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Broken poloidal symmetry and plasmonic eigenmodes on a torus
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We study the poloidal modes (modes whose variations are strictly along the direction of the torus axis) of
toroidal nanoparticles. We show that the modes may be understood in terms of the symmetry breaking that
occurs when an infinite cylinder is folded to form a torus. This symmetry breaking results in the splitting of the
transverse cylinder modes into two distinct sets of modes on a torus. One set of these modes was known to exist
already. We show the existence of the second set and also analytically derive the surface charge structure for that
set of modes. We also consolidate recent advances made in studying the modal structure on torus particles and
complete our understanding of the plasmonic modes of a torus.
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I. INTRODUCTION

The field of plasmonics is concerned with the manipulation
of the oscillatory modes of electrons of nanoparticles for
confinement, transmission, and amplification of electromag-
netic fields [1]. In the last couple of decades, with the advent
of advanced experimental and fabrication techniques, the
fabrication of nanostructures of ever-decreasing dimensions
has become possible, bringing along with it the possibility
of controlling electromagnetic fields at the nanoscale. These
nanostructures have brought with them exotic possibilities
with applications in the fields of chemical sensing through
surface-enhanced Raman scattering (SERS) [2], photovoltaics
[3], biological sensing [4,5], and imaging [6] applications as
well as ultrafast communication systems [7]. In addition to
these, applications involving the control of resonance energy
transfer between plasmons and emitters at the nanoscale [8],
such as spasers [9–13], have been made possible through the
advances in nanoscale plasmonics.

The simplest of these nanostructures, the sphere, was an-
alyzed over a century ago and it was shown that the electro-
magnetic field modes generated take the form of the so called
solid harmonics [14]. The surface electron charge modes take
the form of spherical harmonics [15] resulting in a structure
with threefold-degenerate dipole modes, fivefold-degenerate
quadrupolar modes, etc. The structure and behavior of
these modes are understood perfectly and a summary of these
is presented in Fig. 1; ωF in the figure is the well known
Fröhlich frequency, at which value the permittivity of the ma-
terial ε is such that Re{ε} = −2; ωC is the frequency at which
Re{ε} = −1. We note here that these exact values only hold
when the sphere is placed in vacuum. For general external
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environments, ωF is the frequency at which the permittivity
of the material has Re{ε} = −2εb and for ωC , Re{ε} = −εb,
where εb is the permittivity of the environment. One of the key
factors understood about the modes on a sphere is that they are
normal (i.e., orthogonal): they can be excited independently
of each other. Another important factor is that the modes are
exactly solvable in the quasistatic limit. Virtually all other
plasmonic structures are not solvable exactly and do not
possess the property of normality.

Beyond the sphere, in terms of genus, the representative
structure in the next level of topological hierarchy is the
torus. In plasmonic applications, the torus structure has shown
to be incredibly useful as a primary nanostructure allowing
for enhanced tuning capabilities compared to spheres [16].
Tori have been shown to possess high-field confinement in
the center and also allow for modes with nonzero magnetic
dipole moment [17]. As far as analytical characterization of
the plasmonic response of a torus goes, it has been known for a
while that the Laplace equation is approximately separable in
toroidal coordinates [18]. The toroidal (azimuthal) coordinate
is completely separable while the other two coordinates are
coupled. The first attempts at solving the Laplace equation
on a torus surface was carried out in [19,20] in the context
of toroidal plasma analysis. In the plasmonic domain, the
first attempt at an analysis was done in [17] under certain
assumptions. The first complete analysis of the problem was
carried out in [21] and [22]. It was also in [21] that the
existence of poloidal modes (azimuthally symmetric modes)
was first demonstrated. The existence of an infinite class
of such modes was shown. In addition to this, plasmonic
analyses of modes on a torus were carried out in [16] and
[23] within the framework of plasmon hybridization. This
formalism described the plasmonic modes on a torus surface
as arising from hybridization of primitive plasmons on the
inner and outer surface of a torus. However, almost all of
these studies focused mainly on toroidal modes, or modes
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FIG. 1. The plasmonic modes of a sphere. The dipole modes
are shown in color and the dark (nonradiative) modes in black. The
dipole x mode is shown in red, the y mode in blue, and the z mode in
green.

with charge variations in the x-y plane, for a torus with
an axis along the z direction. In this paper, we shall fo-
cus on the poloidal modes, or modes whose variations are
strictly along the direction of the torus axis, and show that
the poloidal structure results in numerous amazing hidden
properties.

