is because of
the gradual suppression of all the hopping amplitudes with
A, as seen in panel (b). We also notice that the NN hopping
amplitudes oscillate in phase with each other. This modulation
of the hopping controls the bandwidth which imprints on the
A dependence of UCrit, exhibiting that a larger U is needed
when the hopping amplitudes are larger. Similarly the minima
of UCrit occurs for A values where the three NN amplitudes
are closest to zero, effectively narrowing the bandwidth. The
value of U minima which �Ia becomes zero also has a similar
nonmonotonic behavior as seen in panel Fig. 4(d). For the
range of A values shown, the smallest U for �Ia = 0 occurs
for A = 3t . This shows that the metal-insulator transition
is primarily controlled by the competition between various
hopping elements and U .

D. Nonzero taa and spinon contributions

So far, we have focused on the case of tab = tac for which
the emergent NNN taa always remains zero and have em-
ployed a single site rotor cluster in our calculations. A single
site rotor cluster cannot capture rotor kinetic energy as there
is only one rotor site in Hθ . Although larger clusters are pre-
ferred, exponential growth of the rotor Hilbert space forces a
compromise. We now use a cluster with four sites, containing
two a sites, each connecting to a single b and another c site.
The schematic is shown in Appendix D, Fig. 6(b). We have
checked that when taa = 0, the larger cluster results agree
well with the single site cluster results. This is because of the
following reason.

First, so far as Hf d is concerned, the rotor kinetic en-
ergy 〈�θ |e−iθIa eiθJa |�θ 〉 only renormalizes taa as seen from
Eq. (D1) in Appendix D. In the insulating regime, even when
�Ia = 0, the rotor kinetic energy term 〈�θ |e−iθIa eiθJa |�θ 〉
remains finite. However, if taa = 0 explicitly, there is no
change in the Hamiltonian Hf d . But Hθ now has a new kinetic
term as seen in Eq. (D2) which can affect the value of UCrit.
Nonetheless, particularly in the large U insulating regime,
the rotor kinetic energy is suppressed, to the lowest order, by
(∼|t aa|2/U ), so the large U band touching are not affected. In
our calculation, we find very small renormalization of UCrit,
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FIG. 5. In panel (a) we compare the dependence of UCrit on A
for taa = 0 (curve A) with that for finite NNN taa. The results are
shown for fixed tab = 0.5t and tac = 0.45t (curve B), 0.3t (curve
C), and 0.2t (curve D) which leads to small finite taa. For each UCrit

curve, the corresponding region above the curve in an insulator. The
vertical red arrow denotes the first band touching value of A in the
insulating regime. This location remains unchanged for all four cases
shown. Inset in panel (a) shows the NNN |taa/t | as a function of tac

when U = 0 and A is fixed at 1.5t . For this tab is kept fixed at 0.5t
and tac is varied between 0.5t to 0.1t . The hopping variation will be
discussed in the text. As in Fig. 2(b), the NNN hopping amplitude taa

is magnified 16 times. Panel (b) illustrates the edge modes for case
B, with U = 6t and A = 1.5t .

but there are no qualitative changes. Below we discuss the
case of taa �= 0, where the corrections to UCrit are significant,
but the values of A for the band touchings in the insulating
regime remain unchanged within numerical accuracy.

To perform a systematic study, we have kept tab = 0.5t and
varied tac from 0.5t to 0.1t . The resulting taa, when U = 0,
is shown in the inset of Fig. 5(a) for A = 1.5t , magnified 16
times for better clarity. In Appendix D, Fig. 6(c), we compare
the NNN hopping terms, for a range of A values. Although,
taa is of the same order as tbb and tcc, as discussed above, taa

is significantly suppressed in the large U insulating limit due
to the heavily reduced rotor kinetic term multiplying it. Thus,
the band touching locations are unchanged. The U -A phase di-
agram with many band touching points for the four site cluster

calculations and a specific finite taa are shown in Fig. 6(a) for
comparison with Fig. 2(a). This shows that the low energy
Hamiltonian is, still to a very good approximation, described
by a Kane-Mele model. The dispersive edge modes shown in
Fig. 5(b) still maintain a linear dependence on momentum.
The changes in comparison to Fig. 4(c) is due to the small
rotor kinetic energy that makes the 〈�θ |e−iθIa eiθJa |�θ 〉 × taa

finite. This also shows that the topologically protected edge
modes now have both electron and spinon contributions. In
the main panel of Fig. 5, we show UCrit in the U -A plane for
four values of taa. The curves are labeled from A to D with
increasing magnitude of taa, with taa = 0 for curve A. We see
that UCrit is progressively suppressed as taa increases. This in
simply due to increase in the bandwidth as additional electron
delocalization paths are now available.