Seemingly unrelated to these developments in fields of
physics, it was recently demonstrated that the spectrum of the
so-called adjoint Neumann-Poincaré (adjoint-NP) operator on
the surface of a torus possesses an infinite number of a neg-
ative eigenvalues [24]. The eigenfunctions of the adjoint-NP
operator for a given surface are known to furnish the surface
charge plasmonic eigenmodes of a particle bounded by that
surface, in the quasistatic approximation [15]. The eigenval-
ues correspond to the resonant permittivities. As we shall
show, these eigenmodes with negative eigenvalues actually
include an infinite set of poloidal modes which are different
from the ones shown to exist in [21]. We shall show that the
complete set of poloidal plasmonic modes on a torus may be
described as two infinite sets of modes: one set as discovered
in [21] with positive adjoint-NP eigenvalues, and another set
with negative eigenvalues which we demonstrate here for the
first time. We will show that these two sets arise from the
breaking of the poloidal symmetry when an infinitely long
cylinder is folded to form a torus. By our analysis of these
poloidal modes, we complete our understanding of plasmonic
modes on a torus.

In the first section of this paper we establish the coordinate
systems and derive the poloidal modes corresponding to nega-
tive eigenvalues of the adjoint-NP operator analytically. In the
next section, we solve the adjoint-NP equation numerically
and show the existence of the dual set of poloidal modes and
establish the symmetry-broken structure and show that the
modes converge to the modes of a cylinder in the low-aspect-
ratio limit. In the final section we solve Maxwell’s equations
and study how the modes overlap and behave under scattering
and extinction studies.

Side View

Top View

FIG. 2. The toroidal coordinate system and the natural coordi-
nate system on a torus.

II. POLOIDAL MODES ON A TORUS: ANALYTICAL
CHARACTERIZATION

We begin our analysis by setting up coordinate systems on
a torus. There are two main sets of coordinate systems natu-
rally applicable for tori. The first is the toroidal coordinates
(ξ, η, φ) as shown in Fig. 2. The figure shows the coordinates
as seen from the side of the torus (z-x plane) as well as from
the top (x-y plane). Any point on the right half of the z-x plane
may be described by the (ξ, η) pair (these two coordinates by
themselves are sometimes referred to as the bipolar coordinate
system for the plane). Rotating the half plane around the z axis
allows us to extend that coordinate system to the whole of 3-
dimensional space. The angle φ is exactly the azimuthal angle
of the spherical polar coordinate system. A torus surface is
parametrized by varying (η, φ) values and a constant ξ value.
We refer the reader to the Appendix for further information on
the transformation formulas and other important quantities of
the toroidal coordinates.

The second coordinate system is the triplet (ξ, θ, φ), which
is the natural extension of the polar coordinates to reflect the
double-sphere structure (T = S

2) of the torus. We shall refer
to these coordinates as the natural (polar) coordinates. We
also note a very interesting property of the toroidal coordinate
system here. Performing a geometric inversion [25] of the
toroidal coordinates with center at O and radius r0 furnishes
a conformal map from the torus onto itself. Under this trans-
formation, any point A is mapped to the point B as determined
by the intersection of the extended line segment OA and the
torus surface. This transformation can also be thought of
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approximately as a transformation taking the outside surface
portion of the torus to the inside and vice versa. This observa-
tion will be useful later.

Both the toroidal and natural (polar) coordinate systems are
orthogonal. However, it is only in the toroidal coordinates that
the Laplace equation is known to have an approximately sep-
arable solution. This property was known for a long time and
the electric potential field can be expressed as an expansion in
terms of the toroidal harmonics [26],

	(ξ, η, φ) =
√

1 − ξ cos(η)
∑
m,n

{
Tmn

Smn

}
×

{
cos(mη)
sin(mη)

}

×
{

cos(nφ)
sin(nφ)

}
, (1)

where Tmn = ξ−1/2Qn
m−1/2(1/ξ ) and Smn = ξ−1/2Pn

m−1/2(1/ξ ),
with Qα

β and Pα
β the associate Legendre functions. The curly

braces indicate that any one of the functions within may be
chosen to form a valid mode. This equation can be viewed
as a modal expansion. The azimuthal direction in a torus is
usually referred to as the toroidal direction and the modes that
vary in that direction are referred to as toroidal modes. These
modes have m = 0. On the other hand, the direction as labeled
by η or θ is the poloidal direction and the modes are referred
to as poloidal modes (n = 0). All other modes are nontrivial
superpositions of toroidal and poloidal modes.

As can be seen, the solution is separable in the azimuthal
coordinate φ due to the corresponding exact symmetry of the
torus. This means that the terms in Eq. (1) with different
n values are orthogonal. However, the ξ and η coordinates
are intrinsically coupled and hence the modes with different
m values are not orthogonal. Hence, in general, the toroidal
plasmonic response will be a mixture of modes with different
m values.

To study the structure of the poloidal modes, we turn to a
different formulation of the Laplace equation and the associ-
ated boundary value problem: the adjoint Neumann-Poincaré
(adjoint-NP) operator. First proposed by Neumann [27] and
Poincaré [28] in the context of an extremal value problem,
the adjoint-NP operator has recently received much attention
in plasmonics as a convenient alternative to the Laplace-
equation-based methods [15,29,30]. Consider a bounded ob-
ject occupying the domain V in R

3 and bounded by surface
S with differential surface elements dS and outward-pointing
surface normals nx at coordinates x. Assuming the existence
of a source-free charge distribution σ (x) on the surface, in-
ducing an electric field inside and outside the object described
by E+

0 (x) and E−
0 (x), respectively, we can express the normal

components of the electric fields near the surface as [31]

nx · E±
0 (x) = ∓σ (x)

2εb
+ 1

4πε0

∫
S
σ (y)

(x − y) · nx

|x − y|3 dS(y).

(2)
The first term on the right-hand side is the contribution of
the charge localized at x, to the electric field at x, while the
second term is the contribution of the charge dispersed over
the rest of the surface. Here, we assume that the permittivity of
the surrounding space is given by εb and that the permittivity
of the object is given by ε. Now we impose the boundary
condition for the continuity of the electric displacement field

in the direction normal to the surface, nx · (εE+
0 − εbE−

0 ) = 0,
arriving at

σ (x) = ε − εb

ε + εb

1

2π

∫
S

(x − y) · nx

|x − y|3 σ (y)dS(y). (3)

This equation expresses the conditions for the existence of
the surface charge distribution under source-free conditions.
The right-hand side expression is exactly the expression of
the adjoint-NP operator K∗ given by

K∗[σ ](x) = p.v.
λ

2π

∫
S

(x − y) · nx

|x − y|3 σ (y)dS(y). (4)

Here p.v. denotes the Cauchy principle value of the integral.
The square brackets indicate the fact that K∗ is a functional
with argument σ . Setting λ = ε−εb

ε+εb
, the problem of finding the

source-free charge structures on the surface S thus reduces to
solving the equation

σ (x) = K∗[σ ](x). (5)

This is an eigenvalue problem of the adjoint-NP operator. It is
known that the spectrum of the operator in a smooth domain
is real and discrete, and that λ = 1 is one of the eigenvalues.
All other eigenvalues have |λ| > 1 [15]. If we let ωC be the
frequency at which Re{ε} = −1 of the plasmonic medium,
then positive eigenvalues correspond to resonance frequencies
ω < ωC and negative eigenvalues correspond to frequencies
ω > ωC . We use the subscript C here since it is at that very
frequency that the transverse plasmonic modes of an infinite
cylinder are located (see Fig. 9). For a thorough discussion
of the operator equation (5) and its application to plasmonic
resonances, we direct the reader to [15] see Eq. (21) therein.