E. Experimental feasibility

Triangular lattice has been realized in 87Rb, bosonic, cold
atom system [81] by the application of three laser beams.
Also the Fermi Hubbard model has been engineered in one
dimension [82]. In this work [82] using fermionic 40K atoms,
intersite tunneling (hopping) amplitude is controlled by the
magnitudes of the laser beams, whereas the Hubbard inter-
action strength can be controlled by changing the occupancy
(number of atoms) in the harmonic trap. Further, for peri-
odic driving of bosonic optical system (87Rb) via sinusoidal
shaking of the lattice corresponding to a time-varying linear
potential has also been achieved [83]. Finally, we would like
to mention how the spatial modulation of two body interaction
in Fermi systems can be realized. The interaction between the
fermions is proportional to the scattering length [84], among
other quantities. The scattering length is in turn dependent on
the coupling strength as well as the energy detuning between
the scattering and the molecular channels, in the two channel
model of Feshbach resonance [85]. The coupling between
these two channels can be spatially modulated by employing
optical Feshbach resonance technique, where counterpropa-
gating lasers are applied on the optical lattice. The applied
lasers form a spatially varying intensity profile that modulates

FIG. 6. U -A phase diagram for nonzero taa, when tac = 0.45t and tab = 0.5t , is shown in panel (a). Panel (b) depicts the schematic of the
lattice, where the four site cluster (shaded parallelogram) is used in the rotor calculation. The NNN hopping element taa within the cluster is
shown by the magenta arrow. (c) The NNN hopping amplitudes as a function of A are shown for the chosen bare NN hopping parameters as
indicated.
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the interaction strength on the optical lattice. This has been
achieved in Fermi systems experimentally [86] and analyzed
theoretically [84].

Based on these, it is clear that the experimental techniques
do exist to periodically drive a Fermi system on a triangu-
lar lattice with spatially varying interaction strength. Here
we briefly mention some typical experimental parameters,
gleaned from the above mentioned experiments, that would
be relevant for possible realization of our results in cold
atomic systems. Typical values of the Hubbard interaction
(U/h) in fermionic systems studied in one dimension are in
the range ∼5–10 KHz [82], where h is the Planck’s constant.
Also, depending upon the recoil energy and the lattice po-
tential depth one can tune the range of nearest site tunneling
from 0.1–1 KHz [81,82]. Further, for the periodically driven
bosonic optical system with 87Rb, it has been shown that
the amplitude of the effective periodically modulated hop-
ping teff (A, ω)/h changes from 0–1 KHz [83]. Further the
frequency of the drive can be within the range 20–30 KHz
to be in the high frequency regime. To validate our phase
diagram, the typical values of the driving strength A and
interaction strength U can thus range from ≈ 1–10 KHz and
≈ 2–10 KHz, respectively, in fermionic systems such as in
40K atoms. We emphasize that these parameters are merely
a guide for possible experiments.

IV. SUMMARY AND CONCLUSIONS

To summarize, in this paper, we have investigated the
impact of strong onsite repulsion in a periodically driven trian-
gular lattice. Driving induces modulation of the bare hopping
elements of the triangular lattice and generates chiral NNN
hopping terms. In the noninteracting limit, this stabilizes a
metal with topologically trivial conduction band and topolog-
ically nontrivial, filled and empty bands. Weak interactions on
one sublattice, for a wide range of bare hopping parameters,
leads to repeated metal-insulator transitions as a function
of the amplitude of the electromagnetic vector potential. In

the large interaction (insulating) regime, the ground state is
characterized by widely separated bands emerging from the
interacting sublattice and small charge gap bands from the rest
of the noninteracting sublattice. In this limit, the low energy
theory (around the Fermi level) is that of a noninteracting
Kane-Mele model that is stabilized by strong interaction effects
and is shown to host bands with nontrivial topology. We have
established that tuning the amplitude of the electromagnetic
vector potential can be a way to control the intrinsic spin-orbit
coupling term of the emergent Kane-Mele model. This can
lead to periodic band touchings that split the insulating regime
by introducing semimetallic ground states, at which there are
topological phase transitions characterized by swapping of
band Chern numbers.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
FLOQUET HAMILTONIAN IN BW APPROXIMATION