With Eq. (5) in hand, we turn to the torus. We can rewrite
the adjoint-NP operator on a torus surface, in toroidal coordi-
nates, as

K∗[σ ](η, φ)

=
∫

κα(η, η′)σ (η′, φ′)
[μ(φ − φ′) − cos(η − η′)]1/2

dη′dφ′

−
∫

κα(η, η′)ψ (η)

ξ 2

σ (η′, φ′)[1 − cos(φ−φ′)]
[μ(φ−φ′)−cos(η−η′)]3/2

dη′dφ′,

(6)

where ψ (η)=1−ξ cos(η), μ(φ)=1/ξ 2+(1−1/ξ 2) cos(φ),
κ = (1 − ξ 2)ψ (η)1/2/[8π

√
2ξψ (η′)3/2], and α(η, η′) =

ψ (η)1/2/ψ (η′)3/2. We note that the differential surface
element in toroidal coordinates is given by dS = hηhφdηdφ,
where hη and hφ are the scale factors in their respective
directions. The formulas for the scale factors, normal vectors,
and inverse distance in toroidal coordinates are provided in
the Appendix.

Observing Eq. (6), we see that the kernel is a function of
(φ − φ′). This is a signature of the exact azimuthal symmetry
of the system. This also indicates that Eq. (6) is a convolution
operator in the φ variable. Functions of the form eikφ , where k
is an integer, are eigenfunctions of such convolution operators
[32].

However, the η dependence of the system is much more
complicated. While the denominator of the kernel contains
terms dependent on (η − η′), there are other terms that

115426-3



THARINDU WARNAKULA et al. PHYSICAL REVIEW B 101, 115426 (2020)

seemingly do not. This structure indicates that the rotational
symmetry in the η direction is not exact for the torus. The
prefactor terms in Eq. (6) also indicate that the terms of the
form ψ (η)3/2 also seem to be part of the eigenfunctions of
the operator. Using these observations we can hypothesize,
without loss of generality, that the eigenfunctions should be
of the form

σ (η, φ) = ψ (η)3/2eikφg(η). (7)

With this form, the operator equation reduces to

K∗[σ ](η, φ) = κψ (η)3/2
∫

1

ψ (η)

g(η′)e−ikφ′
dη′dφ′

[μ(φ′) − cos(η − η′)]1/2

− κψ (η)3/2

ξ 2

∫
g(η′)e−ikφ′

[1−cos(φ′)]
[μ(φ′)−cos(η−η′)]1/2

dη′dφ′.

(8)

With the inevitable symmetry breaking of the ψ (η)
functions removed, the kernel still carries a term 1/ψ (η),
which breaks the η symmetry of the resulting eigenfunction
(i.e., the kernel still is not a function of exclusively η − η′).
To observe the behavior of the kernel for small ξ , we can
expand the 1/ψ (η) term in powers of ξ [this is valid since
|ξ cos(η)| < 1]:

1

ψ (η)
= 1 + ξ cos(η) + ξ 2 cos2(η) + O(ξ 3). (9)

Taking only the lowest order term, we can rewrite the kernel as

K∗[σ ](η, φ)

= κψ (η)3/2
∫

g(η′)e−ikφ′

[μ(φ′) − cos(η − η′)]1/2
dη′dφ′

− κψ (η)3/2

ξ 2

∫
g(η′)e−ikφ′

[1 − cos(φ′)]
[μ(φ′) − cos(η − η′)]1/2

dη′dφ′. (10)

This kernel is a function of η − η′ and has exact η symmetry.
Hence we can describe the eigenfunction g(η) = eilη. This
gives us the form of the approximate eigenfunctions as

σ (η, φ) = ψ (η)3/2eikφeilη. (11)

This implies that, apart from the ψ (η) term, the
eigenfunctions have sinusoidal dependence on both angular
variables η and φ. Since we are exclusively interested in
poloidal modes, we set k = 0 and derive the following modes:

σ S
l (η) = ψ (η)3/2 sin(lη), (12a)

σC
l (η) = ψ (η)3/2 cos(lη). (12b)

σ S
l is antisymmetric and hence will have a net dipole moment

while σC
l will be dark. We refer to those modes that do not

radiate into the far field as dark modes. We plot both charge
distributions in Fig. 3. As can be seen, the charges are mainly
localized to the internal “gap” of the torus. We term these
modes internal modes, or I modes, due to this behavior. We
also label the individual modes as either ISl or ICl modes,
depending on the sine or cosine structure. We further observe
from Eqs. (12) that for smaller ξ , the two modes reduce to the
usual sine and cosine cylinder modes. As shown in Fig. 3, for
larger ξ values, the charge distributions of the modes seem to
accumulate near the η = π point.

-1.0

0

1.0

FIG. 3. The charge distributions of the IC1 and IS1 modes as
described by Eqs. (12) at various aspect ratios.

III. POLOIDAL MODES ON A TORUS: NUMERICAL
CHARACTERIZATION

Now we turn to the numerical solution of the adjoint-NP
operator equation. For this purpose, we can reinterpret Eq. (4)
as an equation involving solid angles between discretized
surface elements {xi} [15],

Xi = λ

2π

∑
j

ωi jXj . (13)

Here, Xi is the total charge on the ith surface element and ωi j

is the solid angle subtended on the jth surface element, by
the ith element. The problem can thus be cast in the form
of an eigenvalue equation and solved efficiently. For further
information on the numerical technique and the algorithm, we
direct the reader to [15] (see Sec. VI therein). We note that
the equation is not referred to as the adjoint-NP operator in
[15], but instead generally referred to as Eq. (21). We solve
this equation and confirm the existence of the I modes we
analytically derived earlier. We show the lowest order modes
for ξ = 0.5 in Fig. 4. The eigenvalues of these modes turn
out to be all negative and hence the resonance frequencies
ω > ωC . The negativity of the eigenvalues may be linked
to the negative Gaussian curvature of the inside surface of
the torus, where the charge distribution of these I modes is
concentrated. Given a surface element δi on the inside surface
of a torus, the ωi j angles subtended by most other surface
elements δ j on the inside surface are negative. Hence the sum
of Eq. (13) is negative, resulting in a negative eigenvalue. We
also note here that in [33], it was proven that given a smooth
surface with a region with negative Gaussian curvature, the
adjoint-NP spectrum of that surface, or of the surface formed
by an inversion, has negative eigenvalues. Given the natural
inversion from the torus onto itself that we described earlier,
this suggests that the adjoint-NP spectrum of the torus will
contain negative eigenvalues. This observation also reinforces
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-1.0

0

1.0

FIG. 4. The charge distributions for the lowest order I modes at
ξ = 0.5.

the importance of the negative curvature portion of the surface
to the existence of the negative eigenvalue mode and the
corresponding I mode.

In addition to these modes, we discover another set of
modes with charge distributions concentrated on the outside
surface of the torus. These modes have positive eigenvalues.
The positive eigenvalues can be linked to the positive cur-
vature of the outside surface of the torus where the charges
are concentrated. We label these modes exterior modes, or
E modes. Similarly to the I modes we also label them based
on the symmetry or asymmetry structure with labels ESl and
ECl . Figure 5 displays the lowest order of these modes for
ξ = 0.5. Unlike the I modes, the E modes do not display
a strong variation of the extent of the charge distribution
with changing ξ . There is however a very minor effect of
accumulating toward the η = 0 point with increasing ξ .