In this subsection we present a full derivation of the ef-
fective Hamiltonian used in Eqs. (5)–(7). We begin with the
tight-binding Hamiltonian of the triangular lattice as written
in Eq. (1) and irradiate it with a laser with vector potential
given by A(t ) = (Ax cos �t, Ay cos (�t − φ)). For notational
clarity, in this subsection, the spin indices are suppressed. The
hopping amplitudes will pick up a phase from the Peierl’s
substitution given by: t → te−iA(t )·δl . Here δl is the distance
between nearest neighbor sites given by, δl = ã(cos θl , sin θl ),
with ã is the lattice spacing, θl = π

2 + 2π l
3 , l = 0, 1, 2 as

shown in Fig. 1(b). This yields

A(t ) · δl = ãAy sin (φ) cos

(
2π l

3

)
sin (�t ) + ã

(
Ay cos φ cos

(
2π l

3

)
− Ax sin

(
2π l

3

))
cos ωt . (A1)

Using the expression exp (−i(r1 sin �t + r2 cos �t )) = ∑
m J−m(

√
r2

1 + r2
2 ) exp [im(�t + arctan ( r2

r1
))], the time dependent

Hamiltonian can be written as

H (t ) = −
∑
〈i, j〉

∑
m

J−m
(√

r2
1 + r2

2

)
eim(�t+arctan ( r2

r1
))(tab a†

i b j + tbc b†i c j + tac a†
i c j ) + H.c., (A2)

where r1(l ) = ãAy sin φ cos 2π l
3 , r2(l ) = ã(Ay cos φ cos 2π l

3 − Ax sin 2π l
3 ), and Jm is the Bessel function of order m.

The Floquet Hamiltonian is defined as

HK =
∫ T

0
dt H (t ) eiK�t . (A3)

Substituting for Hamiltonian from Eq. (A2) in the above equation gives the Floquet Hamiltonian:

HK = −
∑
〈i, j〉

[
JK

(√
r2

1 + r2
2

)
e−iK arctan ( r2

r1
)(tab a†

i b j + tbc b†i c j + tac c†i a j )

+ J−K
(√

r2
1 + r2

2

)
e−iK arctan ( r2

r1
)(tab b†i a j + tbc c†i b j + tac a†

i c j )
]
. (A4)
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In this paper, we consider a high-frequency limit where the frequency of the drive is larger than the bandwidth of the system.
As mentioned in Sec. II, only virtual photon transitions are allowed in this limit. Therefore one can find an effective quasistatic
Hamiltonian using one of high-frequency expansion schemes such as Brillouin-Wigner [72], Floquet-Magnus [73,74], or van
Vleck [75,76]. We use the Brillouin-Wigner scheme where the effective Hamiltonian to order O(1/�) has the form,

HK = H0 +
∑
n �=0

H−nHn

n�
.

The zeroth order term is given by

H0 = −
∑
〈i j〉

J0
(√

r2
1 + r2

2

)
(tab a†

i b j + tbc b†i c j + tac c†i a j + H.c.),

and the O(1/�) terms are given by

H−nHn

nω
=

P1∑
〈〈i j〉〉

χ1 νi j
((

t2
ab − t2

ac

)
a†

i a j + (
t2
ab − t2

bc

)
b†i b j + (

t2
ac − t2

bc

)
c†i c j

)

+
P2∑

〈〈i j〉〉
χ2 νi j

((
t2
ab − t2

ac

)
a†

i a j + (
t2
ab − t2

bc

)
b†i b j + (

t2
ac − t2

bc

)
c†i c j

)