Next we study the resonance permittivities of the two sets
of poloidal modes (Fig. 6). As can be seen, the I modes have
permittivities ε > −1 while the E modes have ε < −1. In
[21], the solution of the Laplace equation only established the
existence of the lower branches corresponding to the E modes.
We also note that the permittivities tend to −1 as the aspect
ratio ξ is reduced. This is due to the fact that in the infinitely
thin torus limit, the torus structure tends, at least locally, to
that of an infinite cylinder. In that limit, the poloidal modes

-1.0

0

1.0

FIG. 5. The charge distributions for the lowest order E modes at
ξ = 0.5.
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FIG. 6. The resonance permittivity values of the lowest order I
and E modes at various aspect ratios.

tend to the transverse plasmonic modes of a cylinder. We note
that all of the transverse modes of a cylinder are located at
frequency ωC . Hence, this graph hints that the two sets of
modes may be considered as originating from the splitting of
the transverse modes of a cylinder.

We confirm this hypothesis in Fig. 7, where we plot the
charge distribution of the ES1 and IS1 modes at different ξ .
We see that both of the charge distributions tend toward the
charge distribution of a transverse z-dipole mode of a cylinder
for smaller ξ . This reestablishes that the two sets of modes
are actually manifestations of the symmetry breaking that
occurs when a cylinder is folded to form a torus. Similarly,
the EC1 and IC1 modes approach the charge distribution
of the x-dipole mode of a cylinder (for a dipole with axis along
the y axis).

Next we study the dipole moments of the asymmetric
modes we have discovered. The dipole moments of dipole-
active modes dictate the majority of the interactions the parti-
cle will have with incident light. We plot the first two I and E
modes in Fig. 8. We note that the relative values of the dipole

-1.0

0

1.0

FIG. 7. The charge distributions of the ES1 and IS1 modes at
various aspect ratios.
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FIG. 8. The dipole moments of the lowest order dipole active I
and E modes at various aspect ratios.

moments have not been normalized and hence comparisons
should not be drawn between the curves but instead within
the curve itself. E modes show a linear variation in the dipole
moment. This can be understood by considering that the
charge distribution shape of the E modes shows relatively
small variation while the minor radius of the torus increases.
This results in a linear increase of the dipole moment with ξ .
On the other hand, the I modes display a linear progression
at low ξ values. But for higher ξ , the charge distribution
accumulation at η = π causes a reduction in the spread of the
charges in the z direction leading to smaller dipole moment
values.

In Fig. 9 we illustrate this splitting clearly showing the
transverse modes of the cylinder as extracted from the adjoint-
NP operator formalism, along with the modes of the torus.
The z-dipole mode of the cylinder splits into the ES1 and IS1

modes while the x-dipole mode splits into the EC1 and IC1

modes.
With the complete characterization of the poloidal modes

that we have established up to now, we are ready to present the
full spectrum of the torus eigenmodes. In Fig. 10, we present
the full spectrum of the torus which is the counterpart of the
spectrum of the sphere given in Fig. 1. The z-dipole modes
are denoted in green, with the x modes in red and y modes

Frequency

Symmetry

Broken

FIG. 9. The splitting of the transverse cylinder modes into the
dual set of torus modes. Specifically, the z-dipole mode splits into
the ES1 and IS1 modes while the x-dipole modes splits into EC1 and
IC1.

Frequency

FIG. 10. The complete spectrum of a torus. The dipole modes are
shown in color while the dark modes are black. The dipole x mode is
shown in red, the y mode in blue and the z mode in green.

in blue. The I modes are the highest frequency modes in this
figure. For smaller ξ values, the I modes will recede into the
dark-mode continuum and for larger ξ values, more I modes
emerge from within the dark modes. The E modes remain
hidden deep within the dark modes. Their detuning from ωC

is also smaller as compared to the corresponding I modes. The
toroidal modes with dipole moment in x and y directions are
the lowest frequency modes on the torus. Unlike the I modes,
they remain the lowest frequency modes irrespective of the
value of ξ . Higher order dipole-active toroidal modes arise
from the superposition of the toroidal modes with symmetric
poloidal modes. The first of these dipole-active modes are also
shown in the figure. All of these modes tend toward ωC for
smaller ξ .

IV. POLOIDAL MODES ON A TORUS:
MAXWELL’S EQUATIONS

While we have performed an analysis of the complete
modal structure of the poloidal modes, one important factor
that affects the relevance of these modes to understanding the
behavior of toroidal particles under electric fields is the fact
that the modes are not orthogonal. For a spherical particle, the
derived modes are completely orthogonal and hence they can
be analyzed individually. However, on a torus, the poloidal
modes are all coupled to each other such that all ESl and ISl

modes are coupled to each other. Similarly the ICl and ECl are
coupled as well. Hence, in general, it is a linear combination
of these modes that will be excited depending on the excitation
source. However, if the modes are detuned far enough in
frequency space, and the excitation source is at a specific
frequency, only the modes local to the excitation frequency
will be excited. As we saw earlier, the lower order IS modes
are quite detuned from the rest of the torus spectrum for high
enough values of ξ . Hence they may be excited individually
under such conditions.

To study this behavior, we solve Maxwell’s equations
under quasistatic conditions. For this, we utilize the versatile
MNPBEM toolbox [34]. The torus is placed with its axis
along the z direction. The particle is illuminated by a plane
wave polarized in the z direction. We plot the scattering and
extinction cross sections in Fig. 11 for a torus of aspect ratio
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FIG. 11. (a) The scattering (blue) and extinction (red) cross sections for a torus with aspect ratio ξ = 0.8. The locations of some of the
lowest order dipole active E and I modes are indicated by vertical bars. (b) The actual charge distributions as derived from solving Maxwell’s
equations under quasistatic conditions at various wavelengths.

0.8. To model particle properties we use the experimental
permittivity values for silver as obtained from [35]. We fit that
data into a Drude model and use the parameters uncovered to
model the silver material. The ωC for silver in this model lies
near 343 nm. The frequencies predicted for the lowest order
I and E modes by the numerical solution of the adjoint-NP
equations are also indicated in the figure. The extinction peaks
correspond exactly to the dipole-active lowest order modes.
As expected due to the higher dipole moment, the ES1 mode
dominates the spectrum. The IS1 and IS2 modes are also
sufficiently detuned to be visibly separate. The rest of the E
and I modes are overshadowed by the ES1 mode response. For
higher aspect ratios, more I modes emerge from the shadow of
the ES1 mode. However, the dipole moments of the I modes
decrease rapidly at higher aspect ratios causing the overall
response to diminish. Simultaneously, the height of the ES1

peak decreases with aspect ratio, allowing I modes to stand
out. Hence, as far as the utility of the dipole-active I modes
go, a balance needs to be stricken between obtaining a higher
dipole moment and ensuring that the mode is sufficiently
detuned to be visible individually. This balance occurs around
ξ = 0.4 to ξ = 0.8 for the IS1 mode.

We also study the actual induced charge distributions at
each of the extinction frequency levels. As can be seen,
at 325 nm, near the IS1 resonance, the charge distribution
looks exactly like the IS1 distribution before moving into
looking like the IS2 distribution at 335 nm. We see a dramatic
change with the change distribution moving from the inside
to the outside near ωC = 10 nm. Near the ES1 resonance at
350 nm, due to the interference of multiple higher order E
modes, the charge distribution actually looks similar to that

of a transverse cylinder mode. Near 355 nm, we recover the
expected charge distribution for the ES1 mode. We note that
while the ES1 mode lies in the middle of multiple other dark
and bright modes (as shown in Fig. 10), due to its extremely
high dipole moment, the E mode dominates the interaction
pattern of the torus with light polarized in the z direction.

V. CONCLUSION

In this paper, we have completely deconstructed the struc-
ture of poloidal modes on a torus and subsequently completed
our understanding of plasmonic modes on a torus. To this
end, we have analytically derived an equation describing
the negative eigenvalue surface charge poloidal modes on
a torus and numerically shown the existence of an addi-
tional positive eigenvalue mode set. We show that these
modes converge to the transverse cylindrical modes in the
small aspect ratio limit. Hence, we have demonstrated that
the two sets of modes may be considered as arising from
the splitting of the transverse cylindrical modes due to the
symmetry breaking that occurs when a cylinder is folded to
form a torus. We conclude with a discussion of the actual
modes that arise at specific frequencies by solving Maxwell’s
equations under planar wave illumination. We show that the
modal analysis is actually useful in describing the extinction
cross sections despite the nonorthogonality of the poloidal
modes.