+
P3∑

〈〈i j〉〉
χ3 νi j

((
t2
ab − t2

ac

)
a†

i a j + (
t2
ab − t2

bc

)
b†i b j + (

t2
ac − t2

bc

)
c†i c j

)
, (A5)

where

χ1 = i

nω
Jn(ãAy)Jn

(
ã

2

√
A2

y + 3A2
x + 2

√
3AxAy cos φ

)
sin

(
n

[
π

2
− φ − arctan

(
Ay cos φ + √

3Ax

Ay sin φ

)])

χ2 = i

nω
Jn(ãAy)Jn

(
ã

2

√
A2

y + 3A2
x − 2

√
3AxAy cos φ

)
sin

(
n

[
π

2
− φ − arctan

(
Ay cos φ − √

3Ax

Ay sin φ

)])
(A6)

χ3 = i

nω
Jn

(
ã

2

√
A2

y + 3A2
x + 2

√
3AxAy cos φ

)
Jn

(
ã

2

√
A2

y + 3A2
x − 2

√
3AxAy cos φ

)

× sin

(
n

[
arctan

(
Ay cos φ + √

3Ax

Ay sin φ

)
− arctan

(
Ay cos φ − √

3Ax

Ay sin φ

)])
.

We are interested in the case of circular polarization where Ax = Ay and φ = π
2 . The values of χ1,2,3 for circular polarization are

given by χ1 = χ2 = χ3 = iJ2
n (ãA) sin 2πn

3
nω

.

APPENDIX B: SLAVE-ROTOR MEAN FIELD TREATMENT
OF THE OFF-RESONANT HAMILTONIAN

Within single site cluster mean field theory we can write
the spinon-electron Hamiltonian Hf d = 〈�θ |HOR

eff |�θ 〉 and
rotor Hamiltonian Hθ = 〈� f d |HOR

eff |� f d〉 as

Hf d =
∑

I,J,β,σ

(〈�θ |e−iθIa |�θ 〉tA,NN
Iaσ ;Jβσ f †Iaσ dJβσ + H.c.

)

+
∑
I,J,σ

(
tA,NN
Ibσ ;Jcσ d†

Ibσ dJcσ + H.c.
)

+
∑

I,J,α,σ

(
tA,NNN
Iασ ;Jασ d†

Iασ dJασ + H.c.
)

+U/2
∑

I

〈�θ |nθ
Ia

(
nθ

Ia − 1
)|�θ 〉 − μ f Nf (B1)

Hθ =
∑

I,J,β,σ

(
tA,NN
Iaσ ;Jβσ 〈� f d | f †Iaσ dJβσ |� f d〉e−iθIa + H.c.

)

+
∑
I,J,σ

〈� f d |(tA,NN
Ibσ ;Jcσ d†

Ibσ dJcσ + H.c.
)|� f d〉

+
∑

I,J,α,σ

〈� f d |(tA,NNN
Iασ ;Jασ d†

Iασ dJασ + H.c.
)|� f d〉

+U/2
∑

I

nθ
Ia

(
nθ

I,a − 1
) − μθNθ . (B2)

Here, tANN
Iασ ;Jβσ and tANNN

Iασ ;Jασ are the NN and NNN hopping
amplitudes that were contained in tA

Iασ ;Jβσ in HOR
eff , in the main

paper. In the first term of Eq. (B1), β runs over b and c. This
term is the a-b and a-c, NN kinetic energy terms, where the
bare tab and tac are renormalized by �Ia = 〈�θ |e−iθIa |�θ 〉.
Within the mean field ansatz, �Ia is assumed to be the same
on all a sites. The second term is the bare kinetic term
containing only b-c hopping. In the third term of Eq. (B1),
the α summation goes over b and c and contains only tbb and
tcc NNN hopping terms. This in because the emergent NNN
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hopping amplitude taa is zero for our choice on bare hopping
amplitudes, i.e.,tab = tac. We note that in Hf d , �Ia, which is
assumed to be the same on each a site, scales the NN hopping
terms only. Thus when the local Mott transition occurs, the
NN term in the Hamiltonian vanishes.

We start with a given �Ia, assumed to be the same
on all a sites within the single site rotor cluster mean
field theory, and then diagonalize the spinon Hamiltonian.
Now with the resultant eigenvectors and eigenvalues aver-
age �Ia is calculated. The constraint equation, Eq. (11) in
the main paper, is imposed at a mean field level, which
reads as: 〈

nθ
Ia

〉 + 〈
n f

Ia↑
〉 + 〈

n f
Ia↓

〉 = 1. (B3)

The average spinon occupation on the site a is identified to the
electron occupation and the chemical potential μθ is adjusted
to fix the rotor occupation so that it satisfies the mean field
constraint equation. In our calculation, the Hilbert space for
the interacting rotor Hamiltonian is restricted by limiting the
local a site occupation to a maximum occupation of 3. Then
�Ia is used in Hf d and the spinon Hamiltonian is rediago-
nalized. The process is repeated until energy convergence is
achieved.

1. DOS calculation

The main observable we focus on is the sublattice pro-
jected density of states (PDOS). The PDOS is defined in
general as Nγ (ω) = ∑

α,σ

∑
iγ

|〈χα|iγ , σ 〉|2δ(ω − εα ), where
γ = a, b, c sites in the Ith unit cell. Here, {|χα〉} and {εα}
correspond to the eigenvectors and eigenvalues of H . PDOS
calculation is standard and is not repeated here. Below we
focus on the PDOS for the interacting sublattice a. Since we
have split the electron into a rotor and a spinon at every a
site of our problem, we first need to reconstruct the (electron)
single particle Green’s function and then take its imaginary
part to compute the spectral function and the PDOS. To do so,
we begin with the local (on-site) retarded Matsubara Green’s
function at a site a in a unit cell I , which can be defined as,

GIaσ (iωn) = −
∫ β

0
dτeiωnτ 〈�|dIa,σ (τ )d†

Ia,σ (0)|�〉

= −
∫ β

0
dτeiωnτ 〈� f d | fIασ (τ ) f †Iασ (0)|� f d〉

× 〈�θ |e−iθIα (τ )eiθIα (0)|�θ 〉. (B4)

The above decomposition of electron Green’s function into a
convolution of rotor and spinon Green’s functions is possible
for the chosen mean field ansatz |� f d〉|�θ 〉. The spinon
correlator in Eq. (B4) can be calculated as

1

2

∑
σ

〈 fIασ (τ ) f †Iασ (0)〉

= 1

2

∑
ασ

∣∣〈χ f
α

∣∣Iα, σ
〉∣∣2[

1 − n f
(
ε f
α − μ f

)]
e−τ (ε f

α −μ f ).

(B5)

Here, {|χ f
α 〉} and {ε f

α } are the spinon eigenvectors and eigen-
values, respectively. The rotor correlator in Eq. (B4) can be

expressed as

〈e−iθIα,σ (τ )eiθIα,σ (0)〉
= 1

Zθ

∑
m,n

e−βεm〈m|e−iθIα,σ |n〉〈n|eiθIα,σ |m〉eτ (εm−εn ), (B6)

where {εm} and {|m〉} are the eigenvalues and corresponding
eigenvectors of the rotor Hamiltonian Hθ . Here, Zθ is the
rotor partition function defined as

∑
m e−βεm . Using Eq. (B4),

the integration over imaginary time τ can be performed. We
then analytically continue back to the real frequency to ob-
tain GIaσ (ω). The PDOS is obtained from the corresponding
imaginary part as usual.

APPENDIX C: CHERN NUMBERS AND
EDGE MODE CALCULATIONS

The Chern number is defined for nth Bloch band as

Cn = 1

2π i

∫
T

d2kFi j (k). (C1)

The integration is over the full two-dimensional Brillouin
zone. The Berry connection and associated curvature is de-
fined as

Ai(k) = 〈n(k)|∂i|n(k)〉, (C2)

Fi, j = ∂iA j − ∂ jAi, (C3)

where n(k) is the normalized Bloch wave function of the
nondegenerate nth Bloch band that is calculated by diagonal-
izing the momentum space Bloch Hamiltonian. For numerical
calculation we employ the method discussed in Ref. [87].