A key feature of the modes we derive is the spatial localiza-
tion of the charge oscillations. The I modes and their electric
fields are more intense on the inner portions of the torus while
the E modes are more effective on the outer surface. The fact
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that these modes are also separated in frequency space allows
for frequency tuning of the spatial electric field profile. This is
a feature not present in simple nanostructures such as spheres
and rods. The actual frequency separation between the E and
I modes is also tunable through modifications of the aspect
ratio of the torus. We hope to investigate possible applications
of these frequency-tunable, spatially separated modes in the
future.

Another intriguing area for future investigation is the
structure of plasmon modes on objects made by revolving a
2-dimensional shape around a fixed center. These objects can
be thought of as being created by folding an infinite cylinder
with a certain cross section. For example, consider an elliptic
cylinder (a cylinder with an elliptical cross section). Folding
the cylinder, we can create a shape similar to a torus but with
an elliptical cross section. However, the regular cylinder has a
continuous rotation symmetry around its axis. This means that
the cylinder may be rotated by any angle around the axis and
the resulting shape looks identical to the cylinder. However,
for the elliptic cylinder, the cylinder may only be rotated by
multiples of π radians to arrive at the same shape. The elliptic
cylinder thus possesses a discrete symmetry around its axis.
Thus, when the elliptic cylinder is folded to create a torus-
like shape, it results in the breaking of a discrete symmetry
instead of a continuous symmetry. We suggest that studying
the effects of the breaking of such discrete symmetries would
prove most interesting. Such investigations would lead to a
much better understanding of plasmon modes on surfaces of
revolution.

We finally note here that the analyses presented in this
paper have been made in the electrostatic limit and will not
be valid when the size of torus particles are comparable to the
wavelength of light. However, in recent years, the synthesis of
nanotori of extremely small dimensions has been successfully
performed using novel techniques [36,37] for various applica-
tions.
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APPENDIX: THE TOROIDAL COORDINATE SYSTEM

1. Transformation equations for toroidal coordinates

The toroidal coordinates can be depicted as shown in
Fig. 2. The transformation equations from toroidal coordi-
nates (ξ, η, φ) to the rectangular coordinates (x, y, z) can be
given as

x = r0

√
1 − ξ 2 cos(φ)

1 − ξ cos(η)
, (A1a)

y = r0

√
1 − ξ 2 cos(φ)

1 − ξ sin(η)
, (A1b)

z = −r0ξ sin(η)

1 − ξ cos(η)
. (A1c)

The inverse transformation can be given as

φ = arctan
(y

x

)
, (A2a)

ξ = 2d1d2

d2
1 + d2

2

, (A2b)

η = arccos

(
d2

1 + d2
2 − 4r2

2d1d2

)
, (A2c)

where d2
1 = (ρ + r)2 + z2, d2

2 = (ρ − r)2 + z2, and ρ2 =
x2 + y2.

2. The scale factors

The scale factors for the orthogonal toroidal coordinates
can be given as

hξ = r0√
1 − ξ 2[1 − ξ cos(η)]

, (A3a)

hη = r0ξ

1 − ξ cos(η)
, (A3b)

hφ = r0

√
1 − ξ 2

[1 − ξ cos(η)]
. (A3c)

3. The normal vector

The normal vectors to the surfaces of constant ξ (surface of a torus) can be given by

n =
{

(cos(η) − ξ ) cos(φ)

1 − ξ cos(η)
,

[cos(η) − ξ ] sin(φ)

1 − ξ cos(η)
,−

√
1 − ξ 2 sin(η)

1 − ξ cos(η)

}
. (A4)

4. The inverse distance

The inverse distance between two points on a surface of constant ξ is

1

|x1 − x2| = 1√
2r0

√
[1 − ξ cos(η1)][1 − ξ cos(η2)]

1 − ξ 2 cos(η1 − η2) − (1 − ξ 2) cos(φ1 − φ2)
. (A5)
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