To obtain a solution for the edge state, we have to consider
a ribbon geometry. Here we adopt the periodic boundary
condition along the x axis and along y we have an open
boundary condition. Thus, kx is a good quantum number here.
Now performing the Fourier transformation only along the
x direction, the problem is reduced to one dimensional (1D)
having only kx as the variable. Hence, the 1D Hamiltonian
can be written as

Hkx =
N∑

I,J,α,β,σ

tA,kx
Iασ ;Jβσ dkx†

Iασ dkx
Jβσ + H.c., (C4)

where, I , J denote the site indices, N is the total number
of lattice sites along the y direction, and α, β run oven a,
b, and c. tA,kx

Iασ ;Jβσ ′ contains all the nearest and next nearest
Fourier transformed hopping terms. Now diagonalizing the
Hamiltonian numerically we obtain the required 1D edge
spectra. In our case, for the edge calculation we consider
A = 1.5t and N = 10. Both the Chern number and the edge
mode calculations are carried out for Hf d , once the SR-MFT
results have converged.

APPENDIX D: TWO A SITE IN THE ROTOR CLUSTER

In the previous single site cluster calculation we take
nearest neighbor hopping in such a way that light induced
a-a next-nearest neighbor is vanished. Now we allow small
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NNN a-a hopping by considering tab �= tac. The correspond-
ing spinon-electron and rotor Hamiltonians read as

Hf d → H�
f d = Hf d

+
∑
I,J,σ

(〈�θ |e−iθIa eiθJa |�θ 〉tA,NNN
Iaσ ;Jaσ f †Iaσ fJaσ + H.c.

)
(D1)

Hθ → H�
θ = Hθ

+
∑
I,J,σ

(〈� f d | f †Iaσ fJaσ |� f d〉tA,NNN
Iaσ ;Jaσ e−iθIa eiθJa + H.c.

)
.

(D2)

Here, tA,NNN
Iaσ ;Jaσ ′ denotes the light driven direct a-a hop-

ping amplitudes. This additional term in H�
θ is further de-

coupled in a kinetic term decoupling scheme e−iθIa eiθJa →
〈�θ |e−iθIa |�θ 〉eiθJa or �IaeiθJa . Since �Ia is assumed to be
uniform, this implies that the additional term in H�

θ reduces
to a local term. The solution of the four site cluster then
proceeds exactly like the single site cluster case discussed
in Appendix B, the difference being that a four site rotor
Hamiltonian is diagonalized instead of a single site cluster.
The four site (a-b-a-c) parallelogram cluster, indicated by the
shaded parallelogram (enclosed within the dashed lines), is

shown in Fig. 6(b). Also, as for the one site cluster, we allow
local rotor occupation of 3 ion each a site in H�

θ .
We note that in addition to 〈�θ |e−iθIa |�θ 〉 or �Ia that

renormalizes the NN hopping, 〈�θ |e−iθIa eiθJa |�θ 〉 now scales
the NNN hopping between the a sites. In the insulating phase
when �Ia = 0, the rotor kinetic energy within the cluster
〈�θ |e−iθIa eiθJa |�θ 〉 is not zero. It encodes the virtual charge
fluctuations. In the insulating phase, the NN a-b and a-c
hopping amplitudes are renormalized to zero (as �Ia = 0). In
this regime NN tbc, the NNN a-a, b-b, and c-c terms survive.
When taa is chosen to be zero H�

f d has the hopping con-
nectivity of the Kane-Mele model. When taa �= 0, the virtual
charge fluctuations within the four site rotor cluster allow a
a-a hopping mediated spinon kinetic energy contribution to
the total kinetic energy in H�

f d . The resultant phase diagram is
shown in Fig. 6(a). In Fig. 5(a), only the first band touching
point was indicated by the red arrow. Here for completeness,
for a specific value of nonzero taa, we show all the band
touching points in the phase diagram [see Fig. 6(a)] as was
shown for the taa = 0 case in Fig. 2(a). Comparison shows
that these remain qualitatively unchanged, as is discussed in
the subsection 4 in the main paper. In Fig. 6(c), the variation
of all NNN hopping parameters are shown as a function of A
for the bare parameters indicated in the figure.
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